
FUNDAMENTA
MATHEMATICAE

147 (1995)

The hyperspace of finite subsets of a stratifiable space

by
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Katsuro S a k a i (Tsukuba)

Abstract. It is shown that the hyperspace of non-empty finite subsets of a space X
is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected
(and connected) stratifiable space.

0. Introduction. For a space X, let F(X) denote the hyperspace of
non-empty finite subsets of X with the Vietoris topology, i.e., the topology
generated by the sets

〈U1, . . . , Un〉 = {A ∈ F(X) | A ⊂ U1 ∪ . . .∪Un, Ui ∩A 6= ∅ (∀i = 1, . . . , n)},
where n ∈ N and U1, . . . , Un are open in X. We denote by S the class of
stratifiable spaces [Bo1] and byM the class of metrizable spaces. Note that
F(X) ∈ S if X ∈ S (cf. [MK, Theorem 3.6]). In [CN], it is shown that F(X)
is an ANR(M) (an AR(M)) if and only if X ∈M is locally path-connected
(and connected). In this paper, we consider the condition for non-metrizable
X ∈ S under which F(X) is an ANR(S) (or an AR(S)).

A T1-space X is 2-hyper-locally-connected (2-HLC) [Bo2,3] if there exist
a neighborhood U of the diagonal ∆X in X2 and a function λ : U × I→ X
satisfying the following conditions:

(a) λ(x, y, 0) = x and λ(x, y, 1) = y for each (x, y) ∈ U ;
(b) the function t 7→ λ(x, y, t) is continuous for each (x, y) ∈ U ;
(c) for each x∈X and each neighborhood V of x, there is a neighborhood

W of x such that W 2 ⊂ U and λ(W 2 × I) ⊂ V .

The condition (c) means that λ(x, x, t) = x for any x ∈ X and t ∈ I and
that λ is continuous at each point of ∆X × I. In case U = X2, X is said
to be 2-hyper-connected (2-HC). In the above definition of 2-HLC or 2-HC,
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if λ is continuous then X is locally equi-connected (LEC) or equi-connected
(EC) [Du]. Obviously if X is 2-HLC (2-HC) then X is locally path-connected
(and path-connected). Conversely, it will be shown that every locally path-
connected metrizable space is 2-HLC (Theorem 1.4). The following is our
result:

Main Theorem. For a space X, F(X) is an ANR(S) (an AR(S)) if
and only if X ∈ S is 2-HLC (and connected).

Since an ANR(S) is LEC (see [Ca3]), it is 2-HLC. Thus we have the
following:

Corollary. For a connected ANR(S) X, F(X) is an AR(S).

1. Cauty’s test space and the 2-HLC-ness. Let K be a simplicial
complex. The nth skeleton of K is denoted by K(n). Let |K| denote the
polyhedron of K, i.e., |K| = ⋃

K with the weak topology. For each σ ∈ K,
the barycenter and the boundary of σ are denoted by σ̂ and ∂σ, respectively.
And for any 0 < t ≤ 1, let

σ(t) = {x ∈ σ | 0 ≤ x(σ̂) < t} and σ[t] = {x ∈ σ | 0 ≤ x(σ̂) ≤ t},
where (x(σ̂))σ∈K are the barycentric coordinates of x with respect to the
barycentric subdivision of K. Each x ∈ σ(1) = σrσ̂ can be uniquely written
as follows:

x = (1− x(σ̂))πσ(x) + x(σ̂)σ̂, πσ(x) ∈ ∂σ.
Then the map πσ : σ(1) → ∂σ is called the radial projection. The simplex
σ with vertices v0, . . . , vn is denoted by 〈v0, . . . , vn〉 and a point x ∈ σ
is represented by x =

∑n
i=0 x(vi)vi, where (x(v))v∈K(0) are the barycentric

coordinates of x. Here we abuse the notation “〈. . .〉”. But it can be recognized
from the context to represent a simplex or a basic open set.

In [Ca3], the first author constructed a space Z(X) for every space X and
proved that a stratifiable space X is an AR(S) (resp. an ANR(S)) if and only
if X is a retract (resp. a neighborhood retract) of Z(X). Let F (X) denote
the full simplicial complex with X the set of vertices (i.e., X = F (X)(0)).
Then Z(X) is defined as |F (X)| with the topology generated by open sets
W in |F (X)| such that

W ∩X is open in X and |F (W ∩X)| ⊂W.
The second condition above means that each τ ∈ F (X) is contained in W
if all vertices of τ are contained in W ∩ X. For each A ⊂ X, F (A) is a
subcomplex of F (X) and Z(A) is a subspace of Z(X). If A is closed in X,
then Z(A) is closed in Z(X). For each n ∈ Z+ = N ∪ {0}, let Zn(X) =
|F (X)(n)| viewed as a subspace of Z(X). Then Z0(X) = X and Z(X) =
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⋃
n∈Z+

Zn(X). We use the following notations (see [GS]):

T (A) = {σ ∈ F (X)r F (A) | σ ∩A 6= ∅},
M(A) = {x ∈ Z(X) | ∃σ ∈ F (A) such that x(σ̂) > 0},
Tn(A) = T (A) ∩ (F (X)(n) r F (X)(n−1)) and

Mn(A) = Z(A) ∪ (M(A) ∩ Zn(X)).

For each ε ∈ (0, 1)T (A), we define

M(A, ε) =
⋃

n∈Z+

Mn(A, ε),

where M0(A, ε) = Z(A) = |F (A)| and

Mn(A, ε) = Z(A) ∪
⋃
{σ(ε(σ)) ∩ π−1(Mn−1(A, ε)) | σ ∈ Tn(A)}

for each n ∈ N. Then M(A, ε) ∩X = A. For any open set U in X, M(U, ε)
is an open set in Z(X). Note that Mn(A, ε) can also be defined for ε ∈
(0, 1)T1(A)∪...∪Tn(A). The following is the same as [GS, Lemma 4.1].

1.1. Lemma. The family

{M(U, ε) | U is open in X, ε ∈ (0, 1)T (U)}
(resp. {M1(U, ε) | U is open in X, ε ∈ (0, 1)T1(U)})

is an open base for Z(X) (resp. Z1(X)).

The 2-HLC-ness is characterized as follows:

1.2. Theorem. A space X is 2-HLC (resp. 2-HC) if and only if X is
a neighborhood retract (resp. retract) of Z1(X).

P r o o f. We only show the 2-HLC case since the 2-HC case is the same
and easy.

To prove the “only if” part, give X a total order “≤”. Then each z ∈
Z1(X)rX can be uniquely represented as follows:

z = (1− tz)xz + tzyz, xz < yz ∈ X, 0 < tz < 1.

Let bz be the barycenter of 〈xz, yz〉. Then observe z = (1− 2tz)xz + 2tzbz if
tz ≤ 1/2 and z = (1−2(1−tz))yz+2(1−tz)bz if tz ≥ 1/2. Let λ : U×I→ X
be a function in the definition of 2-HLC-ness. Then X has an open cover
V such that W =

⋃
V ∈V V

2 ⊂ U . Then N =
⋃
V ∈VM1(V, 1/2) is an open

neighborhood of X in Z1(X). Observe that z ∈ N r X and (xz, yz) 6∈ W
imply tz < 1/4 or tz > 3/4. Now we define a retraction r : N → X by
r|X = id and for each z ∈ N rX,

r(z) =




λ(xz, yz, tz) if (xz, yz) ∈W ,
xz if (xz, yz) 6∈W and tz < 1/4,
yz if (xz, yz) 6∈W and tz > 3/4.
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This is well defined by the condition (a). We show that r is continuous. Since
N rX is a subspace of |F (X)(1)|, r|N rX is continuous by the condition
(b). Hence r is continuous at each point of N r X. To see the continuity
of r at any point x ∈ X, let U ′ be a neighborhood of r(x) = x in X. By
the condition of (c), x has a neighborhood V ′ in X such that V ′ ⊂ V for
some V ∈ V and λ(V ′2 × I) ⊂ U ′. By Lemma 1.1, M1(V ′, 1/2) is an open
neighborhood of x in Z1(X). By the definition, r(M(V ′, 1/2)) ⊂ U ′, that is,
r is continuous at any x ∈ X.

To prove the “if” part, let N be a neighborhood of X in Z1(X) and
r : N → X a retraction. By Lemma 1.1, X has an open cover V and εV ∈
(0, 1)T1(V ), V ∈ V, such that

⋃
V ∈VM1(V, εV ) ⊂ N . Then U =

⋃
V ∈V V

2 is
an open neighborhood of ∆X in X2. We can define λ : U × I→ X by

λ(x, y, t) = r((1− t)x+ ty).

The condition (a) is obvious. The condition (b) follows from the continuity
of r|〈x, y〉. To see the condition (c), let U ′ be a neighborhood of x in X.
By the continuity of r and Lemma 1.1, we can choose a neighborhood V ′ of
x in U ′ and ε′V ′ ∈ (0, 1)T1(V ′) so that V ′ is contained in some V ∈ V and
r(M1(V ′, ε′V ′)) ⊂ U ′, whence λ(V ′2 × I) ⊂ r(M1(V ′, ε′V ′)) ⊂ U ′.

The following is easily proved.

1.3. Theorem. A connected 2-HLC space X is 2-HC.

P r o o f. Let λ : U×I→ X be a function in the definition of 2-HLC-ness.
Since X is connected and locally path-connected, X is path-connected. For
each (x, y) ∈ X2rU , we have a path λ(x,y) : I→ X such that λ(x,y)(0) = x

and λ(x,y)(1) = y. Then λ can be extended to λ̂ : X2×I→ X by λ̂(x, y, t) =
λ(x,y)(t) for each (x, y, t) ∈ (X2rU)×I. Obviously λ̂ satisfies the conditions
(a), (b) and (c). Hence X is 2-HC.

In the class M, the 2-HLC-ness is identical with the local path-connec-
tedness.

1.4. Theorem. Every locally path-connected metrizable space is 2-HLC.
Hence every connected and locally path-connected metrizable space is 2-HC.

P r o o f. Let X = (X, d) be a locally path-connected metric space. By
C(I, X), we denote the set of all paths in X. We define

U = {(x, y) ∈ X2 | ∃f ∈ C(I, X) such that f(0) = x and f(1) = y}.
By the local path-connectedness, it is easy to see that U is a neighborhood of
the diagonal ∆X in X2. For each (x, y) ∈ U r∆X, choose λ(x,y) ∈ C(I, X)



The hyperspace of finite subsets 5

so that λ(x,y)(0) = x, λ(x,y)(1) = y and

diamλ(x,y)(I) < 2 inf{diam f(I) | f ∈ C(I, X)

such that f(0) = x and f(1) = y}.
We define λ : U × I → X by λ(x, x, t) = x and λ(x, y, t) = λ(x,y)(t) if
x 6= y. Then λ satisfies the conditions (a) and (b). To see the condition
(c), let x ∈ X and V be a neighborhood of x. Choose δ > 0 so that the
δ-neighborhood of x is contained in V . Since X is locally path-connected,
x has a neighborhood W such that for each y, z ∈ W , there is f ∈ C(I, X)
such that f(0) = y, f(1) = z and f(I) is contained in the 1

5δ-neighborhood
of x, whence diam f(I) < 2

5δ. For each (y, z, t) ∈W 2 × I,

d(x, λ(y, z, t)) ≤ d(x, y) + d(y, λ(y, z, t))

< 1
5δ + diamλ(y,z)(I) < 1

5δ + 4
5δ = δ.

This means that λ(W 2 × I) ⊂ V .

2. Proof of the Main Theorem. The “only if” part of the Main
Theorem follows from the following theorem:

2.1. Theorem. For a space X, if F(X) is an ANR(S) (resp. an AR(S))
then X ∈ S is 2-HLC (resp. 2-HC).

P r o o f. First note that X is homeomorphic to F1(X) ⊂ F(X) ∈ S,
whence X ∈ S [Ce, Theorem 2.3].

In case F(X) is an ANR(S), there exist an open neighborhood U of the
diagonal ∆X in X2 and a map γ : U × I→ F(X) such that γ(x, x, t) = {x}
for any x ∈ X and t ∈ I, and γ(x, y, 0) = {x} and γ(x, y, 1) = {y} for any
(x, y) ∈ U . For each (x, y) ∈ U , let

Γ (x, y) =
⋃
γ({(x, y)} × I) =

⋃

t∈I

γ(x, y, t) ⊂ X.

Then Γ (x, y) is compact (cf. [Mi, 2.5.2]), whence it is metrizable [Ce, Corol-
lary 5.7]. And as is easily observed, Γ (x, y) is connected. Note that γ({(x, y)}
× I) ⊂ F(Γ (x, y)). By [CN, Lemma 2.2], Γ (x, y) is locally connected. Thus
each Γ (x, y) is a Peano continuum, which is path-connected. For each (x, y)
∈ U , choose a path λ(x,y) : I → Γ (x, y) such that λ(x,y)(0) = x and
λ(x,y)(1) = y. We define λ : U × I → X by λ(x, y, t) = λ(x,y)(t). Then λ
satisfies the conditions (a) and (b). To see the condition (c), let x ∈ X and
V be a neighborhood of x. Then F(V ) is a neighborhood of γ(x, x, t) = {x}
for each t ∈ I. From the continuity of γ, there is a neighborhood W of x such
that γ(W 2×I) ⊂ F(V ), which implies that Γ (y, z) ⊂ V for each (y, z) ∈W 2.
Thus λ(W 2 × I) ⊂ V .

In case F(X) is an AR(S), U = X2 in the above, whence X is 2-HC.
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Before the proof of the “if” part of the Main Theorem, we note that
the connected case implies the general case. In fact, if X is 2-HLC then X
is locally connected, hence each component of X is open and closed. As is
easily observed,

{〈X1, . . . , Xn〉 | n ∈ N, each Xi is a component of X}
is a discrete open cover of F(X) and each 〈X1, . . . , Xn〉 is homeomorphic to
the product space F(X1)× . . .× F(Xn). Thus F(X) is an ANR(S) if F(X0)
is an AR(S) for each component X0 of X.

To prove the connected case, it suffices to construct a retraction r :
Z(F(X))→ F(X) by [Ca3, Theorem 1.3]. By Theorems 1.2 and 1.3, we have
a retraction of Z1(X) onto X, which induces a retraction r∗ : F(Z1(X))→
F(X). In the following, we first construct a map θ : |F (F(X))(1)| →
F(Z1(X)) such that θ|F(X) = id and define a retraction r1 = r∗ ◦ θ :
|F (F(X))(1)| → F(X). And then we extend r1 to a retraction r : |F (F(X))|
→ F(X) by applying the following:

Lemma 2.2 ([CN, Lemma 3.3]). For any (n+1)-simplex σ (n ≥ 1), there
exists a map ϕσ : σ → F3(∂σ) such that ϕσ(x) = {x} for every x ∈ ∂σ,
where F3(X) = {A ∈ F(X) | cardA ≤ 3}.

Finally, we show the continuity of r : Z(F(X)) → F(X) by using the
following:

Lemma 2.3. Let f : |F (X)| → Y be continuous. Suppose that for each
x ∈ X and each neighborhood V of f(x) in Y , there exists a neighborhood
U of x in X such that f(|F (U)|) ⊂ V . Then f : Z(X) → Y is continu-
ous.

P r o o f. It suffices to verify the continuity of f : Z(X)→ Y at each point
x ∈ X. Let V be an open neighborhood of f(x) in Y . By the assumption,
we have an open neighborhood U of x in X such that f(|F (U)|) ⊂ V . Let
W = f−1(V ) r (X r U). Then W is open in |F (X)| and |F (W ∩ X)| =
|F (U)| ⊂W , whence W is open in Z(X). Thus we have a neighborhood W
of x in Z(X). Since f(W ) ⊂ V , f is continuous at x.

P r o o f o f t h e “i f” p a r t. As observed above, we only have to prove
the connected case. In this case, we have a retraction r∗ : F(Z1(X))→ F(X)
which is induced by a retraction of Z1(X) onto X.

First we construct a map θ : |F (F(X))(1)| → F(Z1(X)) such that θ|F(X)
= id. By [Ce, Theorem 2.2] and [Bo1, Lemma 8.2], X has a continuous
metric d. Let τ = 〈A,B〉 ∈ F (F(X))(1). For each x ∈ A, choose yx ∈ B
such that d(x, yx) = distd(x,B). Similarly, for each y ∈ B, choose xy ∈ A
such that d(y, xy) = distd(y,A). We define a map θτ : 〈A,B〉 → F(Z1(X))
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by

θτ ((1− t)A+ tB) = {(1− t)x+ tyx | x ∈ A} ∪ {(1− t)xy + ty | y ∈ B}
⊂
⋃

x∈A
〈x, yx〉 ∪

⋃

y∈B
〈y, xy〉 ⊂ Z1(X).

Then θτ (A) = A and θτ (B) = B. In case τ = A ∈ F (F(X))(0) = F(X), we
have θA(A) = A. The desired map θ : |F (F(X)(1)| → F(Z1(X)) is defined
by θ|τ = θτ for each τ ∈ F (F(X))(1). Then clearly θ|F(X) = id.

Next we inductively define retractions rn : |F (F(X))(n)| → F(X) (n ∈ N)
so that rn+1||F (F(X))(n)| = rn. Let r1 = r∗θ and assume rn has been
defined. For each (n+ 1)-simplex σ ∈ F (F(X)), rn|∂σ : ∂σ → F(X) induces
the map γσ : F3(∂σ) → F3(F(X)). Let ς : F3(F(X)) → F(X) be the map
defined by union, i.e., ς({A,B,C}) = A ∪B ∪C (cf. [Ke]) and let ϕσ : σ →
F3(∂σ) be the map of Lemma 2.2. Then the map rσ = ς ◦γσ ◦ϕσ : σ → F(X)
extends rn|∂σ. In fact, for each x ∈ ∂σ,

rσ(x) = ς ◦ γσ ◦ ϕσ(x) = ς ◦ γσ({x}) = r1(x).

We can define rn+1 : |F (F(X))(n+1)| → F(X) by rn+1|σ = rσ for each
(n+ 1)-simplex σ ∈ F (F(X)).

Finally, let r : |F (F(X))| → F(X) be the retraction defined by
r||F (F(X))(n)| = rn for each n ∈ N. For each A0 ∈ F(X) and each neigh-
borhood V of A0 in F(X), we will construct a neighborhood U of A0 in
F(X) so that r(|F (U)|) ⊂ V. Then by Lemma 2.3, r : Z(F(X)) → F(X) is
continuous. Let A0 = {x1, . . . , xn} (xi 6= xj if i 6= j) and

δ = min{d(xi, xj) | i 6= j} > 0.

We may assume that V = 〈V1, . . . , Vn〉, where each Vi is an open neighbor-
hood of xi in X. Then one should observe that ς(F3(V)) ⊂ V. Since r∗ is
continuous, (r∗)−1(V) is a neighborhood of A0 in F(Z1(X)). By Lemma 1.1,
each xi has an open neighborhood Ui in X with ηi ∈ (0, 1)T1(Ui) such that
diamd Ui ≤ 1

4δ and

〈M(U1, η1), . . . ,M(Un, ηn)〉 ⊂ (r∗)−1(V).

Then U = 〈U1, . . . , Un〉 is a neighborhood of A0 in F(X). To see that
r(|F (U)|) ⊂ V, it suffices to prove that r(|F (U)(n)|) ⊂ V for each n ∈ N.
Let 〈A,B〉 ∈ F (U)(1). For each x ∈ A ∩ Ui, distd(x,B) = distd(x,B ∩ Ui),
whence yx ∈ B∩Ui, so 〈x, yx〉 ⊂ |F (Ui)(1)| ⊂M(Ui, ηi). Similarly, 〈y, xy〉 ⊂
|F (Ui)(1)| ⊂M(Ui, ηi) for each y ∈ B ∩ Ui. Then

θ(〈A,B〉) ⊂ 〈M(U1, η1), . . . ,M(Un, ηn)〉 ⊂ (r∗)−1(V),

whence r(〈A,B〉) = r∗θ(〈A,B〉) ⊂ V. Thus we have r(|F (U)(1)|) ⊂ V. As-
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sume that r(|F (U)(n)|) ⊂ V and let σ ∈ F (U)(n+1). Since γσ is induced by
r|∂σ and r(∂σ) ⊂ V, we have γσ(F3(∂σ)) ⊂ F3(V). Then

r(σ) = rσ(σ) = ς ◦ γσ ◦ ϕσ(σ) ⊂ ς ◦ γσ(F3(∂σ)) ⊂ ς(F3(V)) ⊂ V.
Therefore r(|F (U)(n+1)|) ⊂ V. By induction, r(|F (U)(n)|) ⊂ V for each
n ∈ N. The proof is complete.

R e m a r k. For each n ∈ N, let Fn(X) = {A ∈ F(X) | cardA ≤ n}. In
[Ca2], it was asserted that each Fn(X) is an ANR(S) (resp. AR(S)) for any
ANR(S) (resp. AR(S)) X. However, one should note that the proof in [Ca2]
is based on some false results in [Ja] and [Ca1] (cf. examples in [Ng] and
[Sa]). Afterward Nguyen To Nhu [Ng] gave a proof for the metrizable case
together with F(X). The stratifiable case is still open, that is,

2.4. Problem. For any ANR(S) X, is each Fn(X) an ANR(S)?

Concerning our result, the following problem is posed:

2.5. Problem. Is a locally path-connected stratifiable space X 2-HLC?
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