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Linear orders and MA + —-wKH
by

Zoran Spasojevié (Madison, Wisc.)

Abstract. I prove that the statement that “every linear order of size 2 can be
embedded in (w*, <)” is consistent with MA + —-wKH.

Let ¢, denote the statement that every linear order of size x can be
embedded in (w¥, <) for regular x < 2¥ = ¢ where w* denotes the set of all
functions from w to w and < is a partial order on w* defined as follows: for
frgew?let f < gifandonlyifdn <wVi>n(f(i) <g(i))and f(i) < g(i)
on an infinite set. Under CH, Vx < ¢ (¢, ), which basically follows from the
fact that there are no (w,w)-gaps in (w¥, <). If CH fails then (w¥, <) may
not even contain a well order of type ws regardless of what ¢ is. On the
other hand, MA + -CH — Vk < ¢(¢x). Kunen constructed a model for
MA + —-CH + —¢. and Laver [L] constructed a model for ~CH + .. For a
while, the question was whether MA 4+ —CH is strong enough to decide .
Woodin [W] constructed a model for MA + ¢ = ws + ¢, therefore, together
with Kunen’s result, showing that ¢, is independent of MA + —~CH.

On the other hand, PFA — MA + —-wKH — MA + —-CH and neither of
the implications is reversible. Therefore MA + —wKH is in strength some-
where between PFA and MA + —CH. But also PFA — ¢ = wy + —¢..
Therefore, it is reasonable to ask whether MA 4+ —wKH is strong enough to
decide ¢.. This question is the main consideration of this paper. The main
result is Theorem 3.2 which states that if M is a countable transitive model
(c.t.m.) for ZFC + V=L and & is the first inaccessible cardinal in M then
there is an extension N[J] of M which is a model for ZFC + MA + —-wKH
+ ¢ = wy + .. The existence of an inaccessible cardinal is necessary to
show the consistency of -wKH, as shown by Mitchell [M]. Todor¢evi¢ [T]
constructed a model for MA + —wKH + ¢ = wo, and I will use this result
together with the result of Laver to construct the model N[J]. Therefore,
when combined with PFA — MA + —-wKH 4+ ¢ = wy + =, it shows that
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MA + —wKH is still not strong enough to decide .. Woodin’s construc-
tion cannot easily be modified to fit the additional arguments required in
showing —wKH because his construction is completed in ws - wy stages. In
order to show that —=wKH holds in the final model the construction here has
to be finished in wo steps. However, the treatment of stages of cofinality wq
resembles those in Woodin’s construction. Consequently, the construction
here can be regarded as an amalgamation of the constructions mentioned
above.

To construct a model N[J], I start with a c.t.m. M for ZFC + V=L in
which & is the first inaccessible cardinal. Then, as in [M], extend M with a
partial order to obtain a model N such that N = “-wKH+c¢=kr =ws".
In N, I perform an iterated ccc forcing construction with finite supports of
length wsy. In the process I construct a c-saturated linearly ordered subset
(L, <) of (w¥,<). At the successor stages I alternate between ccc partial
orders to make MA true and splitting partial orders for pregaps in L. A
difficulty occurs in splitting (w1, ws)-gaps. However, the construction is ar-
ranged in such a way that these gaps appear in L only at the limit stages of
cofinality wy; at these stages I split all such gaps, all at once. The elements
of w* obtained at these stages will not be used directly, but they are needed
to ensure that the splitting orders for all the pregaps in IL continue to have
the ccc until they are filled, one by one, at the later successor stages. The
partial orders at these limit stages have cardinality ws, which causes some
difficulty in the proof of —wKH. This difficulty is overcome by reducing the
argument to suborders of size w; of these partial orders.

Since trees and gaps play a central role in the construction, I begin with
some notions and results on trees and gaps that are needed here. Many
results included here are already known, however I present a different view
point. Notation and terminology are adapted from [K], especially the part
on iterated forcing.

1. Trees. A tree is a partial order in the strict sense, (T, <), such that
foreach z € T, 2 = {y € T : y < x} is well ordered by <. If x € T, the
height of x in T, ht(x,T), is the ordinal o which is the order type of  and
T, ={yeT:y <azVaz <y} Foreach ordinal «, the ath level of T,
Lev,(T), is the set {x € T : ht(x, T) = a}. The height of T, ht(T), is the
least « such that Lev,(T) = 0. A chain in T is a set C C T which is totally
ordered by <. If C' intersects every level of T then C' is called a path through
T. A CTis an antichain iff Vo,y € A(x #y — (x £ yAy £ x)). I will only
consider well pruned trees. A well pruned tree is a tree T such that

(i) [Levo(T)| = 1,
(ii) Yoo < B < ht(T) Vo € Levo(T) Jy1,y2 € Levg(T) (y1 # y2 Az <
91792),
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(iii) Yo < ht(T) Vz,y € Leva(T) (lim(a) — (z = y < 7 = 7).

From now on any mention of a tree T will automatically mean that T
is a well pruned tree. An w;-tree is a tree T such that ht(T) = |T| = w;.
An wq-tree is a weak Kurepa tree if it has at least ws paths. The assertion
that there is a weak Kurepa tree is denoted by wKH and —wKH denotes
its negation. An Aronszajn tree is an wi-tree T without any paths such that
Va < wi (|JLeve(T)| < w). A Suslin tree is an Aronszajn tree with no un-
countable antichains. If T is an wy-tree and I(f : T — w) (Vz,y € T(z < y
— f(x) # f(y))) then T is called a special wi-tree and f a specializing
function for T. It follows that if T is a special Aronszajn tree with a special-
izing function f then for some n € w, f~!(n) is uncountable and as such an
uncountable antichain in T. Therefore neither T nor any subtree of T can
be Suslin. Next, I define a partial order St, due to Baumgartner, which is
intended to add a specializing function for T.

DEFINITION 1.1. Let T be an wi-tree. Then
Sr={p: I e[T|¥(p:z - w)AVs,t €x(s<t—p(s)#pt))}
with p1 < po iff p1 2 po.

The symbol “1” denotes incompatibility in any partial order P and “V”
will be used to denote incompatibility in a tree T, i.e.

Ve,yeT(z Yy < (x £yAy £x)).
Then V extends to incompatibility in [T]<“ as follows:
Va,b € [T]<Y (aVYb— (anb=0AVz €aVyeb(zVy))).
Also note that if p, ¢ € St and dom(p) ¥ dom(q) then p and ¢ are compatible
in St.
LEMMA 1.2. If T is an Aronszajn tree then (St,<) has the ccc.

Proof. By way of contradiction assume that A = {p, : @ < w1} C Sy
is an uncountable antichain. Without loss of generality I may assume

(1) Va < wy (Jdom(py)| = n) for some n < w,
(2) Vo, B < wy (e # B — (dom(ps) Ndom(pg) = 0)).

To see that I may assume (2), first assume, by the A-system lemma, that
{dom(ps) : @ < w1} forms a A-system with root r. Then, since w” is count-
able, I may assume that Vo, § < w1 (pa[r = pslr). Then (2) is implied at
once by the claim below.

CLAIM. If eq = dom(py) \ 7 then (poleqa L pgleg) < (o L pg).
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Proof of Claim. Let p, L pg. Then
Jdz € dom(p,) Jy € dom(pg)

((z <yApalr) =psy) V(y <z Appy) = palr)))-
It cannot happen that z,y € dom(p,) since p, € St, and it cannot happen
that 2,y € dom(pg) for the same reason. Therefore z,y & r so that x € e,
and y € eg. This basically proves the claim since the implication in the other
direction is trivial.

Now let dom(p,) = {s§,s{,...,s9_;}. Finally I may assume that if
a < f <wi, pa(sy) = pg(sf), and s and s]@ are comparable (which must
B

happen for some ¢ and j since p, L pg) then s& < s”. Therefore for each o

j
there must be (), j(a) < n such that {8 : 5§, < sf(a)} is uncountable.
Furthermore, there must be ¢ and j such that B = {«a : i(a) =iAj(a) = j}
is also uncountable. But now if aq,as € B there is § > a1, as such that
s 88 < 3]5- . And since T is a tree, s;* and s;* are comparable. Therefore

i 01

{s{ : @ € B} may be extended to a path through T, contradicting the fact
that T has no paths. Therefore A cannot be an uncountable antichain. m

From the proof above immediately follow the two corollaries below.

COROLLARY 1.3. Let M be a c.t.m. for ZFC and, in M, suppose that
T is an Aronszajn tree and P a ccc partial order with G P-generic over M.
Then St fails to have the ccc in M[G] iff a new path has been added through
T in M[G].

COROLLARY 1.4. Let M be a c.t.m. for ZFC, T an Aronszajn tree in M,
and G St-generic over M. Then

MIG] E “T is a special Aronszajn tree”.

DEFINITION 1.5. Let P be a partial order. Then P has the property K iff
VA € [P|** 3B € [A]“* Vz,y € B(x Ly).

LEMMA 1.6. If T is a special Aronszajn tree then St has the property K.

Proof. Let {ps : @ < w1} C Sy. Then, as in the proof of Lemma 1.2,
I may assume

(1) Va < wy (Jdom(py)| = n) for some n < w,
(2) Vo, B < wy (v # B — dom(ps) Ndom(pg) = 0).

Let dom(p,) = eq. To get p, and pg compatible it suffices to get e, ¥ eg.
Therefore the proof follows immediately from the following

CLAIM. JA € [w1]“* Va,B € A(a# [ — eq Yeg).

Proof of Claim. The proof is by induction on |e,| = n. Fix n and
assume the result is true for all m < n.
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Case 1: Suppose Vy < wy Jz € Lev,(T) 3a < wy (eq € T;). Then for
p < wy choose x, € Lev, (T), a, and increasing 7, such that e,, C T,
with v, > sup{ht(2) : z € U, €a, }. Then, by the remarks before Defini-
tion 1.1, there is an A € [wy]“* such that {z, : p € A} is an uncountable
antichain in {x, : p < wi}. But then Vo, 5 € A(a # § — eq Yeg).

Case 2: This is just =Case 1. Fix v such that Vo € Lev,(T) Va <
w1 (eéq € T,). Then, since each level of T is countable and e, are all pairwise
disjoint, it follows that n > 2 and only countably many e, meet Lev,(T)
or below. Therefore without loss of generality I may throw those away and
assume that Vo < wy Vz € e, (ht(z) > ). I may also assume that 3z €
Lev,(T) Va < wy(eq NT, # 0) since e, € J{T, : « € Lev,(T)} and
|Lev,(T)| < w. So fix any such z. Then without loss of generality I may
assume that

Va <wi ((leaNTy| =7 >0)A(lea \ Tz| =7 > 0))

since eq, € T,. Then 0 < 7,5 < n and i + j = n. And by the induction
hypothesis I may assume that

(x) Va,f<wi(a#f—(((eaNTe) ¥ (egNTe)) A((€a\Tz) ¥ (€5\Tx))))-

But then e, are also pairwise incompatible in [T]<“. Here I claim that it is
not possible to have s € e, and t € eg with s < ¢t and a # (3. There are 4
cases to consider. If s, € T, or s,t ¢ T, then I am done by (). The cases
seT, Nt& T, ors¢T, ANt €T, cannot happen since T is a tree. This
proves the claim and hence the lemma. m

LEMMA 1.7. Let M be a c.t.m. for ZFC and suppose that U and T
are Aronszajn trees in M. If G is Sy-generic over M then M[G] E “U
is Aronszajn”.

Proof. It suffices to prove that no new paths through U are added in

M[G]. So by way of contradiction let p € St and b e M5 with plF “bis a

new path through U”. Since U is Aronszajn in M, it follows that bg = b & M.
Let

X={ueU:3p,<pp.lF“ue i)”)}.
Let uq € Lev,(U) and p, € St with p, < p such that p, I+ “a, € b,
Now
M[G] = “Sr has the property K”

so in M[G] let B € [w1]“* such that {p, : « € B} are pairwise compatible.
Then there is a path, d, through U determined by B with d € M[G] and
dC X.

On the other hand, b is a new path through U so for each u € X there
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are s,t € X such that v <y s,t and t and s are incomparable. Let
Y ={u € X :uis <yg-minimal with u & d}.

Then Y € M[G] and for each u € Y fix a p,, € P such that p, < p A p, IF
“2cb” and let A = {p, € Sy : u € Y}. Then A € M[G] and A is an
uncountable subset of St and any two elements of A are incompatible. Hence
A is an uncountable antichain in St, which contradicts the fact that St has
the property K in M[G]. =

COROLLARY 1.8. M[G] = “Sy has the ccc”.

LEMMA 1.9. Let M be a c.t.m. for ZFC and, in M, suppose that P is a
cce partial order and T an wq-tree. If G is P-generic over M with

M[G] = “b is a new path through T”
then there is a Suslin tree U C T with U € M such that
M[G] = “b is a new path through U”.
Proof. Let p € P with pIF “b is a new path through T”. Let
U={ueT:3<p(qlF“aeb”)}

Clearly U € M, U C T, and |U| = w;. The fact that b is a new path through
T also implies that ht(U) = w;. If U is not Suslin in M then there is an
A C U with A € M and |A| = w;y such that any two elements of A are
incomparable. For each u € U fix a p, € P such that p, < pApy Ik “@€b”
and let
Ap={pu:u € AAp, <pA (pulF “a€b”)}.

Clearly Ap € M. Then Ap is an antichain in IP. This follows since if p,, ps €
Ap for u #t € A and ¢ € P with ¢ < p,,p; then ¢ IF “aebAieb”
so that w and t are comparable, which is impossible by the choice of A.
Furthermore, Ap is uncountable since A is. Hence Ap is an uncountable
antichain in P contradicting the fact that P has the ccc in M. Therefore U
is Suslin with M[G] | “b C U” so that

M[G] = “b is a new path through U”.
And this is precisely what I set out to show. m

Let P be a partial order and Q a P-name for a partial order. Then P % Q
denotes a two-step iteration. The following result is taken from [K] and is
needed in the proof of Lemma 1.11.

LEMMA 1.10. Assume that in M, P is a ccc partial order and Q a P-name
for a partial order such that 1 IFp “Q has the ccc”. Then P x Q has the ccc
i M.
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LEMMA 1.11. Suppose M is a c.t.m. for ZFC and P and Q two ccc partial
orders in M. Then P x Q has the ccc iff 1 IFp “Q has the ccc”.

Proof. If 1V||—[p>“(@ has the ccc” then by Lemma 1.10, P« Q has the ccc.
Then since P+ Q and P x Q are isomorphic it follows that P x Q has the ccc.

Now suppose that P x Q has the ccc and by way of contradiction assume
that

1lkp “ A is an uncountable antichain in Q”.

Let 7 be a P-name and p’ € P with
plkp “T 0 — A and 7 is one-to-one and onto”.

Also let pe < p' and g¢ € Q with pg IFp “7(§) = G¢ 7. Then B = {(p¢, g¢) :
¢ < w1} is an uncountable antichain in PxQ. To see this suppose that (pa, §a)

and (pg, ) are compatible for some a # (. Let (p,d) < (Pa,Ga), (P3,43)-
Then p < pa,pg and p IFp “¢ < Ga,gs”. But this leads to a contradiction

since also p < p’ so that
plkp “A is an antichain in Q and d,, ds € A7,
Therefore 1 IFp “Q has the ccc”. =

LEMMA 1.12. Let M be a c.t.m. for ZFC and, in M, P a ccc partial order
and (Pe : £ < a) an iterated ccc forcing construction with finite supports
where o is a limit ordinal. If ¥§ < a (1 IFp, “IP has the ccc”) then 1 Ikbp,

“P has the ccc”.
Proof. If cf(a) = w and
1lkp, “ A is an uncountable antichain in P”

then since (P¢ : & < ) has finite supports it follows that some uncountable
subset of A is constructed at some earlier stage. But any subset of A is also
an antichain in P. Therefore

3B < a (1 IFp, “P fails to have the ccc”),

contradicting the hypothesis.
If cf(a) > wy then any subset of P of size w; is constructed by some
stage 0 < a. Therefore if

1Ikp, “P fails to have the ccc”

then
38 < a (1 IFp, “P fails to have the ccc”),
again contradicting the hypothesis.
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Finally, let cf(a) = w; and suppose that the conclusion of the lemma
fails. Therefore

VB < a(llkp, “P has the ccc”)
but
1IFp, “P fails to have the ccc”.

Then according to Lemma 1.11, P x Pg has the ccc for each 8 < «, but
P x P, does not have the ccc. Then again by Lemma 1.11,

VB < a(1IFp “Pg has the ccc”)
but

1 IFp “P, fails to have the cce”.

Let G be P-generic over M and, working in M[G], let A = {ps : £ < w1}
be an uncountable antichain in P,. Then by the A-system lemma I may
assume that {supp(pe) : £ < w1} forms a A-system with root r. Let 8 < «
with » C 3. Then since P has the ccc let £,7 < w; and p € Pg be such that
p < pelfB,pylB. Now define p* as follows:

p() if6<p,

() = 4 Pel?) 10 € supp(pe) O\ 5),
py(0) if 0 € supp(p,) N (a\ B),
1(0)  otherwise.

Then p* € Py and p* < p¢,py, which contradicts the assumption that A
is an uncountable antichain in P,. Therefore 1 IFp “P, has the ccc” and
hence by Lemma 1.11, 1 IFp_ “IP has the ccc”. =

According to the lemma just proved if T is Aronszajn in the ground
model and St fails to have the ccc then this cannot happen at a limit stage.
Equivalently, if any new paths are added through T then it can only happen
at a successor stage.

This concludes the work on trees required for the final model.

2. Gaps. In the construction of a c-saturated linear order in (w*, <)
gaps occur naturally. This section deals with gaps and their properties that
are necessary for the construction in Section 3.

For convenience I choose to work with (Z¥, <) rather than (w*, <) and
construct a c-saturated linear order in (Z“, <) instead of (w*,<). This
will imply the result for (w¥, <) since (Z¥, <) can easily be embedded in
(w¥, <). Recall that Z“ is the set of all functions that map w into Z, the
set of integers. This set has a natural partial order , “<”, which is defined
as follows: If f,g € Z¥ then f < ¢ iff In < w Vi > n(f(i) < g(i)) and
f(i) < g(7) on an infinite set.
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DEFINITION 2.1. Let I,J be two linearly ordered sets and (f,g) =
(fe,gn : &€ 1, ne J) CZ such that V§,n € I1(§ < n — fe < f,) and
V(0 € J(C <0 — go <gc)and V§ € IV € J(fe < gy). Then (f,g) is
called an (I, J)-pregap in Z*. If 3h € Z¥ Y € I Vn € J (fe < h < g;) then
h splits (f, g). If no such h exists then (f, g) is called an (I, J)-gap.

DEFINITION 2.2. Let I,J,I’,J" be linearly ordered sets and (f,g) an
(I, J)-pregap and (f’,g’) an (I’,J')-pregap. Then (f,g) and (f',g') are
equivalent it V6 € 1 3¢ € I' Vn € J 30 € J'(fe < fl Ngy < gy) and
VEel'ICeIvVne J 30 € J(fe < feAge < gp)

Let (f,g) and (f’, ¢’) be two equivalent gaps. Then h € Z“ splits (f, g) if
and only if & splits (f’, ¢’). From this fact it easily follows that there is a ccc
partial order that splits (f, g) if and only if there is a ccc partial order that
splits (f’,¢’). Therefore considering splitting orders for an (I, J)-pregap is
equivalent to considering splitting orders for an (I’, J’)-pregap where I’ is
a cofinal well ordered subset of I and J’ is a cofinal well ordered subset
of J. Thus in considering splitting orders for pregaps I can use ordinals
for indexing sets and an (I, J)-pregap will also be called a (A, k)-pregap if
cf(I) = X and cf(J) = k. One such splitting order is given by the following

DEFINITION 2.3. Let (f,g) = (fe, 9y : £ < A\, < k) be a (A, k)-pregap
where A\, k are ordinals. Set

Sty = {(z,y,m,8) 12 € N<YAye[r]An<w
ANis:n—Z)ANVEexVneyVi>n(fe(i) <gy(i))}
with (z2,y2,n2,s2) < (®1,y1,n1, 51) iff
(1) 1 C x2, y1 C Y2, N1 < N2, 51 = S2[N1,

2)VEex Vney Vi<w(ni <i<ng— (fe(i) < s2(i) < gy(1))).

The splitting function h for (f,g) is given by

h = U{s 3z y,n ((z,y,n,8) € G)}

where G is S(f gy-generic. Note that if A = x = 0 then Sy is isomorphic
to the partial order that adds a generic element to Z*.

DEFINITION 2.4. Let (f,9) = (fe, 90 : £ < X\, 7 < k) be a (A, K)-pregap
where A, k are ordinals. Then the function h is Sy y-generic if the filter
G={(z,y,n,5) €Sy : (s=hIn)AVECcxVneyVi>n
(fe(i) < h(i) < gn(i))}
is S(y,g)-generic.
Note that h is S gy-generic if and only if —h is S(_, _ry-generic where

(—g,—f) = (—gn, —fc : 1 < K, & < A). This fact will be used later and this is
precisely the reason why I chose to work with (Z¥, <) rather than (w*, <).
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The partial order in Definition 2.3 is due to Kunen as is the following
LEMMA 2.5. Let (f,g) be a (A, k)-pregap.

(1) If the pregap is split then S5 4y has the property K.

(2) If cf(X) # w1 or cf(k) # w1 then Sf 4y has the property K.

(3) If X\ = k = w1 and S(s4) fails to have the ccc then there is an
m < w and there are X,Y € [w1]“* with X = {£, : @ < w1} and
Y ={ns :a <wi} such that

(i) Va <wy Vi >m(fe, (i) < gy, (1)) and
(i) Vo, B <wi(a# B — Fi > m(fe, (i) £ gny(D)V fes (1) £ 9o (2)))-

Proof. (1) Let {po : @ < w1} C S(yqy where po = (Za, Yar N Sa)-
Suppose h splits (f, g). For each o < w; fix k, < w such that

V€ € xo VN € Yo Vi > ka (fe(i) < h(i) < g,(4)).

By extending each p, if necessary I may assume that Vo < w; (ko < ng).
Then it is easily seen that

JA€ W] In<wI(s:n—Z)Va€ A(ng =nA sy =5).

Now it clearly follows that Va,3 € A(po L pg) so that S, has the
property K.

(2) Let {po : @ <wi} C Sp,gy where py = (Za, Yo, Na, Sa)- First assume
that cf(\) > w;. Then there exists © < A such that Vo < w;y (zq C p).
Therefore {po : @ < w1} € Sy, g,:e<pm<r)- Then the result follows from (1)
since f, splits (fe, gy : € < p, 1 < k). If cf(X) < wy then I < A such that
o C p for uncountably many « and this is sufficient to obtain the result as
above. The case cf(k) # w; is handled in the same way.

(3) Let A = {po = (TasYasNasSa) : @ < w1} be an uncountable anti-
chain in S gy. For each a < wy fix k, such that

VE, (€ mo Vi > ko (§<C— feli) < fe(i))
and
V1,0 € yo Vi > ka (n < 0 — go(i) < gn(i)).
Then without loss of generality I may make the following assumptions:
(a) Vao < wy (ko =k AN =n NSy =),
(b) n > k (by extending each p,, if necessary),
(c) Vo, B < wy (o < B — (max(zy) < max(zg))),
(d) Ve, f < wy (a0 < f — (max(y,) < max(yg))).
Let m = n, § = max(z,) and 7, = max(y,). Now it easily follows from

the fact that A is an uncountable antichain that if X = {{, : @ < w;} and
Y ={ns : @ <w;} then both (i) and (ii) hold. =
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In the discussion that follows I will usually work with equivalent gaps.
Therefore when referring to the lemma above I may without loss of generality
assume that X =Y = w; and m = 0.

LEMMA 2.6. Let M be a c.t.m. for ZFC and assume that, in M, (f, g)
is a (X, k)-pregap, for reqular A, K, such that Sy gy has the ccc, and T is an
Aronszajn tree. If G is Sy gy -generic over M then M[G] = “Sr has the ccc”.

Proof. According to Corollary 1.3 it is sufficient to show that no new
paths are added through T in M[G]. So by way of contradiction assume that
bis an S(s g-name for a new path through T and p € Sy,4y such that

plF “b is a new path through T”.
Let
X={teT:3Ip, <ppIF“ieb”)}.

Since b is a new path through T, for each s € X there are t,u € X such that
s <t t,u and ¢t and u are incomparable in T. Working in M[G], let

Y ={t e X :tis <p-minimal with ¢ ¢ b}.

Then Y € M[G] and for each t € YV fix a p, < p with p; IF “f € b” and let
A= {ps €S(y,4y : t € Y}. Then A is an uncountable subset of S 7 4y in M[G]
and any two elements of A are incompatible. Hence A is an uncountable
antichain in Ss gy which contradicts the fact that S(f 5y has the property K
in M[G]. Therefore M[G] = “Sr has the ccc”. m

Let I C Z* such that (L, <) is a linear order. Then I C LL is an interval
in L iff
Ve,yeIVzeL(z <2<y —2z€l).

If (fe,gn: € < A,n<k) CLisa () k)-pregap and [ is an interval in IL then
(fe,gn 1 € < A, n < k) C I will mean that

Ja< A3 <k ((fe,gn:a<E<A, B<n<k)CI).

LEMMA 2.7. Let M be a c.t.m. for ZFC and suppose that, in M, P is a
cce partial order and (L, <) a linear order in (Z*,<). If G is P-generic
over M with

M[G] E “(f,g) is a new (wy,w1)-gap in L7
then, in M, there is a Suslin tree T and a P-name b such that
M[G] = “b is a new path through T”.
Proof. Let pg € G with

(o) po Ik “(f,g) is a new (dr,®;)-gap in L”.
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By recursion on a < wy I construct sequences (S, : a < wq) and (A¢ :
a < wiy, I €58,) where for each a < w; each element of S, is a non-empty
interval in IL such that

() VI, J€Sa(I#J—INJ=0),

(2) U{A% : I € S, } is a maximal antichain in P below po,

(3)Vpe A (p<po AplF“(f.g) CI7),

(4) VIe S, V8>adl, I € Sﬁ+1 (Il NL=0ANLUI C I),
(5)VB>a Ve Ss3JeS,(ICJ).

Let So = {L} and A? = {po}. Fix @ < w; and assume that V¢ < «,
Se¢ is constructed together with A?, for each I € Sg, such that (1)—(5) are
satisfied.

First assume o = 3 + 1. Note that (1)—(3) and the fact that P has the
cce imply that [Sg| < w. Choose I € Sg and g € A?. Then since

gl ¢ (f,g) is a new (w1, w)-gap in L”

there are r1, 72 < g and disjoint intervals Iy, Iy C I with r; IF “ <f,g> - fz» 7
for i < 2, and Ip U I; = I. Let By, be a maximal antichain below py such
that

r; € Br, NVr € By, EIqEA?(qu/\TII— “(f,g) CI;7).

Now repeat this construction for each I € Sg. Then S, = {I; : I € S A
i <2} and for each i < 2 and I € Sp let A7 = Br,. Note that (S¢ : § < )

and <A§ 1 ¢ < a,1 € 8g) satisfy (1)-(5). This finishes the construction for
successor stages.

Now suppose cf(a) = w. Let S be the set of all intervals in L such that
for each I € S there is a p < py and an increasing sequence (o, : n < w)
with sup{a, : n < w} = «a and for each n < w an I,, € S,, such that
(m<n—1, CIL,)and I =, In with p IF “(f,g) C I”. Note that
VI,J € S(I#J —1InJ =10)and ((¢) — S # 0). Furthermore, S is
countable since P has the ccc. Let S, = S and for each I € S let A} be a
maximal antichain below py such that Vp € A} (p < poAplF ¢ <f,g> cI”).
Then by the definition of S, each A¢ is non-empty and by maximality of
S, U{A¢ : I € S} is a maximal antichain in P below pg. This finishes the
construction.

It is easy to see now that (S, : @ < wq) and (A} : a < wy, I € Sy)
satisfy (1)-(5). Furthermore, (o) implies that T = ({J,,.,,, Sa,2) is a Suslin
tree in M. However, in M[G], (f, ¢) is a new (w1,ws)-gap in L so that (f, g)
determines a path, b, through T. =

The results so far are all that is necessary for treatment of successor
stages in the construction of the final model. Now I present several results
that will enable me to go beyond the limit stages. Lemmas 1.9 and 1.12
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are used to show, as indicated earlier, that no new paths can be added
through existing wi-trees at limit stages. For gaps the situation is slightly
different. In the construction of a c-saturated linear order L in (Z¢, <), new
gaps can appear at limit stages in the portion of I constructed by that
stage. According to Lemma 2.5 there is no problem with non-(ws, w1 )-gaps.
But (wy,w;)-gaps can be somewhat problematic. However, with the aid of
Lemma 2.7 the construction will be arranged in such a way that such gaps
can only occur at stages of cofinality w; and the splitting orders for such
gaps will have the ccc. The next sequence of results is a formalization of the
facts just stated. But first some terminology.

In the discussion that follows nice names play an important role. Let M
be a c.t.m. for ZFC and P € M a partial order. If o € MP, a nice P-name for
a subset of o is 7 € M¥ of the form J{{n} x A, : 7 € dom(o)}, where each
A, is an antichain in P. It is shown in [K] that if o, € M? then there is
a nice P-name 7 € MF for a subset of ¢ such that 1lFp “p C o — p=1".
Since isomorphic partial orders lead to the same generic extensions, it is
then justified to use cardinals  for base sets of partial orders and subsets of
k X k for ordering relations. Therefore, the phrase “let Q be a nice P-name

.7 will mean that (@ is of the form (&, o), where « is some cardinal and o
is a nice P-name for a subset of (k x k). Now, in M, let a be a limit ordinal
and (P¢ : £ < o) an iterated forcing construction with finite supports where
the limit stages are handled in the usual way and the successor stages are
obtained as follows: Let A ={{: & < a A is even Acf(§) # w;i} and let Py
be the trivial partial order. Let v+ 1 = § < a and assume that (P¢ : £ < )
has been constructed together with the sequence (fe : £ € ANQ) of functions
in Z* linearly ordered by <. For the simplicity of notation denote “I-p, ”
by “IF¢”.

If ~v is an odd ordinal, let Qw be a nice P-name for a partial order such
that 1 I-, QA, has the ccc” and let Pg = P, * Q.y. At this point it is not

important how Q. are selected, but in the final construction Q7 will be
chosen in a way that will ensure Martin’s Axiom holds in the final model.

If v is an even ordinal and not of cofinality w; (i.e. v € A), then choose
a pregap Cy in (fe : £ € ANG) and let Pg = P, = S’v where S7 is a nice
P,-name for the partial order that splits C, and let f, be an element of
Z* obtained in such a way. The function f, will be a part of I and only at
these stages new elements are added to L. At this point also assume that
11, “SW has the ccc”. Once again, at this point it is not important how
C, are selected, but in the final construction, C, will be chosen in a way
that will ensure L = (fe : £ € A) is a c-saturated linear order. However,
the description of stages -y, where « is a limit ordinal of cofinality wy (which
follows next), will imply at once that 1 I-, “ S,y has the ccc”.
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Finally, let v be a limit ordinal of cofinality w;. Let RW be a nice P¢-name
for the partial order obtained by taking the product of all the splitting orders
for (w1, w1)-pregaps in (fe : £ € AN F) which are also gaps in (Z“, <), and
let Pg = P, * Rv- The rest of this section is devoted to precisely defining
this product and showing that 1 IF,* ]RA, has the ccc” so that at the end P,
will have the countable chain condition. No element of Z“ obtained at this
stage will be a part of L. Their existence only ensures that each (w1, w1)-
pregap in the portion of I constructed by this stage can be split by a ccc
partial order at some later stage. Now let G be P,-generic over M, with
Ge = GNPe and Mg ZM[Gg]. Let 0 < B<awithfeAdAand ACHNA
with A € My. Then Cp also defines a pregap in (fe : £ € A). For p € Sp
let plA = (z, N Ay, N A,ny,s,) and Sg.a = {¢: Ip € Sg(¢ = p[A)} and
assume that Sg 4 € M.

LEMMA 2.8. Let M, o, (P : € < @), and G be as above with cf(a) # wq
and L = (fe : £ € A) the linear order in M[G] obtained by the construction.
If (f,g) is an (w1,wy)-pregap in L, in M[G], then there is a f < « and an
equivalent (wy,wy)-pregap (f',g’) such that (f',g’) is added to L at stage (.

Proof. If c¢f(a) = w then the result follows from the fact that if A is a
set of size wy constructed at stage « then there is a B € [A]“! and § < «
such that B is constructed at stage [.

If cf (o) > wq then the result follows from the fact that all sets of size wy
constructed at stage « are in fact constructed at some earlier stage. m

PROPOSITION 2.9. In M, let | < w and let (P¢ : £ < «) and G be as
before with cf(a)) = wy. In M[G], let A;, B; C «, with A; U B; cofinal in «,
and let {fqi, foi : a® € A;,b° € B;) be (wi,w:)-gaps with the corresponding
splitting orders S*, for i < 1. Then S° x ... x S'™1 has the countable chain
condition in M[G].

The next two lemmas are needed in the proof of this proposition.

LEMMA 2.10. f3 is Sg a-generic over My.

Proof. It suffices to show that the filter obtained from f3, in Sg 4,
intersects each dense subset of Sg 4 in My. So let D be a dense subset of
Sg,a, in M. By recursion I define a sequence of sets (D¢ : £ < 3) in Mg as
follows: Let Sg ¢ be the partial order that fills the pregap in (f¢ : ( € £NA)
determined by Cjg. Then

Dy ={qeSpo:TpeD(qg<pl0)}.
Fix £ < 3 and assume D¢ has been defined for each ¢ < £. If £ = ( + 1 then

De=1{q€Sp¢: 30 € D¢ 3p € D (g < qi,p[€)}-
And if ¢ is a limit then D¢ = (J._, Dc.
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Then by induction I show that each Dg¢ is dense in Sg ¢. Since D is dense
it follows that Dy is also dense. If £ is a limit ordinal then the result also
follows easily from the definition of D, and the induction hypothesis. Now
assume that D¢ is dense and show that D¢y is also dense. If £ € A then
D¢t = D¢ and the result follows from the induction hypothesis. So assume
e

Case 1: C¢ and Cp define the same pregap in (f¢ : ¢ € €N A). In this
case Sg¢ = S¢ so that fe is Sg¢-generic over M¢. Let p € Sgey1 and by
extending p if necessary I may assume that £ € z, Uy, say { € y,. Let
q = (xp,Yp \ {&}, np, sp) and note that ¢ € S¢. Now Dy is dense in S, so let
¢1 € D¢ and p; € D from which ¢ is defined (g1 < p1[€) such that ¢; < q.
Note that D¢ may not be in Mg, but ¢; is. Now f¢ is S¢-generic over Mg so
that f; is also S¢-generic over Mg where f{ is just fe modified by sq,. So
let g2 be an element in the S¢-generic filter over M¢ determined by fé with
g2 < ¢1. Then it is easily seen that g3 = (g,,Yq, U {£}Ngss 5¢2) € Spet1
with g3 < ¢1,p. But also g3 < p1[(§ 4+ 1) so that g3 € D¢y, showing that
D§+1 is dense in S,@,§+1-

Case 2: C¢ and Cg do not define the same pregap in (fc : ¢ € £ N A).
Then there is a (p < { such that f, is between the pregaps C¢ and U3 in
(fc : ¢ € ENA). I may assume C¢ is to the right of Cz. Let p € Sg ¢41 and by
extending p if necessary I may assume that £ € y,,. In addition I may assume
that (o € y, and that ng < w is such that Vi > ng (f¢, (1) < fe(d)) with ng <
ny. Let ¢ = (xp, yp \ {£}, np, sp) and choose ¢1 € D¢ and p; € D from which
q1 is defined (¢1 < p1[€) such that ¢; < q. Let g2 = (2q,, Yg, U{EFngr» Squ )
Then it is clear that g2 € Sg¢1 with g2 < g1, p,p1[(§+1) so that go € Dey1,
showing that D¢ is dense in Sg¢41.

And now I conclude that Dg is dense in Sg. Therefore let ¢ be an element
in the intersection of Dg and the Sg-generic filter determined by fz. By
definition of Dg, let p € D with ¢ < p. Then p is also in the filter obtained
from fﬂ in SQ,A. ]

LEMMA 2.11. Let M, (P¢ : £ < a), and G be as before with cf(a) = w;
in M. In addition, assume that P, has the ccc in M. Let A, B C anN A with
each A and B of order type wy, AUB cofinal in o and (f,, fp : a € A, b € B)
an (wi,wi)-gap in (fe : £ € anA), in M[G], with its splitting order Sa p.
Then Sa g has the ccc in M[G].

Proof. Working in M[G], let A = (a¢ : { < w;) and B = (be : £ < wy) be
increasing enumerations of A and B. By way of contradiction assume that
the conclusion of the lemma is false. Then by restricting the discussion to
an equivalent gap or to (—f,, —fs : b € B, a € A) I may assume, according
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to Lemma 2.5, that for some m < w,

(1) VE <wi Vi > m(fae (i) < fo (1)) and
VE<n <wi Fi > m(fo (1) £ fo,(0) V fa, (@) £ fo (i)

The rest of the argument involves only integers greater than or equal to
m, therefore, for the sake of simplicity I will assume that m = 0, which
completely eliminates any reference to m in the rest of the argument. I may
also assume that for each 1 < w; each element of {fa,, fo, : £ <0, ¢ <n}
is constructed before f, . This makes B cofinal in a. In M, let 7 be a
nice P,-name for B and for each f < «a let 7(f) = min{¢ : 1 Ik, (Ip €
Ge (p k¢ B € 7))}. Then since P, has the ccc and 7 is a nice name there
is a closed and unbounded C' C « such that 1 I-, “/3 is a limit point of 77
for f € C and w(§) < B for each & < (. Note that also C' C closure (B)
and V¢ € C(BNE € Mg). By performing a similar construction for A, if
necessary, I may also assume that {ac € A : b € BN&} € Mg for each
¢ € C. Now for each v € C let 8, = min(B \ 7). Therefore 8, = b¢ for
some § < wy, in which case let a, = a¢. Let S, g, be the splitting order for
(far fo 1 a <y, b < By). Then by Lemma 2.10 and (f) it follows that for
each v € C there is a p,, in the S, g -generic filter over Mg determined
by fs,, such that

(i) p'Y “_/8“/ “f'aw S fﬁ'y /\ng EBﬂﬁ/(faE % fﬁ’Y vfaW g fbf)”’

where f < g iff Vi < w(f(i) < g(i)). By extending p, if necessary I may
assume that o, € x,_ . Now define ) on C' by

Y(y) = max(xpw Uyp, \ {a'v})'
Then () < 7 for each v € C so that there is a D C C, cofinal in C,

hence «, and a 6 such that Vy € D (¢(y) = 6). Let 79 = min(C'\ 6) and, by
shrinking D if necessary, assume that

Vy € D (By > fBy,)
AV7y,0 € D (ijy \{ay} =2p; \ {as}t A Yp, = Yps NMNp, = Nps N Sp = Sps)-
For § € D let G, g5 be the S, g;-generic filter determined by f3,. Then
for each v < 6 € D there is a ¢’ € G4, g, such that ¢’ < ps with a, € x4
and 3y € y, . Hence, it follows that if ¢ = (x,; U {ay}, yp, U {8y}, ng, 5¢7)
then ¢ € Go, 3, and ¢ < ps. Therefore, since |D| = wy and |Z<¥| = w there
are vy < 0 € D and k < w, with n,; < k, such that fg [k = fg, [k and
q = (Tps U{ay},up; U{B 1K, fa, k) € Gayps With ¢ < ps in Sq; g;. But
now, since q € Sy, g; N Ga;, g, it follows that

() q kg “Vi >k (fo, (1), fa; (1) < f5,(1) < fa,(0))7.
Also, by (1) it follows that p IFg, “fa, < fa,” and ps IFg,  fay < f5, 7
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Therefore, since fg, [k = fs,[k it follows that

() q kg, “Vi <k (fa, (D), fa, (1) < f5,(2)) 7.
Now, from () and (o) it follows that

q kg, “Vi <@ (fo, (D) < f3,(0) A fas (0) < f5,(3)) .
But this clearly contradicts the part of (i) which states that ps Iz,
“fa, £ f35 V fas £ fp,”, since ¢ < ps. Therefore S 4 p has the cccin M[G]. »

Proof of Proposition 2.9. For the sake of notational simplicity
I will present the proof of the proposition for the case when [ = 2. The
proof presented below can easily be modified to prove the general case when
[ is an arbitrary integer. Let A; = {aé : & <wi}and B; = {b% t€ < wi}
be the enumerations in the increasing order of A; and B; for i < 2. Define
(fa, o) = (fg,féb : €& < wy) as follows:

. fao(k) ifn =2k, fro(k) if n =2k,
fﬁ(”):{faZ(k) ifn=2k+1, fg(n):{be(k) if n=2k+1.

Then (f,, fy) is an (w1, w:)-pregap and since Sy, f,y can be densely em-
bedded in S x S' it suffices to show that S, 5 has the ccc in M[G]. By
way of contradiction suppose not. Then as in the previous lemma I may
assume that

VE<n <wi(fy <FINEL IOV I £ 1)

and also that for each n < wy, each element of {faé, sz E<n, (<n,i<2}
is constructed before fb% for i < 2 and that fyo is constructed before fb% . Let
Cy and C; be the corresponding closed and unbounded subsets of « as in
the previous lemma. Then C' = Cy N C} is also closed and unbounded in «.
For vy € C and i < 2let 3 = min(B; \ 7). Then 3! = bz for some £ < wq, in
W,hiCh. case 1et ozfy = aé. Let Sagﬁg be the splitting order for (fu:, fi : a* <
al, b < () and S, g, the splitting order for (f&ffi €< ay, 1< By).
Then by Lemma 2.10, for each v € C and i < 2, fﬁi is Sa%ﬁ%—generic over
M,@g. Therefore fﬂbW is Sq.,p,-generic over Mﬁg. Now the rest of the proof
continues as in the previous lemma in order to get a contradiction. Therefore
S¢t..5,) has the ccc in M[G]. =

Finally, I explain what is meant by the product of all splitting orders for
(w1, w1)-gaps and present some of its properties.

DEFINITION 2.12. Let P and Q be partial orders. An i : P — Q is a
complete embedding if

(1) Vp,p eP(p <p—ilp) <

<i(p)),
(2) Vp,p' € P(p' Lp—i(p/) L

i(p)),
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B)VgeQIpePVp' eP(p <p—i(p) Laq).
The following lemma is taken from [K].

LEMMA 2.13. Suppose i,P,Q are in M, i : P — Q and i is a complete
embedding. Let H be Q-generic over M. Then i~1(H) is P-generic over M

and M[i~(H)] C M[H].

DEFINITION 2.14. Let A be a set and (P, : a € A) a sequence of partial
orders. Then [],. 4 P, denotes the set of all sequences (p, : a € A) such
that p, € P, and p, = 1, for all but finitely many a € A. If B C A then

ﬁPa:{pG HIP’a:VaeA\B(pazla)}.

a€A acA
And let i : HaBeA Py — [I,c4 Pa be the inclusion map i(p) = p.

In the final construction each P, will be a splitting order for some
(w1,w1)-gap. Proposition 2.9, in conjunction with the next lemma, whose
proof is standard, is used to show that such products have the countable
chain condition.

LEMMA 2.15. Let A be a set and (P, : a € A) a sequence of partial orders.

(1) If B C A then the inclusion i : erA Py — [lacaPa is a complete
embedding.

(2) [Ioca Pa has the ccc iff for every finite B C A, HaBeA P, has the ccc.

This essentially finishes the treatment of gaps. Now I am ready for the
final construction.

3. Final model. In this section I combine the work of Todorcevi¢ and
Laver to obtain the final model. In his construction, Todoréevié starts with
Mitchell’s model, in [M], for ~wKH. Therefore I begin with a brief discussion
of that model.

Let M be a c.t.m. for ZFC + V=L and, in M, let k be the first strongly
inaccessible cardinal. From now on inaccessible will mean strongly inacces-
sible. If A and B are sets and p a cardinal then

Fun(A, B, 1)
={p: (Jp| < p) A (pis a function) A (dom(p) C A) A (ran(p) C B)}.
Let C = Fn(k,2,w) and partially order C by p <¢ ¢ iff p D ¢. C is the

standard partial order for adding x generic subsets of w. Then C has the ccc
in M and as such preserves cardinals. For v < k let

C,={peC:dom(p) Cv} and C”={pe C:dom(p) Ny =0}
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Then C =2 C, x C7 and if G is C-generic over M then G, = GNC, is
C,-generic over M and G” = GNC" is C7-generic over M[G,]| with M[G] =
M[G,][G"]. Let B be the complete Boolean algebra of regular open subsets
of C. Then C is dense in B. For v < &, let B, be the complete Boolean
algebra of regular open subsets of C, and identify each B, with its image
in B under the normal complete embedding. Then for each v < § < & it
follows that B, is a complete subalgebra of Bs, which in turn is a complete
subalgebra of B.
In M, let

D=A{f:feFn(kB,w)AVyedom(f)(f(y) € Bytw)}

For f € D define f : dom(f) — 2, in M[G], by f(y) = 1iff 3p € G (p <p
f(7)). Also in M[G], let E = {f : f € D} partially ordered by f <g g iff
f 2 g. Also partially order I, in M, by f <p giff 1lF¢c “f <g g”. In M, let
F be a partial order with domain C x D partially ordered by

(p, f) <r (¢,9) iff p<cqgA(plc“f<gg”).

Now I list a few properties of the partial orders defined above and refer
the reader to [M] for proofs and further details. Let K be F-generic over M.
Then G = {p € C: (p,0) € K} is C-genericover Mand H= {f ¢ E: (0, f) €
K} is E-generic over M[G] and M[K]=M[G][H]. Also w} = w?/{[G] = wiv[[K],

and F has the k-cc so that  is a cardinal in M[K] with k = wé\/[ K],

In M, let D, = {fly: feD},D"={f\(flv): feD}, F,=C, xD,
and F¥ = CY xD” for v < k. Then K, = KNF, and KY = KNF”. In M[G],
let E, = {flv: feE}and EY = {f\ (flv) : f € E} for v < k. Partially
order F7, in M[G,], by

(p:f) <w (g:9) i p<cqATP €Gr(pUP e “f <eg").
Then for each y such that Vo' < v (v +w < ), K, is F-generic over M and
K7 is F7-generic over M[K, ] with M[K] = M[K,]|[K"]. Also, since |F,| < &,
it follows that « is still inaccessible in M[K,]. If A is an uncountable cardinal
in M[K,] with A < &, then X is collapsed onto w; in M[K]. In addition, in
M[K], 2¢ = 2** = w,. Furthermore, if R is a ccc partial order in M[K,] and
I is R-generic over M[K] then I is also R-generic over M[K,]| with

MK, J[I[KY] = MK, J[K][T} = M[K][I].
The following lemma and its proof are due to Todoréevié¢ [T].

LEMMA 3.1. Let v > wM be a reqular cardinal in M and R a ccc partial
order in M[K,]. Let 1 be R-generic over M[K, ] and T an w; -tree in MK, ][I].
If b is a path through T in M[K][I] then b € M[K,][T].

Now I am ready for the construction of the main model.
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THEOREM 3.2. Let M be a c.t.m. for ZFC + V=L and k the first inac-
cessible cardinal in M. Then there is an extension of M which is a model

for
ZFC 4+ MA 4+ -wKH + ¢ = wy + ..

Proof. Let F be the partial order described above and K F-generic over
M with N=M[K]. In N I construct a finite support ccc iteration

((Pe : § Sw2),(Q¢ : § <wa))

of length wo. In the process I construct a c¢-saturated linear order (L, <) in
(Z¥,<). At the successor stages I alternate between ccc partial orders to
make MA true and partial orders which are the splitting orders for some
pregap in L. According to Lemma 2.5 only the splitting orders for (wq,ws)-
gaps may fail to have the ccc. However, the construction is arranged in such
a way that such gaps occur in IL only at stages of cofinality wq; at these
stages the splitting orders for all these gaps will have the ccc and at these
stages I split these gaps, all at once. The splitting functions added at these
stages will not be a part of IL, but they are needed to ensure that the splitting
orders for all pregaps in L remain ccc until the pregaps are filled, one by
one, at the later successor stages. The partial orders that are used at these
limit stages of the iteration have cardinality ws, which causes some difficulty
in the proof of ~wKH. This difficulty is overcome by reducing the argument
to suborders of size wy of these partial orders. If «y is a limit ordinal then P,
is obtained in the usual way.
In N, let

A ={{ <wsy:¢is an even ordinal and cf(§) # w1}

and let g : wy — wy X wo such that g maps both A and ws \ A onto ws X wo
with the property that

VEm,y <wa (9(§) = () —n<8).

The function g will be used in deciding how to choose each Q.

Let Py be the trivial partial order. Suppose { < ws and that P¢ has been
constructed and let Le = {f¢ : ¢ € €N A} be the portion of L constructed
by stage { and N¢ the extension of N by P¢. First consider the case when &
is an odd ordinal. At these stages no new elements are added to L so that
Leyi =Le. In N, let <<)\§, 0,%) : 7 < wa) be an enumeration of all pairs (A, o)
such that A < wg, A is a cardinal and o is a nice P¢e-name for a subset of
(A x A). Let g(§) = (n,7). Since n < £, the P,-name, o7, has been defined.
Let o be the corresponding Pe-name and A = A7. There are three cases to
consider.

Case 1. If it is not the case that 1 IF¢ “()\, o) has the ccc” then let Qg
be a nice P¢-name for the trivial partial order and Peiq = Pe * Q.
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Case2.If1 Ik¢ © (X, o) has the ccc” and it is not the case that extending
by (A, o) adds any new paths through an w;-tree, in N¢, then by Lemmas 1.9
and 2.7 it is not the case that a new (wq,ws)-gap is added in L¢. Then let
@5 be <)\,O’> and P§+1 = ]P)E * Qg.

Case 3. If 1 IF¢ “(\,0) has the ccc” and extending by (A, o) adds a
new path through an wi-tree T in N¢, or extending by (A, o) adds a new
(w1,w1)-gap in L¢ then by Lemma 1.9 or Lemma 2.7, respectively, there is a
Suslin tree U, in N¢, such that a new path is added through U. Therefore in
the extension by <5\, o) the specializing partial order Sy for U fails to have
the ccc. Then by Lemma 1.11 there is an element p in Sy such that, in Ng,

plFs, “(\, o) fails to have the ccc”.

Let Q¢ be a nice Pe-name for the suborder of Sy below p. Then 1 Ik
“Qg¢ has the ccc” and let P = P¢ * Q¢. Note that

1lFeyy “(N o) fails to have the ccc”,

and once a partial order fails to have the ccc it fails to have the ccc in all
further extensions. Also note that no new paths are added through ws-trees
and hence no new (wy,w1)-gaps in ¢ in the extension by Q.

This finishes the treatment of odd successor stages. Now assume £ is an
even ordinal with cf(§) = wq. In Ng, let <C§ : ( < wg) be an enumeration
of all pregaps in L¢ represented by (wq,w)-gaps constructed in L at stage
&, with the corresponding splitting orders SE. Then by Proposition 2.9 and

Lemma 2.15, [, ., Sé has the ccc. Note that also [[]._,, SE\ < wy and
for all v < wy, |HZ<w2 Sg] < w;. Let 7¢ be a P¢-name for the partial order

S¢ and 7€ a Pe-name for the partial order [/ S¢ arranged in such
(<wz ~¢ gl £ (<wz M¢
a way that 78 C & C 7¢ as names, for v < 0 < wo. Let Q¢ be 7¢ and
o ) 3

Per1 = Pe * Q¢. Then Peyq has the ccc and with the help of Lemmas 1.12
and 2.6 extending by Q¢ does not add any new paths through w;-trees and
hence no new (wq,ws)-gaps in L¢. At this stage no new elements are added
to L so that L¢iq = L.

Finally, I show how to treat the remaining successor stages, namely,
stages where ¢ is an even ordinal and cf(§) # wy (i.e. £ € A). At these stages
I extend with a splitting order for some pregap in L. However, I make sure
that such a splitting order has the ccc so that by Lemmas 1.9 and 2.6 no
new paths are added through wi-trees and hence by Lemma 2.7 no new
(w1, w1)-gaps are added in L. So fix £ € A and let (C5 : v < wy) be an
enumeration, in N¢, of all pregaps in L¢. Let g(§) = (n,~). Since n < &, the
pregap C in L, has been defined. Let C' be that C’§ whose restriction to L,
is equivalent to C7 and let S¢ be its splitting order in N¢. By the treatment
of earlier successor stages and by Lemma 2.8, (w1, w1)-gaps in L¢ can only
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occur at stages of cofinality wy. But at these stages all such gaps are filled
by a single ccc partial order and no new (wy, w1 )-gaps are added in LL by this
partial order. Therefore C' cannot be an (wy, w1 )-gap (i.e. an (w1, w1 )-pregap
which is not split) so that by Lemma 2.5, S¢ has the ccc. Let Q¢ be a nice
Pe-name for the partial order representing S¢ and let Peiq = Pe x Q¢. At
these stages no new paths are added through w-trees and hence no new
(w1,w1)-gaps are added to L¢, as indicated earlier. Let f¢ be the element of
Z* added by extending with Q¢ and let L¢1; = L¢ U {f¢}. This finishes the
treatment of the successor stages and since the limit stages are handled in
the usual way this also finishes the construction.

Let J be P,,,-generic over N. Now I show that
NJ] E “MA + -wKH+c=w2 + . ”.

It is straightforward to show ¢ = wy in N[J]. For MA, let R be a ccc partial
order of size wy and (D¢ : ¢ < wi) a sequence of dense subsets of R in N[J].
Then there is a £ < wg such that R and (D¢ : ¢ < wy) are all in N[J¢]. Now
at some later odd stage n, Q,, was a P,-name for R. However, since R has the
cce in N[J], Q, must satisfy Case 2 in the treatment of stage 7. Therefore,
at that stage a filter is added in R that intersects all (D¢ : ¢ < wy). This
shows that MA holds in N[J].

For ¢, let (f,g) be a (A, p)-pregap in L, where \ and p are cardinals
with A, it < wa. Then there is a £ < wy such that (f, g) C L¢ and (f, g) € Ne.
Note that because of Case 3 in the construction of odd stages of the iteration
either (f,g) is a non-(wy,w;)-gap, in which case its splitting order has the
cee, or (f,g) is an (wy,wy)-gap, in which case some equivalent gap had to
be constructed at some earlier stage 6 with cf(6) = w;. But then at that
stage its splitting order has the ccc. Therefore, at the next stage the gap
was split so that its splitting order remains to have the ccc in all further
extensions. Then at some later even stage n, an element is added to IL. which
splits (f, g). Therefore N[J] = “p.”.

Finally, I show N[J] = “-~wKH?”. Let T be an w;-tree in N[J]. I may
assume T = (wy, <) where <t is some subset of wy; X wy. Let o = [J{{5} x
As 1 s € w1 Xwi} be anice P,,,-name for a subset of (w X wy ) with o; = <r.
Then there is a u < wy such that A = [J{As : s € w1 X w1} C P, so that
o is actually a nice P,-name. I may assume that cf(py) = w. Recall that
7¢ is a nice Pe-name for the product of the splitting partial orders of all
(w1,w1)-gaps in Lg constructed by stage . Then since |A| = wy, for each
¢ < p with cf(¢) = wy, only a subset of dom(7¢) of size w; is used in defining
o and all Q, with cf(n) # wi and £ < n < p. With this in mind I construct,
in N, a finite support ccc iteration

(Xe 1 &< ), (Ye 1 & <))
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such that |X,| = wy, there is a complete embedding, ¢, from X, into P,,, and
o is in fact a nice X,-name for a subset of (wy x wy). If c¢f(§) # wi, then let
Ye = Q¢. Otherwise let Y¢ = ng where ’yﬁ < wsy is large enough to make

I
X, have the properties indicated in the previous sentence.

The construction is fairly straightforward. For each £ < p with cf(§) = wy
let

Be ={(p)e : Is € w1 x w1 (p € As)},
where (p)¢ denotes the {th component of p. Choose 'yﬁ < wy so large that
Be C dom(Tjﬁ) and if Ye = Tjﬁ for each £ < p with cf(¢§) = wy and Y = Q¢
for all the other £ < p with cf(€) # wy then the sequence

(Xe 1 & <), (Ye 1 & <))
obtained in such a way is in fact a finite support ccc iteration.

Clearly |X,| = w; and note that in view of Lemma 2.15 there is a com-
plete embedding 7 : X, — P,,. Furthermore, o is actually an X ,-name. Then
i~'(J,) is X,-generic over N and <r€ N[i~(J,)] so that T is an w;-tree in
N[~ 1 (3,

Now since |X,| = wy there is a regular cardinal v in M, with w; < v <
%, such that X, € M[K,] and i~*(J,,) is X,-generic over M[K,]. Now, in
M[K,][i7(J,)], & is still an inaccessible cardinal and T is an w;-tree so
that T has less than x paths, say A many. But in M[K,][i7*(J,)][K"], A is
collapsed onto a cardinal less than wy = x. However,

MK, i~ ()] [K"] = MK K[~ (J,)] = MIK][i7 (3,)] = N[~ (3,)]-

Hence, by Lemma 3.1, in going from M[K,][i~*(J,)] to M[K,][i ~1(J,,)][K"],
no new paths are added through T. Hence T has at most w; paths in
N[i=1(J,,)], since A is collapsed onto w.

Now I show that T has at most w; paths in N[J]. Let {d; : ( < e} be an
enumeration in the increasing order of all ordinals § < p with cf(§) = wy.
I construct, in N, a sequence of partial orders (Z¢ : £ < wy - €), where wy - €
denotes a product of ordinals, together with complete embeddings i¢,, : Z¢ —
Ly, for 0 < ¢ <n < wsy - ¢, such that Zg = X, and Z,.. = P,. In addition,
because of the complete embeddings, i¢,, the sequence (Z¢ : £ < ws - €) can
be viewed as a finite support ccc iteration where Z¢, 1 is obtained from Zg¢
by extending Z¢ with a ccc splitting order for some pregap. Therefore, by
Lemma 1.9 as well as 2.6, no new paths are added through T in going from
Zg¢ t0 Zgy1. And since by Lemma 1.12 no new paths can be added through
T at limit stages, it follows that T has as many paths in N[J,] as it does in
N[i='(J,)], namely at most w;.

The construction of the sequence (Z¢ : £ < wsq - €) is fairly easy, so I only

give an outline. Start with Zy = X,. For any ( <&, o <ws let = ’yff + a.
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In order to get Z,.c+q, in the definition of X, replace all Ys
¢

for n < (,

by 70n Ys,. by Tg and keep all the other Y¢ the same. Then Z,.c4 is the
partial order obtained in such a way. Then clearly Z¢ = X, and Z,,,.. = P,,.
By Lemma 2.15 it is clear that for each 0 < & < 1 < ws-¢ there is a complete
embedding i¢,, : Z¢ — Zy.

Thus the sequence (Z¢ : £ < wq - €) can be viewed as a finite support
cce iteration with splitting orders for some pregaps. Then by Lemma 1.9
as well as 2.6 no new paths are added through wi-trees at successor stages.
And since, by the remark following Lemma 1.12, no new paths are added
through wi-trees at limit stages, it follows that T still has at most w; paths
in N[J,]. But now, in the construction of the iteration

(Pg 1 £ S w2), (Qe : § <wz))
the partial orders Q¢ were chosen in such a way that no new paths were
added through w;-trees in extensions by Q¢. And since by Lemma 1.12 no
new paths were added at limit stages, it follows that T has at most wq

paths in N[J]. Therefore T cannot be a weak Kurepa tree in N[J]. Hence,
N[J] E “-wKH”, which completes the proof that N[J] is a model for

ZFC 4+ MA 4+ ~wKH + ¢ = ws + ¢,

n?

which in turn proves the theorem. m
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