The hyperspace of finite subsets of a stratifiable space

by

Robert Cauty (Paris), Bao-Lin Guo (Tsukuba) and Katsuro Sakai (Tsukuba)

Abstract. It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.

0. Introduction. For a space X, let $\mathfrak{F}(X)$ denote the hyperspace of non-empty finite subsets of X with the Vietoris topology, i.e., the topology generated by the sets

 $\langle U_1, \dots, U_n \rangle = \{ A \in \mathfrak{F}(X) \mid A \subset U_1 \cup \dots \cup U_n, \ U_i \cap A \neq \emptyset \ (\forall i = 1, \dots, n) \},\$

where $n \in \mathbb{N}$ and U_1, \ldots, U_n are open in X. We denote by \mathcal{S} the class of stratifiable spaces $[Bo_1]$ and by \mathcal{M} the class of metrizable spaces. Note that $\mathfrak{F}(X) \in \mathcal{S}$ if $X \in \mathcal{S}$ (cf. [MK, Theorem 3.6]). In [CN], it is shown that $\mathfrak{F}(X)$ is an ANR(\mathcal{M}) (an AR(\mathcal{M})) if and only if $X \in \mathcal{M}$ is locally path-connected (and connected). In this paper, we consider the condition for non-metrizable $X \in \mathcal{S}$ under which $\mathfrak{F}(X)$ is an ANR(\mathcal{S}) (or an AR(\mathcal{S})).

A T_1 -space X is 2-hyper-locally-connected (2-HLC) [Bo_{2,3}] if there exist a neighborhood U of the diagonal ΔX in X^2 and a function $\lambda : U \times \mathbf{I} \to X$ satisfying the following conditions:

- (a) $\lambda(x, y, 0) = x$ and $\lambda(x, y, 1) = y$ for each $(x, y) \in U$;
- (b) the function $t \mapsto \lambda(x, y, t)$ is continuous for each $(x, y) \in U$;
- (c) for each $x \in X$ and each neighborhood V of x, there is a neighborhood W of x such that $W^2 \subset U$ and $\lambda(W^2 \times \mathbf{I}) \subset V$.

The condition (c) means that $\lambda(x, x, t) = x$ for any $x \in X$ and $t \in \mathbf{I}$ and that λ is continuous at each point of $\Delta X \times \mathbf{I}$. In case $U = X^2$, X is said to be 2-hyper-connected (2-HC). In the above definition of 2-HLC or 2-HC,

¹⁹⁹¹ Mathematics Subject Classification: 54B20, 54C55, 54E20.

Key words and phrases: hyperspace, the Vietoris topology, stratifiable space, AR(S), ANR(S), 2-hyper-locally-connected.

^[1]

if λ is continuous then X is *locally equi-connected* (LEC) or *equi-connected* (EC) [Du]. Obviously if X is 2-HLC (2-HC) then X is locally path-connected (and path-connected). Conversely, it will be shown that every locally path-connected *metrizable* space is 2-HLC (Theorem 1.4). The following is our result:

MAIN THEOREM. For a space X, $\mathfrak{F}(X)$ is an ANR(\mathcal{S}) (an AR(\mathcal{S})) if and only if $X \in \mathcal{S}$ is 2-HLC (and connected).

Since an ANR(S) is LEC (see [Ca₃]), it is 2-HLC. Thus we have the following:

COROLLARY. For a connected ANR(\mathcal{S}) X, $\mathfrak{F}(X)$ is an AR(\mathcal{S}).

1. Cauty's test space and the 2-HLC-ness. Let K be a simplicial complex. The *n*th skeleton of K is denoted by $K^{(n)}$. Let |K| denote the polyhedron of K, i.e., $|K| = \bigcup K$ with the weak topology. For each $\sigma \in K$, the barycenter and the boundary of σ are denoted by $\hat{\sigma}$ and $\partial \sigma$, respectively. And for any $0 < t \leq 1$, let

 $\sigma(t) = \{ x \in \sigma \mid 0 \le x(\widehat{\sigma}) < t \} \text{ and } \sigma[t] = \{ x \in \sigma \mid 0 \le x(\widehat{\sigma}) \le t \},\$

where $(x(\hat{\sigma}))_{\sigma \in K}$ are the barycentric coordinates of x with respect to the barycentric subdivision of K. Each $x \in \sigma(1) = \sigma \setminus \hat{\sigma}$ can be uniquely written as follows:

$$x = (1 - x(\widehat{\sigma}))\pi_{\sigma}(x) + x(\widehat{\sigma})\widehat{\sigma}, \quad \pi_{\sigma}(x) \in \partial\sigma.$$

Then the map $\pi_{\sigma} : \sigma(1) \to \partial \sigma$ is called the *radial projection*. The simplex σ with vertices v_0, \ldots, v_n is denoted by $\langle v_0, \ldots, v_n \rangle$ and a point $x \in \sigma$ is represented by $x = \sum_{i=0}^n x(v_i)v_i$, where $(x(v))_{v \in K^{(0)}}$ are the barycentric coordinates of x. Here we abuse the notation " $\langle \ldots \rangle$ ". But it can be recognized from the context to represent a simplex or a basic open set.

In [Ca₃], the first author constructed a space Z(X) for every space X and proved that a stratifiable space X is an AR(S) (resp. an ANR(S)) if and only if X is a retract (resp. a neighborhood retract) of Z(X). Let F(X) denote the full simplicial complex with X the set of vertices (i.e., $X = F(X)^{(0)}$). Then Z(X) is defined as |F(X)| with the topology generated by open sets W in |F(X)| such that

 $W \cap X$ is open in X and $|F(W \cap X)| \subset W$.

The second condition above means that each $\tau \in F(X)$ is contained in Wif all vertices of τ are contained in $W \cap X$. For each $A \subset X$, F(A) is a subcomplex of F(X) and Z(A) is a subspace of Z(X). If A is closed in X, then Z(A) is closed in Z(X). For each $n \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\}$, let $Z_n(X) =$ $|F(X)^{(n)}|$ viewed as a subspace of Z(X). Then $Z_0(X) = X$ and Z(X) = $\bigcup_{n \in \mathbb{Z}_+} Z_n(X)$. We use the following notations (see [GS]):

$$T(A) = \{ \sigma \in F(X) \setminus F(A) \mid \sigma \cap A \neq \emptyset \},$$

$$M(A) = \{ x \in Z(X) \mid \exists \sigma \in F(A) \text{ such that } x(\widehat{\sigma}) > 0 \}$$

$$T_n(A) = T(A) \cap (F(X)^{(n)} \setminus F(X)^{(n-1)}) \text{ and}$$

$$M_n(A) = Z(A) \cup (M(A) \cap Z_n(X)).$$

For each $\varepsilon \in (0,1)^{T(A)}$, we define

$$M(A,\varepsilon) = \bigcup_{n \in \mathbb{Z}_+} M_n(A,\varepsilon),$$

where $M_0(A, \varepsilon) = Z(A) = |F(A)|$ and

$$M_n(A,\varepsilon) = Z(A) \cup \bigcup \{ \sigma(\varepsilon(\sigma)) \cap \pi^{-1}(M_{n-1}(A,\varepsilon)) \mid \sigma \in T_n(A) \}$$

for each $n \in \mathbb{N}$. Then $M(A, \varepsilon) \cap X = A$. For any open set U in X, $M(U, \varepsilon)$ is an open set in Z(X). Note that $M_n(A, \varepsilon)$ can also be defined for $\varepsilon \in (0, 1)^{T_1(A) \cup \ldots \cup T_n(A)}$. The following is the same as [GS, Lemma 4.1].

1.1. LEMMA. The family

$$\{M(U,\varepsilon) \mid U \text{ is open in } X, \ \varepsilon \in (0,1)^{T(U)}\}$$

(resp.
$$\{M_1(U,\varepsilon) \mid U \text{ is open in } X, \ \varepsilon \in (0,1)^{T_1(U)}\}\}$$

is an open base for Z(X) (resp. $Z_1(X)$).

The 2-HLC-ness is characterized as follows:

1.2. THEOREM. A space X is 2-HLC (resp. 2-HC) if and only if X is a neighborhood retract (resp. retract) of $Z_1(X)$.

Proof. We only show the 2-HLC case since the 2-HC case is the same and easy.

To prove the "only if" part, give X a total order " \leq ". Then each $z \in Z_1(X) \setminus X$ can be uniquely represented as follows:

$$z = (1 - t_z)x_z + t_z y_z, \quad x_z < y_z \in X, \ 0 < t_z < 1.$$

Let b_z be the barycenter of $\langle x_z, y_z \rangle$. Then observe $z = (1 - 2t_z)x_z + 2t_zb_z$ if $t_z \leq 1/2$ and $z = (1 - 2(1 - t_z))y_z + 2(1 - t_z)b_z$ if $t_z \geq 1/2$. Let $\lambda : U \times \mathbf{I} \to X$ be a function in the definition of 2-HLC-ness. Then X has an open cover \mathcal{V} such that $W = \bigcup_{V \in \mathcal{V}} V^2 \subset U$. Then $N = \bigcup_{V \in \mathcal{V}} M_1(V, 1/2)$ is an open neighborhood of X in $Z_1(X)$. Observe that $z \in N \setminus X$ and $(x_z, y_z) \notin W$ imply $t_z < 1/4$ or $t_z > 3/4$. Now we define a retraction $r : N \to X$ by r|X = id and for each $z \in N \setminus X$,

$$r(z) = \begin{cases} \lambda(x_z, y_z, t_z) & \text{if } (x_z, y_z) \in W, \\ x_z & \text{if } (x_z, y_z) \notin W \text{ and } t_z < 1/4, \\ y_z & \text{if } (x_z, y_z) \notin W \text{ and } t_z > 3/4. \end{cases}$$

This is well defined by the condition (a). We show that r is continuous. Since $N \setminus X$ is a subspace of $|F(X)^{(1)}|, r|N \setminus X$ is continuous by the condition (b). Hence r is continuous at each point of $N \setminus X$. To see the continuity of r at any point $x \in X$, let U' be a neighborhood of r(x) = x in X. By the condition of (c), x has a neighborhood V' in X such that $V' \subset V$ for some $V \in \mathcal{V}$ and $\lambda(V'^2 \times \mathbf{I}) \subset U'$. By Lemma 1.1, $M_1(V', 1/2)$ is an open neighborhood of x in $Z_1(X)$. By the definition, $r(M(V', 1/2)) \subset U'$, that is, r is continuous at any $x \in X$.

To prove the "if" part, let N be a neighborhood of X in $Z_1(X)$ and $r: N \to X$ a retraction. By Lemma 1.1, X has an open cover \mathcal{V} and $\varepsilon_V \in (0,1)^{T_1(V)}, V \in \mathcal{V}$, such that $\bigcup_{V \in \mathcal{V}} M_1(V, \varepsilon_V) \subset N$. Then $U = \bigcup_{V \in \mathcal{V}} V^2$ is an open neighborhood of ΔX in X^2 . We can define $\lambda: U \times \mathbf{I} \to X$ by

$$\lambda(x, y, t) = r((1 - t)x + ty).$$

The condition (a) is obvious. The condition (b) follows from the continuity of $r|\langle x, y \rangle$. To see the condition (c), let U' be a neighborhood of x in X. By the continuity of r and Lemma 1.1, we can choose a neighborhood V' of x in U' and $\varepsilon'_{V'} \in (0,1)^{T_1(V')}$ so that V' is contained in some $V \in \mathcal{V}$ and $r(M_1(V', \varepsilon'_{V'})) \subset U'$, whence $\lambda(V'^2 \times \mathbf{I}) \subset r(M_1(V', \varepsilon'_{V'})) \subset U'$.

The following is easily proved.

1.3. THEOREM. A connected 2-HLC space X is 2-HC.

Proof. Let $\lambda : U \times \mathbf{I} \to X$ be a function in the definition of 2-HLC-ness. Since X is connected and locally path-connected, X is path-connected. For each $(x, y) \in X^2 \setminus U$, we have a path $\lambda_{(x,y)} : \mathbf{I} \to X$ such that $\lambda_{(x,y)}(0) = x$ and $\lambda_{(x,y)}(1) = y$. Then λ can be extended to $\hat{\lambda} : X^2 \times \mathbf{I} \to X$ by $\hat{\lambda}(x, y, t) =$ $\lambda_{(x,y)}(t)$ for each $(x, y, t) \in (X^2 \setminus U) \times \mathbf{I}$. Obviously $\hat{\lambda}$ satisfies the conditions (a), (b) and (c). Hence X is 2-HC.

In the class \mathcal{M} , the 2-HLC-ness is identical with the local path-connectedness.

1.4. THEOREM. Every locally path-connected metrizable space is 2-HLC. Hence every connected and locally path-connected metrizable space is 2-HC.

Proof. Let X = (X, d) be a locally path-connected metric space. By $C(\mathbf{I}, X)$, we denote the set of all paths in X. We define

 $U = \{ (x, y) \in X^2 \mid \exists f \in C(\mathbf{I}, X) \text{ such that } f(0) = x \text{ and } f(1) = y \}.$

By the local path-connectedness, it is easy to see that U is a neighborhood of the diagonal ΔX in X^2 . For each $(x, y) \in U \smallsetminus \Delta X$, choose $\lambda_{(x,y)} \in C(\mathbf{I}, X)$ so that $\lambda_{(x,y)}(0) = x$, $\lambda_{(x,y)}(1) = y$ and

diam
$$\lambda_{(x,y)}(\mathbf{I}) < 2 \inf \{ \text{diam } f(\mathbf{I}) \mid f \in C(\mathbf{I}, X)$$

such that $f(0) = x$ and $f(1) = y \}.$

We define $\lambda : U \times \mathbf{I} \to X$ by $\lambda(x, x, t) = x$ and $\lambda(x, y, t) = \lambda_{(x,y)}(t)$ if $x \neq y$. Then λ satisfies the conditions (a) and (b). To see the condition (c), let $x \in X$ and V be a neighborhood of x. Choose $\delta > 0$ so that the δ -neighborhood of x is contained in V. Since X is locally path-connected, x has a neighborhood W such that for each $y, z \in W$, there is $f \in C(\mathbf{I}, X)$ such that f(0) = y, f(1) = z and $f(\mathbf{I})$ is contained in the $\frac{1}{5}\delta$ -neighborhood of x, whence diam $f(\mathbf{I}) < \frac{2}{5}\delta$. For each $(y, z, t) \in W^2 \times \mathbf{I}$,

$$d(x,\lambda(y,z,t)) \le d(x,y) + d(y,\lambda(y,z,t))$$

$$< \frac{1}{5}\delta + \operatorname{diam}\lambda_{(y,z)}(\mathbf{I}) < \frac{1}{5}\delta + \frac{4}{5}\delta = \delta.$$

This means that $\lambda(W^2 \times \mathbf{I}) \subset V$.

2. Proof of the Main Theorem. The "only if" part of the Main Theorem follows from the following theorem:

2.1. THEOREM. For a space X, if $\mathfrak{F}(X)$ is an ANR(\mathcal{S}) (resp. an AR(\mathcal{S})) then $X \in \mathcal{S}$ is 2-HLC (resp. 2-HC).

Proof. First note that X is homeomorphic to $\mathfrak{F}_1(X) \subset \mathfrak{F}(X) \in \mathcal{S}$, whence $X \in \mathcal{S}$ [Ce, Theorem 2.3].

In case $\mathfrak{F}(X)$ is an ANR(\mathcal{S}), there exist an open neighborhood U of the diagonal ΔX in X^2 and a map $\gamma: U \times \mathbf{I} \to \mathfrak{F}(X)$ such that $\gamma(x, x, t) = \{x\}$ for any $x \in X$ and $t \in \mathbf{I}$, and $\gamma(x, y, 0) = \{x\}$ and $\gamma(x, y, 1) = \{y\}$ for any $(x, y) \in U$. For each $(x, y) \in U$, let

$$\Gamma(x,y) = \bigcup \gamma(\{(x,y)\} \times \mathbf{I}) = \bigcup_{t \in \mathbf{I}} \gamma(x,y,t) \subset X.$$

Then $\Gamma(x, y)$ is compact (cf. [Mi, 2.5.2]), whence it is metrizable [Ce, Corollary 5.7]. And as is easily observed, $\Gamma(x, y)$ is connected. Note that $\gamma(\{(x, y)\} \times \mathbf{I}) \subset \mathfrak{F}(\Gamma(x, y))$. By [CN, Lemma 2.2], $\Gamma(x, y)$ is locally connected. Thus each $\Gamma(x, y)$ is a Peano continuum, which is path-connected. For each $(x, y) \in U$, choose a path $\lambda_{(x,y)} : \mathbf{I} \to \Gamma(x, y)$ such that $\lambda_{(x,y)}(0) = x$ and $\lambda_{(x,y)}(1) = y$. We define $\lambda : U \times \mathbf{I} \to X$ by $\lambda(x, y, t) = \lambda_{(x,y)}(t)$. Then λ satisfies the conditions (a) and (b). To see the condition (c), let $x \in X$ and V be a neighborhood of x. Then $\mathfrak{F}(V)$ is a neighborhood of $\gamma(x, x, t) = \{x\}$ for each $t \in \mathbf{I}$. From the continuity of γ , there is a neighborhood W of x such that $\gamma(W^2 \times \mathbf{I}) \subset \mathfrak{F}(V)$, which implies that $\Gamma(y, z) \subset V$ for each $(y, z) \in W^2$.

In case $\mathfrak{F}(X)$ is an AR(\mathcal{S}), $U = X^2$ in the above, whence X is 2-HC.

Before the proof of the "if" part of the Main Theorem, we note that the connected case implies the general case. In fact, if X is 2-HLC then Xis locally connected, hence each component of X is open and closed. As is easily observed,

$$\{\langle X_1, \ldots, X_n \rangle \mid n \in \mathbb{N}, \text{ each } X_i \text{ is a component of } X\}$$

is a discrete open cover of $\mathfrak{F}(X)$ and each $\langle X_1, \ldots, X_n \rangle$ is homeomorphic to the product space $\mathfrak{F}(X_1) \times \ldots \times \mathfrak{F}(X_n)$. Thus $\mathfrak{F}(X)$ is an ANR(\mathcal{S}) if $\mathfrak{F}(X_0)$ is an AR(\mathcal{S}) for each component X_0 of X.

To prove the connected case, it suffices to construct a retraction $r : Z(\mathfrak{F}(X)) \to \mathfrak{F}(X)$ by [Ca₃, Theorem 1.3]. By Theorems 1.2 and 1.3, we have a retraction of $Z_1(X)$ onto X, which induces a retraction $r^* : \mathfrak{F}(Z_1(X)) \to \mathfrak{F}(X)$. In the following, we first construct a map $\theta : |F(\mathfrak{F}(X))^{(1)}| \to \mathfrak{F}(Z_1(X))$ such that $\theta|\mathfrak{F}(X) = \text{id}$ and define a retraction $r_1 = r^* \circ \theta :$ $|F(\mathfrak{F}(X))^{(1)}| \to \mathfrak{F}(X)$. And then we extend r_1 to a retraction $r : |F(\mathfrak{F}(X))| \to \mathfrak{F}(X)$ by applying the following:

LEMMA 2.2 ([CN, Lemma 3.3]). For any (n+1)-simplex σ $(n \ge 1)$, there exists a map $\varphi_{\sigma} : \sigma \to \mathfrak{F}_3(\partial \sigma)$ such that $\varphi_{\sigma}(x) = \{x\}$ for every $x \in \partial \sigma$, where $\mathfrak{F}_3(X) = \{A \in \mathfrak{F}(X) \mid \text{card } A \le 3\}$.

Finally, we show the continuity of $r : Z(\mathfrak{F}(X)) \to \mathfrak{F}(X)$ by using the following:

LEMMA 2.3. Let $f : |F(X)| \to Y$ be continuous. Suppose that for each $x \in X$ and each neighborhood V of f(x) in Y, there exists a neighborhood U of x in X such that $f(|F(U)|) \subset V$. Then $f : Z(X) \to Y$ is continuous.

Proof. It suffices to verify the continuity of $f: Z(X) \to Y$ at each point $x \in X$. Let V be an open neighborhood of f(x) in Y. By the assumption, we have an open neighborhood U of x in X such that $f(|F(U)|) \subset V$. Let $W = f^{-1}(V) \smallsetminus (X \smallsetminus U)$. Then W is open in |F(X)| and $|F(W \cap X)| = |F(U)| \subset W$, whence W is open in Z(X). Thus we have a neighborhood W of x in Z(X). Since $f(W) \subset V$, f is continuous at x.

Proof of the "if" part. As observed above, we only have to prove the connected case. In this case, we have a retraction $r^* : \mathfrak{F}(Z_1(X)) \to \mathfrak{F}(X)$ which is induced by a retraction of $Z_1(X)$ onto X.

First we construct a map $\theta : |F(\mathfrak{F}(X))^{(1)}| \to \mathfrak{F}(Z_1(X))$ such that $\theta|\mathfrak{F}(X)$ = id. By [Ce, Theorem 2.2] and [Bo₁, Lemma 8.2], X has a continuous metric d. Let $\tau = \langle A, B \rangle \in F(\mathfrak{F}(X))^{(1)}$. For each $x \in A$, choose $y_x \in B$ such that $d(x, y_x) = \text{dist}_d(x, B)$. Similarly, for each $y \in B$, choose $x_y \in A$ such that $d(y, x_y) = \text{dist}_d(y, A)$. We define a map $\theta_\tau : \langle A, B \rangle \to \mathfrak{F}(Z_1(X))$ by

$$\theta_{\tau}((1-t)A+tB) = \{(1-t)x + ty_x \mid x \in A\} \cup \{(1-t)x_y + ty \mid y \in B\}$$
$$\subset \bigcup_{x \in A} \langle x, y_x \rangle \cup \bigcup_{y \in B} \langle y, x_y \rangle \subset Z_1(X).$$

Then $\theta_{\tau}(A) = A$ and $\theta_{\tau}(B) = B$. In case $\tau = A \in F(\mathfrak{F}(X))^{(0)} = \mathfrak{F}(X)$, we have $\theta_A(A) = A$. The desired map $\theta : |F(\mathfrak{F}(X)^{(1)}| \to \mathfrak{F}(Z_1(X)))$ is defined by $\theta | \tau = \theta_{\tau}$ for each $\tau \in F(\mathfrak{F}(X))^{(1)}$. Then clearly $\theta | \mathfrak{F}(X) = \mathrm{id}$.

Next we inductively define retractions $r_n : |F(\mathfrak{F}(X))^{(n)}| \to \mathfrak{F}(X) \ (n \in \mathbb{N})$ so that $r_{n+1}||F(\mathfrak{F}(X))^{(n)}| = r_n$. Let $r_1 = r^*\theta$ and assume r_n has been defined. For each (n+1)-simplex $\sigma \in F(\mathfrak{F}(X)), r_n|\partial\sigma : \partial\sigma \to \mathfrak{F}(X)$ induces the map $\gamma_{\sigma} : \mathfrak{F}_3(\partial\sigma) \to \mathfrak{F}_3(\mathfrak{F}(X))$. Let $\varsigma : \mathfrak{F}_3(\mathfrak{F}(X)) \to \mathfrak{F}(X)$ be the map defined by union, i.e., $\varsigma(\{A, B, C\}) = A \cup B \cup C$ (cf. [Ke]) and let $\varphi_{\sigma} : \sigma \to \mathfrak{F}_3(\partial\sigma)$ be the map of Lemma 2.2. Then the map $r_{\sigma} = \varsigma \circ \gamma_{\sigma} \circ \varphi_{\sigma} : \sigma \to \mathfrak{F}(X)$ extends $r_n|\partial\sigma$. In fact, for each $x \in \partial\sigma$,

$$r_{\sigma}(x) = \varsigma \circ \gamma_{\sigma} \circ \varphi_{\sigma}(x) = \varsigma \circ \gamma_{\sigma}(\{x\}) = r_1(x)$$

We can define $r_{n+1} : |F(\mathfrak{F}(X))^{(n+1)}| \to \mathfrak{F}(X)$ by $r_{n+1}|\sigma = r_{\sigma}$ for each (n+1)-simplex $\sigma \in F(\mathfrak{F}(X))$.

Finally, let $r : |F(\mathfrak{F}(X))| \to \mathfrak{F}(X)$ be the retraction defined by $r||F(\mathfrak{F}(X))^{(n)}| = r_n$ for each $n \in \mathbb{N}$. For each $A_0 \in \mathfrak{F}(X)$ and each neighborhood \mathcal{V} of A_0 in $\mathfrak{F}(X)$, we will construct a neighborhood \mathcal{U} of A_0 in $\mathfrak{F}(X)$ so that $r(|F(\mathcal{U})|) \subset \mathcal{V}$. Then by Lemma 2.3, $r : Z(\mathfrak{F}(X)) \to \mathfrak{F}(X)$ is continuous. Let $A_0 = \{x_1, \ldots, x_n\}$ $(x_i \neq x_j \text{ if } i \neq j)$ and

$$\delta = \min\{d(x_i, x_j) \mid i \neq j\} > 0.$$

We may assume that $\mathcal{V} = \langle V_1, \ldots, V_n \rangle$, where each V_i is an open neighborhood of x_i in X. Then one should observe that $\varsigma(\mathfrak{F}_3(\mathcal{V})) \subset \mathcal{V}$. Since r^* is continuous, $(r^*)^{-1}(\mathcal{V})$ is a neighborhood of A_0 in $\mathfrak{F}(Z_1(X))$. By Lemma 1.1, each x_i has an open neighborhood U_i in X with $\eta_i \in (0,1)^{T_1(U_i)}$ such that diam_d $U_i \leq \frac{1}{4}\delta$ and

$$\langle M(U_1,\eta_1),\ldots,M(U_n,\eta_n)\rangle \subset (r^*)^{-1}(\mathcal{V})$$

Then $\mathcal{U} = \langle U_1, \ldots, U_n \rangle$ is a neighborhood of A_0 in $\mathfrak{F}(X)$. To see that $r(|F(\mathcal{U})|) \subset \mathcal{V}$, it suffices to prove that $r(|F(\mathcal{U})^{(n)}|) \subset \mathcal{V}$ for each $n \in \mathbb{N}$. Let $\langle A, B \rangle \in F(\mathcal{U})^{(1)}$. For each $x \in A \cap U_i$, $\operatorname{dist}_d(x, B) = \operatorname{dist}_d(x, B \cap U_i)$, whence $y_x \in B \cap U_i$, so $\langle x, y_x \rangle \subset |F(U_i)^{(1)}| \subset M(U_i, \eta_i)$. Similarly, $\langle y, x_y \rangle \subset |F(U_i)^{(1)}| \subset M(U_i, \eta_i)$ for each $y \in B \cap U_i$. Then

$$\theta(\langle A, B \rangle) \subset \langle M(U_1, \eta_1), \dots, M(U_n, \eta_n) \rangle \subset (r^*)^{-1}(\mathcal{V}),$$

whence $r(\langle A, B \rangle) = r^* \theta(\langle A, B \rangle) \subset \mathcal{V}$. Thus we have $r(|F(\mathcal{U})^{(1)}|) \subset \mathcal{V}$. As-

sume that $r(|F(\mathcal{U})^{(n)}|) \subset \mathcal{V}$ and let $\sigma \in F(\mathcal{U})^{(n+1)}$. Since γ_{σ} is induced by $r|\partial\sigma$ and $r(\partial\sigma) \subset \mathcal{V}$, we have $\gamma_{\sigma}(\mathfrak{F}_3(\partial\sigma)) \subset \mathfrak{F}_3(\mathcal{V})$. Then

$$r(\sigma) = r_{\sigma}(\sigma) = \varsigma \circ \gamma_{\sigma} \circ \varphi_{\sigma}(\sigma) \subset \varsigma \circ \gamma_{\sigma}(\mathfrak{F}_{3}(\partial \sigma)) \subset \varsigma(\mathfrak{F}_{3}(\mathcal{V})) \subset \mathcal{V}.$$

Therefore $r(|F(\mathcal{U})^{(n+1)}|) \subset \mathcal{V}$. By induction, $r(|F(\mathcal{U})^{(n)}|) \subset \mathcal{V}$ for each $n \in \mathbb{N}$. The proof is complete.

R e m a r k. For each $n \in \mathbb{N}$, let $\mathfrak{F}_n(X) = \{A \in \mathfrak{F}(X) \mid \operatorname{card} A \leq n\}$. In [Ca₂], it was asserted that each $\mathfrak{F}_n(X)$ is an ANR(\mathcal{S}) (resp. AR(\mathcal{S})) for any ANR(\mathcal{S}) (resp. AR(\mathcal{S})) X. However, one should note that the proof in [Ca₂] is based on some false results in [Ja] and [Ca₁] (cf. examples in [Ng] and [Sa]). Afterward Nguyen To Nhu [Ng] gave a proof for the metrizable case together with $\mathfrak{F}(X)$. The stratifiable case is still open, that is,

2.4. PROBLEM. For any ANR(\mathcal{S}) X, is each $\mathfrak{F}_n(X)$ an ANR(\mathcal{S})?

Concerning our result, the following problem is posed:

2.5. PROBLEM. Is a locally path-connected stratifiable space X 2-HLC?

References

- [Bo₁] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.
- [Bo₂] —, A study of absolute extensor spaces, ibid. 31 (1969), 609–617; corrigenda, ibid. 50 (1974), 29–30.
- [Bo₃] —, Connectivity of function spaces, Canad. J. Math. 23 (1971), 759–763.
- [Ca1] R. Cauty, Une généralisation du théorème de Borsuk-Whitehead-Hanner aux espaces stratifiables, C. R. Acad. Sci. Paris Sér. A 275 (1972), 271–275.
- [Ca₂] —, Produits symétriques de rétractes absolus de voisinage, ibid. 276 (1973), 359– 361.
- [Ca₃] —, Rétractions dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129–149.
- [Ce] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105–126.
- [CN] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ₀-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
- [Du] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187–193.
- [GS] B.-L. Guo and K. Sakai, Hyperspaces of CW-complexes, Fund. Math. 143 (1993), 23–40.
- [Ja] J. W. Jaworowski, Symmetric products of ANR's, Math. Ann. 192 (1971), 173– 176.
- [Ke] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36.
- [Mi] E. Michael, Topologies on spaces of subsets, ibid. 71 (1951), 152-182.
- [MK] T. Mizokami and T. Koiwa, On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. Educ. 6 (1987), 1–14.

- [Ng] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 244–254.
- [Sa] S. San-ou, A note on Ξ -product, J. Math. Soc. Japan 29 (1977), 281–285.

ANALYSE COMPLEXE ET GÉOMÉTRIE INSTITUTE OF MATHEMATICS UNIVERSITÉ PARIS VI UNIVERSITY OF TSUKUBA 4, PLACE JUSSIEU TSUKUBA 305, JAPAN 75252 PARIS CEDEX 05, FRANCE E-mail: SAKAIKTR@SAKURA.CC.TSUKUBA.AC.JP

Received 7 November 1993