
FUNDAMENTA
MATHEMATICAE

145 (1994)

On the open-open game

by

Peg D a n i e l s (Auburn, Ala.), Kenneth K u n e n (Madison, Wisc.)
and Haoxuan Z h o u (San Antonio, Tex.)

Abstract. We modify a game due to Berner and Juhász to get what we call “the
open-open game (of length ω)”: a round consists of player I choosing a nonempty open
subset of a space X and II choosing a nonempty open subset of I’s choice; I wins if the
union of II’s open sets is dense in X, otherwise II wins. This game is of interest for ccc
spaces. It can be translated into a game on partial orders (trees and Boolean algebras,
for example). We present basic results and various conditions under which I or II does or
does not have a winning strategy. We investigate the games on trees and Boolean algebras
in detail, completely characterizing the game for ω1-trees. An undetermined game is also
defined. (In contrast, it is still open whether there is an undetermined game using the
definition due to Berner and Juhász.) Finally, we show that various variations on the
game yield equivalent games.

0. Introduction. The following game is due to Berner and Juhász
[BJ]: two players take turns playing; a round consists of player I choos-
ing a nonempty open set U ⊆ X and player II choosing a point p ∈ U ; a
round is played for each ordinal less than ω (more generally, for each ordinal
less than some given ordinal α); I wins the game if the set of points II plays
is dense; otherwise, II wins. Denote the game by Go

p(X).
Consider the following modification, which we call the open-open game

of length ω: a round consists of I choosing a nonempty open set U ⊆ X and
II choosing a nonempty open V ⊆ U ; I wins if the union of II’s open sets is
dense in X, otherwise II wins. Denote this game by G(X). (In comparison
with Go

p(X), Go
0(X) might be a better notation.)

Go
p(X) is only interesting if X is separable, as otherwise II has a trivial

winning strategy. G(X) is interesting for a wider class of spaces, the ccc
spaces (if X is not ccc, it is easy to see that II has a winning strategy).
Furthermore, the open-open game can be translated into an interesting game
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on partial ordered sets (posets), for example on trees or Boolean algebras.
In this case, II’s move will be smaller than I’s move. We denote the games
by G(T ) or G(B) when T and B are trees or Boolean algebras respectively.
In these cases, of course, the moves of both players are elements of T or B
and I wins if the set of all II’s moves is predense.
§1 and §2 contain the basic results and various conditions under which

player I or player II has or does not have a winning strategy. In §3, we
investigate the game on trees and Boolean algebras in detail. We show that
if T is an ω1-tree, then I has a winning strategy if and only if T is the union
of countably many branches, and II has a winning strategy if and only if T
has an uncountable antichain. Further discussion on the game for Boolean
algebras leads to a weak version of the von Neumann problem: is every ccc
weakly ℵ0-distributive algebra a measure algebra? Finally, an undetermined
game is defined. In contrast, it is still open whether there is a real example
of a space X on which Go

p(X) is undetermined. In §4 we give more games
and show they are all equivalent to the open-open game.

All spaces are assumed to be regular.

1. When the game favors player I or player II. Let X be a space. A
π-base for X is a collection U of open sets such that for each open subset U
there exists V ∈ U with V ⊆ U . Further, π(X) is the minimum cardinality
of a π-base, and is called the π-weight (the corresponding notion for Boolean
algebras is the density). One of the main results for the game Go

p(X) in [BJ]
is that I has a winning strategy iff π(X) = ω. We will show that is not true
for the open-open game G. First, it is easy to show the following is true
for G.

Theorem 1.1. (i) If π(X) = ω, then I has a winning strategy.
(ii) If X is not ccc, then II has a winning strategy.

P r o o f. (i) The strategy for I is to keep choosing every member of a
countable π-base U .

(ii) The strategy for II is to choose at each stage a nonempty subset of a
member of a fixed uncountable maximal disjoint collection of open subsets.

Another example for which II has a winning strategy is any uncountable
measure algebra. Player II just chooses an element of measure less than
2−(n+2) in the nth round.

Not every ccc space for which II has a winning strategy has a strictly
positive measure. The most interesting example is the Pixley–Roy space
PR(R) of the reals R (see Comfort and Negrepontis [CN]).

Let us recall some definitions. A space X has the C ′′ property (resp.
weak C ′′ property) if for any countable sequence of open coverings 〈Un〉 of
X, there is a sequence 〈Fn〉 with Fn ∈ Un such that

⋃
n Fn = X (resp.
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⋃
n Fn = X). A family D ⊆ ωω is strongly dominating if for any f ∈ ωω,

there is a g ∈ D such that for each n, f(n) < g(n). A game Gp played on
X is called the point-open game if I plays a point xn and II plays an open
neighborhood Un of xn in each round, and I wins iff

⋃
n Un = X (see [DG]).

Theorem 1.2. In the following cases, II has a winning strategy in the
games G(PR(X)), where X ⊆ R:

(i) X is not a null set.
(ii) Player II has a winning strategy in the point-open game Gp(X).

Corollary. If X is not C ′′, then II has a winning strategy in
G(PR(X)).

Proof of Theorem 1.2. (i) The basic open sets of PR(X) have the
form [F,U ] = {E ∈ [X]<ω : F ⊆ E ⊆ U}, where F ∈ [X]<ω and U is
an open set containing F . The strategy for II is to play a set of the form
[En, Vn], where Vn is an open set of small measure. Since the outer measure
of X is positive,

⋃
n Vn cannot cover X. If x 6∈ ⋃n Vn, then [{x}, X] does

not meet any [En, Vn].
The proof of (ii) is obvious since Gp(X) is equivalent to the similarly

defined game where I plays a finite number of points at each stage.

The corollary follows since if X is not C ′′ it is easy to see that II has a
winning strategy in Gp(X). It is also easy to see that if PR(X) is not weakly
C ′′, II has a winning strategy in G(PR(X)). If X is not C ′′ then PR(X) is
not weakly C ′′, but there is a Lusin (hence C ′′) set X such that PR(X) is
not weakly C ′′ (see [DG]). We do not know whether the fact that II has a
winning strategy in the game G(PR(X)) implies II has a winning strategy
in the point-open game Gp(X). It is not difficult to show, however, that for
a second countable space X, I has a winning strategy in G(PR(X)) if and
only if X is countable. But Telgársky has shown that for a metric space X,
I has a winning strategy in Gp(X) if and only if X is countable.

Dominating families are used in Theorem 2.3. At this point, let us
note that such a family D is not C ′′, and so II has a winning strategy
in G(PR(D)).

At first, the authors guessed the open-open games for separable spaces
might not favor II. This is not the case and the example we present is
essentially due to Szymański [S]. First, let us state the following:

Fact 1.3. Let RO(X) denote the regular open algebra of a space X and
let E(X) be the Stone space of X. Then the game G(E(X)) is equivalent
to G(RO(X)), which is equivalent to the game G(X).

Corollary 1.4. If RO(X) is isomorphic to RO(Y ) for spaces X and
Y , then G(X) and G(Y ) are equivalent. Thus, if Y is a dense subspace
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of X, or Y is a closed irreducible image of X, then G(X) and G(Y ) are
equivalent.

Example 1.5. There is a countable space X such that II has a winning
strategy. By Theorem 1.2, we know II has a winning strategy in the game
G(PR(R)), hence II has a winning strategy in the game G(Z) where Z is
E(PR(R)) by Fact 1.3. Note that Z is separable (PR(R) has a σ-centered
base), therefore if X is a countable dense subset of Z, then II has a winning
strategy in G(X) by Fact 1.3 again.

Returning to results for player I to have a winning strategy, an equivalent
condition involving the club filter on the countable subsets of a set is useful.

Definition. A collection C ⊂ [X]≤ω is closed provided that if C1 ⊂
C2 ⊂ . . . is an increasing ω-chain from C, then

⋃
n∈ω Cn ∈ C. The collection

C is unbounded if for each B ∈ [X]≤ω there is a C ∈ C such that B ⊂ C.

Definition. If Q is a partial order and i : P → Q then i is a complete
embedding of P into Q if and only if

(1) ∀p, p′ ∈ P (p ≤ p′ ⇒ i(p) ≤ i(p′)),
(2) ∀p, q ∈ P (p⊥P q ↔ i(p)⊥Q i(q)), and
(3) ∀W ⊂ P ((W is predense in P) ↔ (i(W ) is predense in Q)).

(3) may be replaced by the following (see [K]):

(3′) ∀q ∈ Q ∃p ∈ P ∀p′ ∈ P (p′ ≤ p⇒ i(p′) and q are compatible).

Definition. If P ⊂ Q, then P is completely embedded in Q, written
P ⊂c Q, if and only if the identity map is a complete embedding of P into
Q, where <P=<Q ∩ (P× P).

Note that playing G on a space X is equivalent to playing G on the
partial order of the open sets of X (or of any open π-base).

Theorem 1.6. I has a winning strategy in G(Q) if and only if {P ∈
[Q]≤ω : P ⊂c Q} contains a club (closed and unbounded subcollection).

P r o o f. Suppose {P ∈ [Q]≤ω : P ⊂c Q} contains a club C. We define a
winning strategy σ for I. Let σ∅ ∈ Q. Suppose q0 ≤ σ∅. Let P0 ∈ C be such
that {σ∅, q0} ⊂ P0. Let {An : n ∈ ω} be a partition of ω with An ⊂ ω \ n.

Let f0 : A0
1-1³ P0. Note 0 ∈ A0. Let σ〈q0〉 = f0(0). Suppose q1 ≤ σ〈q0〉.

Let P1 ∈ C, P1 ⊃ P0 ∪ {q1}. Let f1 : A1
1-1³ P1. Let α1 ∈ {0, 1} be such

that 1 ∈ Aα1 , and let σ〈q0, q1〉 = fα1(1). Continue in this way, so that
given σ〈q0, . . . , qn〉 = fαn(n) and qn+1 ≤ σ〈q0, . . . , qn〉, we choose Pn+1 ∈ C,
Pn+1 ⊃ Pn ∪ {qn+1}, and fn : An

1-1³ Pn; then letting αn+1 ∈ n+ 2 be such
that n+ 1 ∈ Aαn+1 , we let σ〈q0, . . . , qn+1〉 = fαn+1(n+ 1). I thus wins this
play of the game, since every element of

⋃
n∈ω Pn is played, {qn : n ∈ ω} is
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(pre-)dense in
⋃
n∈ω Pn,

⋃
n∈ω Pn ∈ C, and so

⋃
n∈ω Pn ⊂c Q, which means

{qn : n ∈ ω} is predense in Q. So σ is a winning strategy for I.
Now suppose that I has a winning strategy σ in G(Q). We show that

{P ∈ [Q]≤ω : P ⊂c Q} contains a club. Let C = {P ∈ [Q]≤ω: (a) ∀p, q ∈
P (p⊥P q ⇔ p⊥Q q), and (b) σ′′[P]<ω ⊂ P}.

It is easy to check that C is a club.
To show that for each P ∈ C, P ⊂c Q, we need only check that if W ⊂ P

is predense in P, then W is predense in Q. So suppose P ∈ C and W ⊂ P
is predense in P, but not in Q. Let r ∈ Q be such that ∀w ∈ W (w⊥Q r).
We have σ∅ ∈ P. Let w0 ∈ W be such that σ∅ and w0 are compatible in
P, and let q0 ∈ P be such that q0 ≤ σ∅, w0. Then σ〈q0〉 ∈ P. Let w1 ∈ W
be such that σ〈q0〉 and w1 are compatible in P, and let q1 ∈ P be such that
q1 ≤ σ〈q0〉, w1. Continue in this way. Since σ is a winning strategy for I,
{qn : n ∈ ω} must be predense in Q. Let n ∈ ω be such that qn and r are
compatible. But then wn and r are compatible, a contradiction. So W is
predense in Q. Thus C is the desired club.

For brevity, let us call G(X) a I-favorable (or II-favorable) game if I (or
II) has a winning strategy. We may also say X is I-favorable (or II-favorable).

Corollary 1.7. The finite support product of I-favorable partial orders
is I-favorable. (For spaces, the product of I-favorable spaces is I-favorable.)

P r o o f. Suppose Q = {p ∈∏α<κQα : |supt(p)| < ω}, where each Qα is
I-favorable. For each α < κ, let Cα be a club subset of {P ∈ [Qα]≤ω : P ⊂c

Qα}. Let C = {{q ∈ Q : supt(q) ⊂ C and for each α ∈ supt(q), q(α) ∈ Cα} :
C ∈ [κ]≤ω and for each α ∈ C, 1α ∈ Cα ∈ Cα}. Note C ⊂ [Q]≤ω. Also note
that given C,D ∈ [κ]≤ω, in order to have {q ∈ Q : supt(q) ⊂ C and for each
α ∈ supt(q), q(α) ∈ Cα} ⊂ {q ∈ Q : supt(q) ⊂ D and for each α ∈ supt(q),
q(α) ∈ Dα}, we must have C ⊂ D and for each α ∈ C, Cα ⊂ Dα. Using this
fact and the fact that each Cα is a club, it is not difficult to check that C is
a club. Using the fact that each element of a Cα is completely embedded in
Qα, it is not difficult to check that each element of C is completely embedded
in Q. By Theorem 1.6, Q is I-favorable.

Adam Krawczyk also independently discovered a characterization for
I-favorable topological spaces which is essentially equivalent to ours (for the
partial order use the poset of all open sets (or a base) ordered by inclusion),
from which he also obtained the result of Corollary 1.7.

Corollary 1.8. If Xα has countable π-weight for each α < κ, then
X =

∏
α<κXα is I-favorable.

Corollary 1.8 shows the difference between the game G(X) on the one
hand, and the games Gp(X) and Go

p(X) on the other: Gp(X) is not I-
favorable if X is uncountable, and Go

p(X) is not favorable if π(X) > ω.
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We give two more results involving embeddings.

Theorem 1.9. If i : P→ Q is a complete embedding and Q is I-favorable,
then P is I-favorable. Also, if P is II-favorable, then Q is II-favorable.

P r o o f. Assuming the hypothesis and given a winning strategy for I in
G(Q), one uses property (3′) of complete embeddings to define a strategy
for I in G(P); property (2) is used in showing the strategy is a winning one.
A similar technique shows the second statement is true.

The trivial counter-example to the converse statements is i : P = {1} →
Q, where Q is II-favorable.

Definition. i : P→ Q is a dense embedding if and only if

(1) ∀p, p′ ∈ P (p′ ≤ p⇒ i(p′) ≤ i(p)),
(2) ∀p, p′ ∈ P (p ⊥ p′ ⇒ i(p) ⊥ i(p′)),
(3) i′′P is dense in Q.

Theorem 1.10. If i : P→ Q is a dense embedding , then Q is I-favorable
iff P is I-favorable. (See Corollary 1.4.)

We have seen that the game on a continuous, closed, irreducible image
Y of a space X is equivalent to the game on X (Corollary 1.4). For certain
compact spaces, we can remove the requirement of irreducibility.

Theorem 1.11. Every dyadic space is I-favorable.

This theorem can be proved directly, but the details are rather messy.
We give a slicker proof that involves showing that a property stronger than
I-favorability, possessed by dyadic spaces, is preserved by continuous maps
whose domain is compact.

Definition. Let op(X) be the partial order of all open subsets of X. If
Q ⊂ op(X), define Q ⊂! op(X) by requiring that conditions (1) and (2) in
the definition of ⊂c hold, together with the following strengthening of (3′):

(3!) whenever S ⊂ Q and x 6∈ ⋃S, there is a W ∈ Q such that x ∈ W
and W ∩⋃S = ∅.
Q ⊂! op(X) implies Q ⊂c op(X).

Definition. X is very I-favorable provided that there is a club C ⊂
[op(X)]≤ω such that for each C ∈ C, C ⊂! op(X).

We need to use such a club in the domain space to build one in the range
space. To accomplish this, the following lemma proves useful.

Lemma 1.12. Suppose C ⊂ [I]≤ω is a club and J ⊂ I. Then there is a club
D ⊂ [J ]≤ω such that for each D ∈ D there is a C ∈ C such that D = C ∩ J .
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P r o o f. Note that {C ∩ J : C ∈ C} will not necessarily work: it may
not be closed. For each s ∈ [J ]<ω, choose f(s) ∈ C such that s ⊂ f(s),
and such that t ⊂ s implies f(t) ⊂ f(s). Then D = {D ∈ [J ]≤ω : ∀s ∈
[D]<ω (f(s) ∩ J ⊂ D)} works.

Any 2κ is very I-favorable: let C be the collection of C ∈ [op(X)]≤ω for
which there is an I ∈ [κ]≤ω such that

(1) {[σ] : σ ∈ Fn(I, 2)} ⊂ C;
(2) for each U ∈ C, {[σ] : σ ∈ Fn(I, 2) and [σ] ⊂ U} is dense in U ; and
(3) C is closed under finite intersections.

Then C witnesses that 2κ is very I-favorable.
With the above fact, to prove Theorem 1.11 we need to prove that if X

is compact and very I-favorable, and f : X ³ Y is continuous, then Y is
very I-favorable.

P r o o f. Suppose X is compact and very I-favorable, and f : X ³ Y is
continuous. Let C ⊂ [op(X)]≤ω witness the fact that X is very I-favorable.
By passing to a subcollection, we may assume without loss of generality that
for each C ∈ C, C is closed under finite unions and intersections, and that
f−1({y ∈ Y : f−1(y) ⊂ U}) ∈ C whenever U ∈ C. (Since f is a closed map,
for an open set U , {y ∈ Y : f−1(y) ⊂ U} is open.)

Let J = {f−1(U) : Uopen ⊂ Y } ⊂ op(X). By Lemma 1.12, let D be
a club, D ⊂ [J ]≤ω, such that for each D ∈ D there is a C ∈ C such that
D = C ∩ J . For D ∈ D, let DY = {U ∈ op(Y ) : f−1(U) ∈ D}. It is not
difficult to check that DY = {DY : D ∈ D} is a club in [op(Y )]≤ω, and,
using the fact that f is perfect (continuous, closed, and inverse images of
points are compact), that DY witnesses that Y is very I-favorable.

Question 1.13. If X is compact and is I-favorable, is X co-absolute with
a dyadic space?

If the weight of X is ≤ ℵ1, then X is co-absolute with a dyadic space.
Corollary 1.7 takes care of Cohen forcing. Another partial order in which

I has a winning strategy is the order for adding an increasing κ-sequence of
functions from ω into the rationals.

Example 1.14. Let κ be uncountable and let Pκ be the partial order
where elements are of the form p = 〈ap, np, fp〉, where ap ∈ [κ]<ω, np ∈ ω,
and fp : ap×np → (the rationals). Define p ≤ q iff ap ⊃ aq, np ≥ nq, fp ⊃ fq,
and for each α, β ∈ aq and i ∈ np \ nq, if α < β then fp(α, i) < fp(β, i).

We claim that C = {PA : A ∈ [κ]≤ω} is a club subset of {Q ∈ [Pκ]≤ω :
Q ⊂c Pκ}. Suppose A ∈ [κ]≤ω. We show PA ⊂c Pκ. Conditions (1) and
(2) of the definition of ⊂c are easy to check. We show (3′) holds. Suppose
q ∈ Pκ. Let aq = {β0, . . . , βl} be listed in increasing order. Let p = 〈aq ∩
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A,nq, fq|(aq ∩ A) × nq〉. Note p = 〈ap, np, fp〉 ∈ PA. Suppose p′ ∈ PA and
p′ ≤ p. We need to show that p′ and q are compatible. Let at = ap′ ∪ aq
and nt = np′ . Now if (β, i) ∈ dom fp′ ∩ dom fq, then (β, i) ∈ (aq ∩ A)× nq,
so fp′(β, i) = fp(β, i) = fq(β, i). We need to define ft : at × nt → (the
rationals) to extend fp′ ∪ fq in such a way that t ≤ p′, q.

For β ∈ aq \ A, let β′ be the greatest element of aq ∩ A less than β, if
possible, and let β′′ be the least element of aq∩A greater than β, if possible.
Let fp′(β′, i) < ft(β, i) < fp′(β′′, i). This completes the definition of ft, since
if (β, i) ∈ dom ft \ (dom fp′ ∪ fq), then β ∈ aq and i ∈ nt \ nq = np′ \ nq;
β 6∈ ap′ , so β 6∈ A, and by the above, we have defined ft(β, i). Now, t trivially
extends p′ since there is no i ∈ nt \ np′ . To see that t extends q, suppose
%, ψ ∈ aq, i ∈ nt \ nq = np′ \ nq, and % < ψ. If %, ψ ∈ A, then %, ψ ∈ ap,
and since p′ extends p, (ft(%, i) =)fp′(%, i) < fp′(ψ, i)(= ft(ψ, i)). If % ∈ A
and ψ 6∈ A, then % < ψ′, and (ft(%, i) =)fp′(%, i) ≤ fp′(ψ′, i) ≤ ft(ψ, i). The
remaining cases are similar.
C is closed since if PA0 ⊂ PA1 ⊂ . . . , then A0 ⊂ A1 ⊂ . . . , and

⋃
n PAn =

P∪n An . Clearly C is unbounded.

In the above example, if κ ≥ c+, then Cohen forcing does not add a κ-
sequence in ωω which is increasing in <∗. So Pκ is not a complete suborder
of Cohen forcing.

2. When the players do not have a winning strategy. Since the
open-open game on any completely regular space has the same behavior as
the game on its compactifications, we just consider the games played on
compact spaces.

Theorem 2.1. If in a compact (or even Baire) space X every dense set
is separable, then II does not have a winning strategy.

P r o o f. Suppose σ is a winning strategy for II. In the open family {σ〈C〉 :
C is open in X}, take a maximal disjoint subfamily C∅. Then

⋃ C∅ is dense
in X, hence separable, and so C∅ is countable.

Let C∅ = {σ〈Cn〉 : n ∈ ω}. Similarly, for each n ∈ ω a maximal
disjoint subfamily of {σ〈Cn, C〉 : C is open in X} has dense union in X,
and hence is countable: let C〈n〉 = {σ〈Cn, Cnm〉 : m ∈ ω} be such a
subfamily. Continue in this way, so that for each n ∈ ω and s ∈ nω,
Cs = {σ〈Cs|1, Cs|2, . . . , Cs, Cs∧〈m〉〉 : m ∈ ω} is a maximal subfamily of
{σ〈Cs|1, Cs|2, . . . , Cs, C〉 : C is open in X} whose union is dense in X. Since
X is Baire,

⋂
s∈<ωω

⋃ Cs is dense in X, hence separable; let {dn : n ∈ ω} be a
countable dense subset of

⋂
s∈<ωω

⋃ Cs. Let n0 ∈ ω be such that d0 ∈ σ〈Cn0〉;
in general, let nm ∈ ω be such that dm ∈ σ〈Cn0 , Cn0n1 , . . . , Cn0n1...nm〉. But
this defines a play of the game according to the strategy σ that II does not
win. Hence II has no winning strategy.
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We have the following implications for any compact space X:

every dense subset
is separable

↗ ←9
hereditarily separable → countable π-weight (?) ← 9 II has no w.s.

←9 ←9 ← 9

I has a w.s. ccc

Assuming MA, we have the following:

Theorem 2.2. (MA) If (X, τ) is ccc and π(X) < c, then II does not
have a winning strategy.

P r o o f. Like the last proof, we build countably many maximal disjoint
families Ct. Let B be a π-base with |B| < c. For each function f such that
dom f ∈ ω and rng f ⊂ τ , let Cf |i be a countable subset of τ such that
{σ〈f(0), . . . , f(i − 1), C〉 : C ∈ Cf |i} has dense union in X. Now define a
poset P = {f : dom f ∈ ω, and for each i ∈ dom f, f(i) ∈ Cf |i}. The order is
reverse inclusion. For each B ∈ B, the set DB = {f : there exists i ∈ dom f
such that B ∩ σ〈f(0), . . . , f(i)〉 6= ∅} is a dense subset of P . Since |B| < c,
there is a generic function h with dom h = ω and for any B ∈ B, there
is an n such that σ〈h(0), . . . , h(n)〉 ∩ B 6= ∅. But then player I wins the
play h(0), σ〈h(0)〉, h(1), σ〈h(0), h(1)〉, . . . , since

⋃
n<ω h(n) is dense in X,

contradicting the supposition that σ is a winning strategy for II.

Since the poset used in the above proof is countable, in fact the asser-
tion in Theorem 2.2 follows from the statement B(c): in the reals R, any
union of less than c many meager sets is meager. Recall that U(m) is the
statement that any set of size < c has measure zero; and d = c is the state-
ment that any dominating family in ωω must have size c. If we denote the
statement “every ccc space X with π(X) < c is not II-favorable” by NF (c),
the following is true.

Theorem 2.3.

B(c)→ NF (c) ←9 U(m)

←9
d = c

P r o o f. The implications follow from Theorems 2.2 and 1.2. (See the
Corollary of 1.2 and the comment on dominating families following it for
NF (c) ⇒ d = c.) The example where U(m) is true but NF (c) is false is
the model obtained by adding ω2 infinitely equal reals to a model of CH
(see Miller [M]). NF (c) is false because d = ω1. The second example is the
model obtained by adding ω1 random reals to a model of c = ω2, where
d = c is true but U(m) is false.
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Question 2.4. Does NF (c) imply B(c)?

As we know, there are not many techniques to show certain spaces are
not II-favorable. The following might be interesting.

Lemma 2.5. Suppose P is a notion of forcing with precaliber ω1 (i.e., for
any uncountable subset Q ⊂ P, there is an uncountable centered Q′ ⊂ Q),
and P adds a Cohen real. Then for any ccc space X in the ground model
M and any winning strategy σ of player II in M , σ is no longer a winning
strategy in MP.

The argument is essentially the same as the one presented in Theo-
rem 2.2. Since P has precaliber ω1, X remains ccc in the extension. The
Cohen real gives the play for I which defeats II’s strategy σ.

3. Games on trees. In the game on trees, in each round player II
chooses a node ≥ I’s choice, and I wins if and only if every node of the tree
is comparable to some choice of II’s.

Theorem 3.1. If T is an ω1-tree, then I has a winning strategy iff T
is the union of countably many branches.

P r o o f. It suffices to prove the “only if” part. Suppose I has a winning
strategy but T is not the union of countably many branches.

Let σ be a winning strategy of I. I plays σ∅ to start the game. If there
is only one branch through σ∅, let R0 = {r : r is comparable to σ∅} and
let S0 = {σ∅}. Otherwise, let α0 = min{α : |{r : r is a successor of σ∅ and
ht(r) = α}| > 1}, let R0 = {r : r is a successor of σ∅ and ht(r) = α0}. Let
S0 = Ta0+1, where Tα0+1 is all r ∈ T with ht(r) ≤ α0. In both cases, S0 is
countable.

For n ∈ ω, and rm ∈ Sm for each m ≤ n, we proceed similarly. If
there is only one branch through σ〈rm : m ≤ n〉, let R〈rm:m≤n〉 = {s : s is
comparable to σ〈rm : m ≤ n〉} = S〈rm:m≤n〉. Otherwise, let α〈rm:m≤n〉 =
min{α : |{s : s is a successor of σ〈rm : m ≤ n〉 and ht(s) = α}| > 1}, let
R〈rm:m≤n〉 = {s : s is a successor of σ〈rm : m ≤ n〉 and ht(s) = α〈rm:m≤n〉},
and let S〈rm:m≤n〉 = Tα〈rm:m≤n〉+1. Let Rn+1 =

⋃{R〈rm;m≤n〉: for each
m ≤ n, rm ∈ Rm} and Sn+1 =

⋃{S〈rm :m≤n〉: for m ≤ n, rm ∈ Rm}. Then
Sn+1 is countable.

Since
⋃
n<ω Sn is countable and T is not the union of countably many

branches, we may let t ∈ T − (
⋃
n<ω Sn ∪

⋃
n<ω Rn). Consider the following

play of the game. I starts by playing σ∅. If there is only one branch through
σ∅, II plays t0 = σ∅ ∈ S0; since t 6∈ R0, t is not comparable to t0. Otherwise,
since t 6∈ Tα0+1, there is a t0 ∈ R0 ⊂ S0 that is not comparable to t; let
II play such a t0. In both cases t0 ∈ S0. I must now play σ〈t0〉. If there is
only one branch through σ〈t0〉, II plays t1 = σ〈t0〉 ∈ S1; since t 6∈ R1, t
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is not comparable to t1. Otherwise, II plays a t1 ∈ R〈t0〉 ⊆ S1 that is not
comparable to t. Clearly, II can continue to play the game by choosing a
node that is not comparable to t, thus II defeats I’s strategy σ.

One can construct a Suslin tree from a ccc, nonseparable, linearly ordered
topological space in such a way that I wins in the space if and only if I wins
in the tree, and hence if X is a linearly ordered space, I has a winning
strategy in G(X) if and only if X is separable.

From Theorem 3.1 we can see that the game on any ever-branching ℵ1-
tree or on any ℵ1-Aronszajn tree is not I-favorable. The games on Suslin trees
are not II-favorable. Here we present a proof which leads to more information
concerning the game on trees. Let us call σ a stationary winning strategy if
σ depends only upon the last move of the opponent.

Theorem 3.2. X is ccc iff II has no stationary winning strategy.

P r o o f.⇒ Suppose X is ccc and σ is a stationary winning strategy for II.
Let {σ(Un) : n < ω} be a maximal pairwise disjoint subcollection of {σ(U) :
U is open in X}. Then II does not win the play U0, σ(U0), U1, σ(U1), . . . ,
and so σ is not a winning strategy.
⇐ See Theorem 1.1(ii).

The following lemma developed from Theorem 3.2, and is useful in uni-
fying some proofs of results that follow.

Lemma 3.3. Suppose P is a ccc poset. Suppose that for each countable
collection {Cn : n ∈ ω} of maximal antichains in P there is a countable
Q ⊂ P with the following property : for each p ∈ P there is a q ∈ Q such that
for each r ∈ ⋃n Cn, if r is compatible with q, then r is compatible with p.
Then II has no winning strategy.

P r o o f. Suppose P is as above, and σ is a winning strategy for II. Let
A∅ = {σ(pn) : n ∈ ω} be a maximal antichain of {σ(p) : p ∈ P}; note
{σ(pn) : n ∈ ω} is a maximal antichain of P. Similarly, for each n ∈ ω,
{σ(pn, p) : p ∈ P} contains a countable maximal antichain, say A〈n〉 =
{σ(pn, pn,m) : m ∈ ω}. Continue in this way, so that given s ∈ <ωω, As =
{σ(ps|1, ps|2, . . . , ps, ps∧〈m〉) : m ∈ ω} is a maximal antichain. Let Q be as in
the hypothesis for {As : s ∈ <ωω} = A. Let Q = {qn : n ∈ ω}. Let n0 ∈ ω
be such that σ(pn0) is compatible with q0; let s0 = 〈n0〉. In general, given
sm = 〈n0, . . . , nm〉, let nm+1 ∈ ω be such that σ(ps0 , . . . , psm , psm∧〈nm+1〉) is
compatible with qm+1. Since II wins the play ps0 , σ(ps0), ps1 , σ(ps0 , ps1), . . . ,
let p ∈ P be incompatible with each σ(ps0 , . . . , psm). We may let q ∈ Q be
such that for each r ∈ ⋃A, if r is compatible with q, then r is compatible
with p. As there is an m with σ(ps0 , . . . , psm) ∈ ⋃A compatible with q, it
is also compatible with p, a contradiction.
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Theorem 3.4. If T is an ω1-tree, then II has a winning strategy in
G(T ) iff T has an uncountable antichain.

P r o o f. Suppose T is an ω1-tree without an uncountable antichain. So
(T,≥) = P is ccc. We show P satisfies the hypothesis of Lemma 3.3. Suppose
A = {Cn : n ∈ ω} is a collection of maximal antichains in P. Let α < ω1 be
such that

⋃A ⊂ Tα. Let Q = Tα+1. Suppose p ∈ P. If p ∈ Q, let q = p. If
p 6∈ Q, let q be the predecessor of p of height α. Clearly if r ∈ ⋃A ⊂ Tα is
compatible with q, then r is compatible with p. From the lemma, II has no
winning strategy.

Corollary 3.5. If T is an ever-branching ω1-tree, i.e., for all t ∈ T ,
{s ∈ T : s > t} is not totally ordered , then II has no winning strategy iff T
is Suslin.

By extending the ideas of the above proof, we can construct an undeter-
mined game, i.e., a game in which neither I nor II has a winning strategy.

Example 3.6. We simply state the example as a game played on a poset,
since it is easy to translate it into games on a Boolean algebra or a topolog-
ical space. Let T be an Aronszajn tree, i.e., an ω1-tree in which all chains
(branches) are countable. Let P(T ) = {A ⊆ T : A is a finite antichain},
ordered by ⊇. Then P(T ) is the partial order for “specializing” T and is well
known to be ccc (see [T]).

We show P(T ) satisfies the hypothesis of Lemma 3.3, and so II has no
winning strategy. Suppose A = {Cn : n ∈ ω} is a collection of maximal
antichains in P(T ). Let α < ω1 be such that

⋃A ⊂ P(Tα). Let Q = P(Tα+1).
Suppose A ∈ P(T ). If A ∈ Q, then A itself has the desired property. If A 6∈ Q,
proceed as follows. For each p ∈ A \ Tα+1, let tp be the predecessor of p of
height α. Let B = [A∩Tα+1]∪{tp : p ∈ A \Tα+1}. Then B ∈ P(Tα+1) = Q,
and for R ∈ ⋃A, if R is compatible with B, then since R∪B is an antichain
and each element of R has height < α, it follows that R∪A is an antichain,
and hence R is compatible with A.

Now, suppose I has a winning strategy σ. Let α0 < ω1 be such that
σ∅ ⊂ Tα0 , and S0 = {σ(B) : B ∈ P(Tα0+1)}. Let α1 < ω1 be such that
α0 < α1 and

⋃
S0 ⊂ Tα1 , and let S1 = {σ(B0, B1) : B0 ∈ P(Ta0+1), B1 ∈

P(Ta1+1)}. In general, let αn < αn+1 < ω1 be such that
⋃
Sn ⊂ Tαn+1 and

Sn+1 = {σ(B0, B1, . . . , Bn+1): for each m ≤ n + 1, Bm ∈ P(Tαm+1)}. Let
α = supn αn, and let t ∈ T − Tα. We now show that there is a play of the
game in which {t} is incompatible with each choice of II, which means σ is
not a winning strategy. Note that for {t} to be incompatible with A ∈ P (T )
means that t is comparable with, but not equal to, some element of A.

I must first play σ∅. If t is comparable to an element of σ∅, II plays
B0 = σ∅. Otherwise, let t0 be the predecessor of t with ht(t0) = α0; let II



Open-open game 217

play B0 = σ∅ ∪ {t0}, an antichain in Tα0+1. So {t} is compatible with B0.
I must now play σ(B0) ⊂ Tα1 . If t is comparable to an element of σ(B0), II
plays B1 = σ(B0). Otherwise let t1 be the predecessor of t with ht(t1) = α1;
let II play B1 = σ(B0)∪ {t1}, an antichain in Tα1+1. So {t} is incompatible
with B1. I must now play σ(B0, B1) ⊂ Tα2 . Clearly, II can continue in such
a way as to defeat I’s strategy σ.

By extending some of the techniques presented so far, we may obtain
results for (ccc) Boolean algebras.

A Boolean algebra B is called ℵ0-distributive if for any sequence of parti-
tions (i.e., maximal antichains) Wi (i < ω) there is a common refinement W ,
i.e., a maximal antichain W such that for each i ∈ ω and each a ∈W there
is a b ∈Wi such that a ≤ b. For complete Boolean algebras, the above is just
one of its equivalent definitions. An algebra B is called weakly ℵ0-distributive
iff every f : ω → ω in M[G] is majorized by some g : ω → ω that is in M
(i.e., f(n) < g(n) for all n < ω). It is easy to see that every uncountable,
separative, σ-closed algebra is II-favorable. But for ℵ0-distributive algebras,
we have:

Theorem 3.7. For any ccc ℵ0-distributive algebra B, II has no winning
strategy.

P r o o f. Such an algebra satisfies the hypothesis of Lemma 3.3. For a
b ∈ B, we take q ∈W such that b and q are compatible. Suppose r ∈ ⋃nWn

is compatible with q. Let n be such that r ∈ Wn. Since W is a refinement
of Wn, we must have q ≤ r. But then clearly r and b are compatible.

Lemma 3.8. Let [b] denote the algebra generated by b ∈ B (i.e., [b] =
{u ∈ B : u ≤ b}, 1[b] = b, 0[b] = 0, and for each c ∈ [b],−c = b − c). Then
G(B) is I-favorable iff G([b]) is I-favorable for all b ∈ B − {0}.

P r o o f. ⇐ Trivial: let b = 1.
⇒ Suppose G(B) is I-favorable and let σ be a w.s. for I in G(B). Suppose

b ∈ B − {0}. Let B − {0} = {bα : α < κ}. A winning strategy σ′ for I in
G([b]) is obtained as follows. Let σ′∅ = σ∅ ∧ b if σ∅ ∧ b 6= 0. Otherwise,
let α0 = min{α : bα ≤ σ∅}, and let σ′∅ = σ〈bα0〉 ∧ b if σ〈bα0〉 ∧ b 6= 0.
Otherwise, let α1 = min{α : bα ≤ σ〈bα0〉}, and let σ′∅ = σ〈bα0 , bα1〉 ∧ b if
σ〈bα0 , bα1〉 ∧ b 6= ∅.

Otherwise define α2 similarly. Since σ is a w.s., this procedure is fi-
nite, i.e., there is an n0 such that σ〈bα0 , . . . , bαn0

〉 ∧ b 6= ∅, and so σ′∅ =
σ〈bα0 , . . . , bαn0

〉 ∧ b. Now suppose II’s first move in G([b]) is c0. Let c0 =
bαn0+1 . Let σ′〈c0〉 = σ〈bα0 , . . . , bαn0+1〉∧ b if σ〈bα0 , . . . , bαn0+1〉∧ b 6= ∅. Oth-
erwise let αn0+2 = min{α : bα ≤ σ〈bα0 , . . . , bαn0+1〉} and proceed as above.
Continuing in this way, the σ′ so defined is a w.s. for I in G([b]).
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Theorem 3.9. For any ccc weakly ℵ0-distributive B, I has a winning
strategy iff the atoms are dense. Thus, every atomless weakly ℵ0-distributive
algebra B is not I-favorable.

P r o o f. ⇐ is obvious, since the atoms then form a maximal (countable)
antichain. So we only need to show that if there is an a ∈ B such that no
atom b is smaller than a, then I has no winning strategy. By Lemma 3.8,
it suffices to show I has no winning strategy in the game G([a]). Without
loss of generality, assume B has no atoms. Suppose B is I-favorable. Then
{P ∈ [B]≤ω : P ⊂c B} contains a club C. We show C contains a nonatomic
p.o. Let P0 ∈ C. Since B is atomless, for each p ∈ B, let ap ∈ B be such
that 0 < ap < p. Let bp = p − ap 6= 0. Let P1 ∈ C be such that P0 ∪ {ap :
p ∈ P0} ∪ {bp : p ∈ P0} ⊂ P1. Given Pn, let Pn+1 ∈ C be such that
Pn ∪ {ap : p ∈ Pn} ∪ {bp : p ∈ Pn} ⊂ Pn+1. Let P =

⋃
n∈ω Pn ∈ C. Then P is

a nonatomic p.o., that is, for each p ∈ P there are q, r ∈ P (namely ap and bp)
such that q ≤ p, r ≤ p, and q⊥r. As P is countable and nonatomic, P yields
the same generic extension as Fn(ω, 2), the partial order for adding a Cohen
real (see [K], exercise VII C4). A standard density argument shows the
added real is not majorized by any ground model real. Since P is completely
embedded in B, B also adds this nonmajorized real, so B cannot be weakly
ℵo-distributive, a contradiction. So B is not I-favorable.

Von Neumann asked [Ma] whether every ccc weakly ℵ0-distributive com-
plete algebra is a measure algebra. Since every measure algebra is II-favora-
ble, we have the following “weak” question.

Question 3.10. Is it consistent that every ccc weakly ℵ0-distributive
algebra is II-favorable?

A Suslin algebra is a ccc, ℵ0-distributive, atomless complete Boolean
algebra. By Theorems 3.7 and 3.9, a Suslin algebra is neither I-favorable
nor II-favorable. In other words, the game played on a Suslin algebra is
undetermined.

4. More games. Consider the following game G1 on a Boolean alge-
bra B. Player I must first choose 0 ∈ B, then II chooses a partition (max-
imal antichain) C0. As a response, I chooses a member a1 in C0, then the
next move of II is a partition C1 again. Every time, I chooses a member
an+1 ∈ Cn. I wins iff

∑
n an = 1. Let G2 and G3 be similarly defined games,

where in G2 player II always chooses a dense (cofinal) set and in G3 player II
always chooses a predense set and I still chooses a member of II’s last choice.

Theorem 4.1. G is equivalent to Gi (i = 1, 2, 3).

P r o o f. First we show G is equivalent to G1. The proofs for G2, G3 are
similar. Let σ1 be a winning strategy for II1, i.e., the second player of the
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game G1. Now define a winning strategy σ for II. For I’s first move a0 in
the game G, in the partition C0, which is decided by σ1, take a member
c0 ∈ C0 with a0 ∧ c0 = b0 6= 0. Let C1 = σ1(0, C0, c0). In the next round, as
a response to I’s move a1, II chooses a member c1 ∈ C1 with c1∧a1 = b1 6= 0.
Clearly, since

∑
n cn 6= 1,

∑
n bn cannot be 1. On the other hand, let σ be a

winning strategy of II; we are going to define a winning strategy σ1 for II1,
as follows. Let B0 = {b : there is an a such that b = σ(a)}. Since B0 is dense
in B, take a partition C0 ⊂ B0. Then C0 will be σ1(0), the first move of II1.
For the next move a1 ∈ C0 of player I, in the game G1, let the first move
of I in the game G be a′0, where a1 = σ(a′0) and define b′0 = a1. Consider
the dense set B1 = {b ∈ B : there is an a such that b = σ(a′0, b

′
0, a)}. Take a

partition C1 ⊂ B1. Continue the play as above. Finally, if
∑
n b
′
n 6= 1, then∑

n an 6= 1 since b′n = an+1.
Now suppose τ1 is a winning strategy of I1, the first player in the game

G1. We claim that there is an a0 ∈ B such that for all b ≤ a0, there is a par-
tition W such that b = τ1(0,W ). Otherwise, B0 = {b : there is no partition
with W such that b = τ1(0,W )} is dense. Take a partition C0 ⊂ B0. Then
τ1(0, C0) ∈ B0 is a contradiction. Let such an a0 be the first move of I in the
game G. For any choice b0 ≤ a0 of II, let W0 be the corresponding partition
with b0 = τ1(0,W0). Now, by the same argument, there is an a1 ∈ B such
that for any b ≤ a1, there is a partition W with b = τ1(0,W0, b0,W ). Let
a1 be the next move of I. Clearly,

∑
bn = 1 by the fact that τ1 is a winning

strategy of I1.
Now, assume τ is a winning strategy for I. For any partition W0, let

a′0 ∈ W0 such that a′0 ∧ a0 = b0 6= 0 where a0 = τ(∅) is I’s first move.
Continue to choose such a′n for each partition Wn so that a′n ∧ an = bn 6= 0
where an = τ(a0, b0, . . . , an−1, bn−1). Obviously,

∑
a′n = 1 since

∑
bn = 1.

Let G4 be the following game on B: in each round, I plays a finite subset
An ⊂ B − {0} and II plays a finite subset Bn ⊂ B − {0} of the same size
as An such that for any a ∈ An, there exists b ∈ Bn with b ≤ a. I wins
if
∑
n

∑
Bn = 1. If we replace finite subsets by countable subsets, call the

new game G5.
It is easy to show that G is equivalent to G4, but we do not know the

following.

Question 4.2. Is G equivalent to G5?

For another equivalence, consider the following “forcing version” of G.
Let G6 be the following game. It starts by I choosing 0 and II choosing a
name ḟ(0) for an element of ω. Then I plays a number n1 ∈ ω, and II plays a
name ḟ(1). I wins if ° “there exists ṅ such that ḟ(ṅ) = g(ṅ)” where g ∈ ωω
and g(i) = ni+1. Clearly, II wins iff there is a condition q such that q ° “for
each ṅ, ḟ(ṅ) 6= ġ(ṅ)”. The game G6 is equivalent to G. Define the game G7
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by modifying G6 as follows: II wins iff there exists q such that q ° “for each
ṅ, ḟ(ṅ) > g(ṅ)”. The following question is open.

Question 4.3. Is G equivalent to G7?

The game G7 is equivalent to the game where in the game G1 we let
player I choose finitely many members of the partition played by II1. It also
should be noted that the name ḟ is not provided by player II in one play. So
it is different from saying that a new function can dominate all old functions.
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