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Cantor manifolds in the theory of transfinite dimension

by

Wojciech O l s z e w s k i (Warszawa)

Abstract. For every countable non-limit ordinal α we construct an α-dimensional
Cantor ind-manifold, i.e., a compact metrizable space Zα such that indZα = α, and no
closed subset L of Zα with indL less than the predecessor of α is a partition in Zα. An
α-dimensional Cantor Ind-manifold can be constructed similarly.

1. Introduction. Unless otherwise stated all spaces considered are metr-
izable and separable. Our terminology and notation follow [2] and [4] with
the exception of the boundary, closure, and interior of a subset A of a topo-
logical space X, which are denoted by bdA, clA, and intA, respectively.

We denote by I the unit closed interval, and by In the standard n-
dimensional cube, i.e., the Cartesian product of n copies of I. By an arc
we mean every space homeomorphic to I, and by an n-dimensional cube
every space homeomorphic to In; we identify every such space with In by a
“canonical” homeomorphism. This allows us to apply geometrical notions,
e.g., broken line or parallelism, to spaces homeomorphic to In. In the sequel,
we assume that “canonical” homeomorphisms are always defined in a natural
way, and they are not described; we will simply apply geometrical notions
to the cubes.

We denote by a∧b any arc with endpoints a and b, i.e., an arc J such that
h(0) = a and h(1) = b, where h : I → J is the “canonical” homeomorphism.

A partition in a space X between a pair of disjoint sets A and B is a
closed set L such that X − L = U ∪ V , where U and V are disjoint open
sets with A ⊆ U and B ⊆ V .

The small transfinite dimension ind and the large transfinite dimen-
sion Ind are the extension by transfinite induction of the classical Menger–
Urysohn dimension and the classical Brouwer–Čech dimension:

• indX = −1 as well as IndX = −1 means X = ∅,
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• indX ≤ α (resp. IndX ≤ α), where α is an ordinal, if and only if for
every x ∈ X and each closed set B ⊆ X such that x 6∈ B (resp. for every
pair A,B of disjoint closed subsets of X), there exists a partition L between
x and B (resp. a partition L between A and B) such that indL < α (resp.
IndL < α),
• indX is the smallest ordinal α with indX ≤ α if such an ordinal exists,

and indX =∞ otherwise,
• IndX is the smallest ordinal α with IndX ≤ α if such an ordinal

exists, and indX =∞ otherwise.

The transfinite dimension ind was first discussed by W. Hurewicz [6]
and the transfinite dimension Ind by Yu. M. Smirnov [12]; a comprehensive
survey of the topic is given by R. Engelking [3].

The small transfinite dimension of a space X at a point x does not exceed
an ordinal α (written briefly indxX ≤ α) if for each closed set B ⊆ X not
containing x there exists a partition L between x and B such that indL < α.
The small transfinite dimension of a spaceX at a point x, denoted by indxX,
is the smallest ordinal α such that indxX ≤ α if such an ordinal exists, and
∞ otherwise.

If X 6= ∅, then indX and IndX are either countable ordinals or equal to
infinity (see [6] and [12], or [3], Theorems 3.5 and 3.8). Obviously, indX ≤
IndX, but the reverse inequality does not hold; there exists a compact space
X such that indX < IndX (see [9]).

For a long time all known compact spaces X with indX = α ≥ ω0

had the property that indxX = α only for some distinguished points x;
B. A. Pasynkov asked whether there exist compact spaces X with indxX =
α for every x ∈ X, or even with a stronger property that X is an α-
dimensional Cantor manifold (see [1]).

1.1. Definition. Let α = β+1 be a non-limit ordinal. A compact metriz-
able space X such that indX = α (resp. IndX = α) is an α-dimensional
Cantor ind-manifold (resp. Ind-manifold) if no closed set L ⊆ X with
indL < β (resp. IndL < β) is a partition in X between any pair of
points.

For α = n < ω0, the above notions and the classical notion of a Cantor
manifold (see [2], Definition 1.9.5) are equivalent; the n-dimensional cube
In is an example of an α-dimensional Cantor manifold. Of course, every
α-dimensional Cantor ind-manifold has the property that indxX = α for
each x ∈ X. In [1], V. A. Chatyrko gave examples of a non-metrizable α-
dimensional ind-manifold and a non-metrizable α-dimensional Ind-manifold
for every non-limit ordinal α such that ω0 < α < ω1; he also constructed,
for every infinite α < ω1, a compact metrizable space Xα with indXα <∞,
and a compact metrizable space Yα with IndYα < ∞ such that indL ≥ α
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for every partition L in Xα between any pair of points, and IndL ≥ α for
every partition L in Yα between any pair of points.

In the present paper, we construct a metrizable α-dimensional Cantor
ind-manifold Zα for every non-limit infinite ordinal α < ω1. Slightly modify-
ing this construction, one can also define metrizable Cantor Ind-manifolds.
However, we will restrict the discussion to the small transfinite dimension,
and in the sequel “Cantor manifold” will mean “Cantor ind-manifold”.

Acknowledgements. The paper contains some of the results of my
Ph.D. thesis written under the supervision of Professor R. Engelking whom
I wish to express my thanks for his active interest in the preparation of the
thesis.

2. Henderson’s spaces. Yu. M. Smirnov defined a sequence {Sα :
α < ω1} of compact metrizable spaces with the property that IndSα = α
for every α < ω1 (see [12]). Slightly modifying his construction, D. W. Hen-
derson defined a sequence {Hα : α < ω1} of absolute retracts with the same
property (see [5]).

Let us recall the definitions of Sα and Hα.
We apply induction on α; we simultaneously distinguish a point pα ∈ Hα

and, for α > 0, a covering Cα of Hα by cubes of positive dimensions.
Let S0 = H0 = {p0} be the one-point space, S1 = H1 = I, p1 = 0, and

C1 = {I}. Assume that Sβ , Hβ , pβ , and Cβ are defined for every β < α.
If α = β+1 for some β, then set Sα = Sβ×I, Hα = Hβ×I, pα = (pβ , 0),

Cα = {C × I : C ∈ Cβ}.
If α is a limit ordinal, then let Sα be the one-point compactification of

the topological sum
⊕{Sβ : β < α}. In order to define Hα take a half-open

arc A′β with endpoint pβ such that Hβ ∩A′β = {pβ}, and set K ′β = Hβ ∪A′β
for every β < α. Let Hα be the one-point compactification of the topological
sum

⊕{K ′β : β < α}; let pα stand for the unique point of the remainder.
Set Aβ = A′β ∪ {pα} and Kβ = K ′β ∪ {pα} for β < α. Let

Cα = {Aβ : β < α} ∪
⋃
{Cβ : 0 < β < α} .

For simplicity of notation, we will identify the spaces Hn = In and
H0 × In, where H0 = {p0}.

The spaces Hω0 and Hω0+1 are exhibited in Fig. 2.1.
Observe that Sα is embeddable in Hα for every α < ω1, and that if

β < α, then Sβ is embeddable in Sα and Hβ is embeddable in Hα.
Henderson’s spaces play an important role in our considerations, whereas

Smirnov’s spaces will only be used in the proof of Theorem 2.1.
Both Henderson’s and Smirnov’s spaces are also a source of examples of

compact metrizable spaces with given small transfinite dimension.
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Fig. 2.1

Indeed, one proves that

IndX ≤ ω0 · indX for every hereditarily normal compact space X

(see [8]),

ind(X × I) ≤ indX + 1 for every metrizable space X

(see [13]).
From the theorems mentioned above and the easy equality

(2.1) indHλ = sup{indHα : α < λ} ,
where λ is any countable limit ordinal, it follows that for every ordinal
α < ω1, there exists an ordinal β ≥ α such that indHβ = α.

The least ordinal β with indHβ = α will be denoted by β(α). Note that
β(α) > α for some α (see [9]), and indHα is unknown for some α (see [3],
Problems 2.3 and 2.4). From (2.1) it follows immediately that

(2.2) if α is a non-limit ordinal, then so is β(α).

The remaining part of this section is devoted to some notions and results
concerning the spaces Hα.

Every ordinal α can be uniquely represented as the sum λ+ n of a limit
ordinal λ or λ = 0 and a natural number n. From the construction of Hα

it follows that Hα = Hλ × In. Let Bα denote the set {pλ} × In; we call it
the base of Hα. Sometimes, we will identify the base Bα and the cube In; in
particular, we will write Hα = Hλ×Bα. Thus for every ordinal α < ω1, the
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base Bα of Hα is a finite-dimensional cube, and it has positive dimension
whenever α is a non-limit ordinal.

In the sequel, we need the following two theorems. The first theorem for
ind is a consequence of a theorem of G. H. Toulmin ([13], or [3], Theorem
5.16), and for Ind it is a consequence of a theorem obtained independently by
M. Landau and A. R. Pears ([7] and [11], or [3], Theorem 5.17); the theorem
for Ind also follows from a theorem of B. T. Levshenko ([8], or [3], Theorem
5.15). The second theorem was established by G. H. Toulmin ([13]).

2.A. Theorem ([13], resp. [7] and [11]). If a hereditarily normal space
X can be represented as the union of closed subspaces A1 and A2 such that
indAi ≤ α ≥ ω0 (resp. IndAi ≤ α ≥ ω0) for i = 1, 2, and A1 ∩ A2 is
finite-dimensional , then indX ≤ α (resp. IndX ≤ α).

2.B. Theorem ([13]). If a hereditarily normal space X can be represented
as the union of closed subspaces A1 and A2 with the property that there is a
homeomorphism h : A1 → A2 such that f(x) = x for every x ∈ A1∩A2, then

indX = indA1 = indA2 .

2.1. Theorem. Let α = λ+ n, where λ is 0 or a countable limit ordinal
and n ≥ 1 is a natural number. For every partition K in Hα between any
pair of distinct points a, b ∈ Bα, we have

indK ≥ indHα − 1 and IndK ≥ λ+ (n− 1) .

P r o o f. As in the proof of Theorem 2.1 of [10] we can see that

(2.3) for every x ∈ Bα and each closed set F ⊆ Bα not containing x, there
exists a partition L in Hα between x and F such that indL ≤ indK.

We first prove that

(2.4) indxHα ≤ indK + 1 for every x ∈ Bα .
Let x ∈ Bα and let F ⊆ Hα be a closed set not containing x. Since

Hα = Bα for α < ω0, we can assume that α ≥ ω0. Let E = F ∩ Bα;
by (2.3), there exists a partition M in Hα between x and E such that
indM ≤ indK. Let U, V ⊆ Hα be disjoint open sets such that x ∈ U ,
E ⊆ V , and M = Hα − (U ∪ V ).

By construction, we have

Hα = Bα ∪
⋃
{(Kβ − {pλ})× In : β < λ} ;

from the definition of Hα it also follows that each closed subset of Hα disjoint
from Bα meets only a finite number of the sets (Kβ − {pλ})× In. Thus

[F ∩ (U ∪M)] ∩ [(Kβ − {pλ})× In] 6= ∅
only for finitely many β, say for β = β1, . . . , βk.
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Fig. 2.2

Let Li ⊆ Aβi × In, for i = 1, . . . , k, be a partition in Kβi between Bα
and [F ∩ (U ∪M)] ∩ [(Kβi − {pλ}) × In] (see Fig. 2.2, where k = 2); since
ind(Aβi × In) = n+ 1, we have indLi ≤ n+ 1.

It is easily seen that M ∪⋃∞i=1 Li contains a partition L in Hα between
x and E (see Fig. 2.2); by Theorem 2.A and monotonicity of ind, we have
indL ≤ indK.
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Thus the proof of (2.4) is concluded. Applying (2.4) we prove the first
inequality of our theorem by induction on α. For every α < ω0, the hypoth-
esis of the theorem is equivalent to (2.4). Assume, therefore, that α ≥ ω0;
that is, α = λ + n, where λ is a limit ordinal and n is a natural number.
Obviously, indK ≥ ω0. Assume the inequality holds for each β < α. By
(2.4) it suffices to show that indxHα ≤ indK + 1 for each x ∈ Hα −Bα.

Observe that K contains a partition in Hβ × In = Hβ+n between a pair
of distinct points of the base Bβ+n for all but a finite number of β < λ.
Thus, by the inductive assumption, indHβ+n ≤ indK + 1 for those β; since
indHν ≤ indHµ whenever ν ≤ µ, we have indHβ+n ≤ indK + 1 for all
β < λ. By Theorem 2.A, every x ∈ Hα − Bα has a neighbourhood U in
Hα with indU ≤ indK + 1, which completes the proof of the inequality
indHα ≤ indK + 1.

Just as the base Bα of Hα, one can define the base B′α of Sα (see [10]).
The inequality IndK ≥ λ+(n−1) follows from Theorem 2.1 of [10], because
there exists an embedding of Sα in Hα mapping B′α onto Bα.

2.2. Lemma. Let β > 0 be a countable ordinal. For every x ∈ Hβ and
each closed set E ⊆ Hβ not containing x, there exists a partition Y in Hβ

between x and E such that

(2.5) for every cube C ∈ Cβ , the set Y ∩C is the union of a finite number
of cubes of dimension less than that of C, each parallel to a proper
face of C; furthermore, if β = β(α) for some α, then indY < α.

P r o o f. For β < ω0 the lemma is obvious. Thus assume that β ≥ ω0.
Represent β as the sum λ+ n of a limit ordinal λ and a natural number n.

Let Hβ,k, k = 0, 1, . . . , n, be the space obtained by sticking the (k + 1)-
dimensional cube Cβ,k = Ik+1 to a k-dimensional face D of the base Bβ ⊆
Hβ along its k-dimensional face (see Fig. 2.3, where β = ω0 + 1 and k = 1).
Precisely, define Hβ,k to be the subspace of Hβ × I consisting of all (y, z)
such that either z = 0 or y ∈ D; let Cβ,k = Cβ ∪ {Cβ,k}. Observe that from
Theorem 2.A it follows that indHβ,k = indHβ .

We apply induction on β. Since Hβ ⊆ Hβ,k and Cβ ⊆ Cβ,k, it is sufficient
to prove the counterpart of the lemma for each Hβ,k, k = 0, 1, . . . , n, and its
covering Cβ,k.

Assume that λ = ω0 or λ > ω0 and the modified lemma holds for every
ordinal β′ = λ′ + n′ such that λ′ < λ. Fix k ∈ {1, . . . , n}. Then

Hβ,k = Hβ ∪ Cβ,k = (Hλ × In) ∪ Cβ,k
=
(⋃
{(Aγ ∪Hγ)× In : γ < λ}

)
∪ Cβ,k ,

Cβ,k ∩
⋃
{(Aγ ∪Hγ)× In : γ < λ} = D ,
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Fig. 2.3

and

[(Aγ ∪Hγ)× In] ∩ [(Aδ ∪Hδ)× In] = Bβ

for distinct γ, δ < λ (see Fig. 2.3).
Let x ∈ Hβ,k and let E ⊆ Hβ,k be a closed set not containing x. If

x 6∈ Bβ , then x ∈ Cβ,k−Bβ or x ∈ (Aγ∪Hγ)×In−Bβ for some γ < λ. Since
Cβ,k−Bβ and (Aγ∪Hγ)×In−Bβ are open subsets of Hβ,k, the existence of
a partition Y with the suitably modified property (2.5) is obvious whenever
x ∈ Cβ,k − Bβ or x ∈ (Aγ ∪ Hγ) × In − Bβ and γ < ω0, and it follows
from the inductive assumption if x ∈ (Aγ ∪ Hγ) × In − Bβ and γ ≥ ω0.
Obviously, we can assume that Y is contained either in Cβ,k − Bβ or in
(Aγ ∪Hγ)× In −Bβ ; thus indY < α for β = β(α).

Suppose now that x ∈ Bβ . Assume that β is a non-limit ordinal; for limit
β the proof is straightforward. Let Q ⊆ Bβ be an n-dimensional cube with
faces parallel to the faces of Bβ = In such that x ∈ intQ, where intQ stands
for the interior of Q in Bβ , and E ∩Q = ∅ (see Fig. 2.4, where β = ω0 + 1
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Fig. 2.4

and k = 1). It follows that E ∩ [(Aγ ∪Hγ) ×Q] 6= ∅ only for finitely many
γ < λ, say for γ = γ1, . . . , γm (in Fig. 2.4, m = 2). For i = 1, . . . ,m, take
rγi ∈ Aγi such that (pλ∧rγi × Q) ∩ E = ∅; recall that pλ is an endpoint of
Aγi , and pλ

∧rγi is the arc with endpoints pλ and rγi contained in Aγi .
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Let
Yi = {rγi} ×Q ∪ pλ∧rγi × bdQ

where bdQ is the boundary of Q in Bβ (see Fig. 2.4). Next, take r ∈ I such
that {(y, z) ∈ D × I : y ∈ Q and z ≤ r} ⊆ Cβ,k does not meet E, and set

Ym+1 = (Q ∩D)× {r} ∪ (bdQ ∩D)× [0, r]

(see Fig. 2.4). Let

Y0 =
(⋃
{Aγ ∪Hγ : γ < λ and γ 6= γ1, . . . , γm}

)
× bdQ ,

and Y =
⋃m+1
i=0 Yi (see Fig. 2.4).

It is easily seen that Y is a partition in Hβ,k between x and E with the
modified property (2.5).

It remains to show that if β = β(α) for some α, then indY < α. Let ν
stand for the predecessor of β = β(α). Since ind(

⋃m+1
i=1 Yi) < ω0, it remains

to verify that indY0 < α (see Theorem 2.A).
The set bdQ is homeomorphic either to the (n− 1)-dimensional sphere

or to the (n−1)-dimensional cube, and so it can be represented as the union
of subspaces B1 and B2 homeomorphic to the (n−1)-dimensional cube such
that there exists a homeomorphism f of B1 onto B2 with f(x) = x for every
x ∈ B1 ∩B2. For i = 1, 2, let

Ai =
(⋃
{Aγ ∪Hγ : γ < λ and γ 6= γ1, . . . , γm}

)
×Bi .

Then Y0 = A1 ∪ A2 and there exists a homeomorphism h : A1 → A2 such
that h(x) = x for every x ∈ A1 ∩A2; since A1 and A2 are homeomorphic to
a subspace of Hν , by Theorem 2.A, we have

indY0 = indA1 = indA2 = indHν < β

(see the definition of β(α)).

2.3. Lemma. Let J be a segment contained in an edge of the base Bβ ,
and E ⊆ Hβ a closed set such that E ∩J = ∅; let b1 and b2 be the endpoints
of J . Then there exist a closed set Y ⊆ Hβ with the property (2.5) and open
sets U, V ⊆ Hβ such that Y = Hβ − (U ∪ V ), J −{b1, b2} ⊆ U , E ⊆ V , and
for i = 1, 2, we have

bi ∈ U if bi is a vertex of the cube Bβ ,

bi ∈ Y otherwise;

furthermore, if β = β(α) for some α, then indY < α.

P r o o f. Let Q ⊆ Bβ be an n-dimensional cube with faces parallel to the
faces of Bβ and with the property that J is an edge of Q and E ∩ Q = ∅;
let bdQ stand for the boundary of Q in Bβ . A reasoning similar to that in
the proof of Lemma 2.2 shows that E ∩ [(Aγ ∪Hγ)×Q] 6= ∅ only for a finite
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number of γ < λ, say for γ1, . . . , γm. For i = 1, . . . ,m, take rγi ∈ Aγi such
that (pλ∧rγi ×Q) ∩ E = ∅. Let

Yi = {rγi} ×Q ∪ pλ∧rγi × bdQ for i = 1, . . . ,m,

Y0 =
(⋃
{Aγ ∪Hγ : γ < λ and γ 6= γ1, . . . , γm}

)
× bdQ,

and

Y =
m⋃

i=0

Yi

(see Fig. 2.5). Just as in the proof of Lemma 2.2 one can show that Y has
the required properties.

Fig. 2.5

3. Examples of Cantor ind-manifolds. For each non-limit ordinal
α = β + 1 such that ω0 ≤ α < ω1, we describe an α-dimensional Cantor
ind-manifold Zα. For the convenience of the reader some technical reasonings
showing that the construction is feasible are deferred to the Appendix.

First, we define an inverse sequence {Zn, rn+1
n } consisting of compact

metrizable spaces Zn and retractions rn+1
n ; simultaneously, we define count-

able coverings Dn of Zn by cubes with dimension greater than 1.
Let Z1 = Hβ(α) and D1 = Cβ(α) (see Section 2); recall that the covering

Cβ consists of cubes of positive dimension for every ordinal β, and so it
consists of cubes of dimension greater than 1 whenever β is a non-limit
ordinal. Suppose that we have already defined the space Zn and its covering
Dn. Let %n be any metric on Zn compatible with its topology. Assume
additionally that for k = 1, 2, . . . , there exists an arc Ln,k ⊆ Zn with the
following properties:

(3.1) %n(x, Ln,k) ≤ 1/k for every x ∈ Zn,
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Fig. 3.1

(3.2) Ln,k is contained in the union of a finite number of cubes belonging
to Dn,

(3.3) if J is a cube contained in a cube D ∈ Dn and parallel to a proper
face of D, then J ∩ Ln,k is finite.

For k = 1, 2, . . . , denote by Hn,k a copy of Henderson’s space Hβ(α)
and by In,k an arbitrary edge of Bβ(α) (see Section 2), and set Dn,k =
Cβ(α). Loosely speaking, in order to obtain Zn+1 we stick a copy Hn,k of
Henderson’s space to each arc Ln,k along the edge In,k in such a way that the
sets Hn,k− In,k are pairwise disjoint, and the space so obtained is compact,
i.e., Hn,k is contained in an arbitrarily small neighbourhood of Ln,k for
sufficiently large k’s (see Fig. 3.1). Strictly speaking, the space Zn+1 can be
defined as follows.

Let γ stand for the predecessor of β(α) (see (2.2)); then Hβ(α) = Hγ ×
I. Set Z ′n = Zn × {(pγ , pγ , . . .)} ⊂ Zn × (Hγ)ℵ0 , where pγ denotes the
distinguished point of Hγ (see Section 2). Next, let H ′n,k consist of all
(x, (ym)∞m=1) ∈ Zn×(Hγ)ℵ0 such that x ∈ Ln,k and ym = pγ for m 6= k. Put

Zn+1 = Z ′n ∪
∞⋃

k=1

H ′n,k .

Since Ln,k is an arc, Hn,k and H ′n,k are homeomorphic; obviously, so are
Zn and Z ′n. In the sequel, we identify Hn,k and H ′n,k as well as Zn and Z ′n.

Let Dn+1 = Dn ∪
⋃∞
k=1Dn,k and rn+1

n be the retraction of Zn+1 onto
Zn determined by the “orthogonal projections” of the spaces Hn,k onto the
edges In,k of their bases, i.e.,

rn+1
n ((x, (ym)∞m=1)) = x for (x, (ym)∞m=1) ∈ Zn+1 ⊆ Zn × (Hγ)ℵ0 .
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It is easy to see that Zn+1 is a closed subspace of Zn × (Hγ)ℵ0 , and so
it is a compact metrizable space, and Dn+1 is a countable covering of Zn+1

consisting of cubes with dimension greater than 1.
To complete our construction, we should check that for n = 1, 2, . . . and

any metric %n on Zn, there exist arcs Ln,k ⊆ Zn with properties (3.1)–(3.3);
in the Appendix we show that there exist arcs L1,k ⊆ Z1,k which have,
apart from (3.1)–(3.3), some additional properties, and if we assume that
there exist arcs Ln,k with these additional properties, then there exist arcs
Ln+1,k ⊆ Zn+1 with these properties.

Now, assume that the inverse sequence {Zn, rn+1
n } is defined.

Let Zα = lim←−{Zn, rn+1
n }; denote by rn the projection of Zα onto Zn.

Obviously, Zα is a compact metrizable space. Since each bonding mapping
rn+1
n is a retraction, we can assume that Zn ⊆ Zα and rn is a retraction for

every n = 1, 2, . . .
We now show that

(3.4) if K is a partition in Zα between any pair of distinct points, then
indK is not less than the predecessor of α.

Let U, V ⊆ Zα be disjoint open sets with K = Zα − (U ∪ V ). Take an n
such that

Zn ∩ U 6= ∅ 6= Zn ∩ V ;
then, by (3.1), Ln,k ∩ U 6= ∅ 6= Ln,k ∩ V for a k ∈ N, and thus K ∩Hn,k is
a partition in Hn,k between a pair of distinct points from In,k. By Theorem
2.1, ind(K ∩Hn,k) is not less than the predecessor of α and so is indK.

It remains to prove that

(3.5) indZα ≤ α .
To this end, we need the following technical lemma; the situation con-

cerned by the lemma is illustrated in Fig. 3.2.

3.1. Lemma. Let {Zn, rn+1
n } be a sequence of compact spaces such that

Zn ⊆ Zn+1 and rn+1
n is a retraction for every n ∈ N. Suppose Yn ⊆ Zn, n =

1, 2, . . . , are closed subspaces with

(3.6) Yn+1 = Yn ∪
⋃
{As : s ∈ Sn} ,

where

(3.7) As is closed and As − Yn is open in Yn+1,

(3.8) As ∩At ⊆ Yn for distinct s, t ∈ Sn,

and there is a natural number m such that :

(3.9) |As∩Yn| < ℵ0 for every s ∈ Sn, and |As∩Yn| > 1 only for a finite
number of s ∈ Sn provided n < m,
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Fig. 3.2

(3.10) |As ∩ Yn| = 1 for every s ∈ Sn provided n ≥ m,

(3.11) rn+1
n (As)=As∩Yn for any n∈N and s∈Sn such that |As∩Yn|=1.

Let Y = lim←−{Yn, rn+1
n |Yn+1, n ≥ m}. If indY1 ≤ γ and indAs ≤ γ for

every s ∈ ⋃∞n=1 Sn, then indY ≤ γ.

P r o o f. We first show by induction that

(3.12) indYn ≤ γ for every n ∈ N .
For n = 1, this is one of our assumptions. Assume (3.12) holds for an n; we
will prove it for n + 1. Let y ∈ Yn+1, and let F ⊆ Yn+1 be any closed set
not containing y.

If y ∈ As−Yn for some s ∈ Sn, then the existence of a partition between
y and F with small transfinite dimension less than γ follows from (3.7) and
the inequality indAs ≤ γ. Assume therefore that y ∈ Yn (see (3.6)).

Set Z =
⋃{As∩Yn : s ∈ Sn and |As∩Yn| > 1}−{y} (see Fig. 3.3); then

Z is finite by (3.9) and (3.10) (Z = ∅ whenever n ≥ m). By the inductive
assumption, there exists a partition K0 in Yn between y and (F ∩ Yn) ∪ Z
such that indK0 < γ (see Fig. 3.3); let U, V ⊆ Yn be disjoint open sets with
y ∈ U , (F ∩ Yn) ∪ Z ⊆ V , and K0 = Yn − (U ∪ V ).

Let s1, . . . , sj be all s ∈ Sn such that y ∈ As and |As ∩ Yn| > 1 (see
(3.9)). For i = 1, . . . , j, indAsi ≤ γ, and so there exists a partition Ki in
Asi between y and (F ∩ Asi) ∪ (Asi ∩ Yn − {y}) such that indKi < γ (see
Fig. 3.3, where j = 2).

We now show that

T = {s ∈ Sn : |As ∩ Yn| = 1, As ∩ Yn ⊆ U, and F ∩As 6= ∅}
is finite.

Indeed, suppose that T is infinite. For every s ∈ T , choose xs ∈ F ∩As;
since F ∩ U = ∅, we have xs ∈ As − Yn. Let x be an accumulation point of
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Fig. 3.3

{xs : s ∈ T}. From (3.6)–(3.8) it follows that x ∈ Yn ∩ F ⊆ V ; on the other
hand, since rn+1

n (xs) ∈ U for every s ∈ T (see (3.11)) and rn+1
n is a retraction

onto Yn, we have rn+1
n (x) = x ∈ U ∪K0, contrary to V ∩ (U ∪K0) = ∅.

Let sj+1, . . . , sp be all elements of T . For every i = j + 1, . . . , p, we have
indAsi ≤ γ, and so there exists a partition Ki in Asi between Asi ∩ Yn and
F ∩Asi such that indKi < γ (see Fig. 3.3, where p = 3).

It is easy to check that K =
⋃p
i=0Ki is a partition in Yn+1 between

y and F . The sets Ki, i = 0, 1, . . . , p, are compact; since K0 ⊆ Yn and
Ki ⊆ Asi − Yn for i = 1, . . . , p, they are pairwise disjoint (see (3.8)). Thus

indK ≤ max{indKi : i = 0, 1, . . . , p} < γ .

Therefore the proof of (3.12) is concluded. We are now in a position
to show that indY ≤ γ. Denote by rn the projection of Y onto Yn. Let
y ∈ Y , and F ⊆ Y a closed set not containing y. Take n ≥ m such that
rn(y) 6∈ rn(F ).

Since indYn ≤ γ (see (3.12)), there exists a partition Kn in Yn between
rn(y) and rn(F ) with indKn < γ; consider disjoint open sets Un, Vn ⊆ Yn
such that rn(y) ∈ Un, rn(F ) ⊆ Vn, and Kn = Yn − (Un ∪ Vn). Set

K = Kn, U = r−1
n (Un), V = r−1

n (Vn ∪Kn)−Kn .
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We prove that K is a partition in Y between y and F . Obviously, y ∈ U ,
F ⊆ V , U is open and K is closed in Y , and U ∩K = ∅ = V ∩K, U ∩V = ∅.
We only need to show that V is open in Y .

Take z ∈ V . If rn(z) ∈ Vn, then r−1
n (Vn) is a neighbourhood of z con-

taining in V . Thus assume that rn(z) ∈ Kn. Since z 6∈ Kn, we have z 6∈ Yn.
If rk+1(z) belonged to Yk for every k ≥ n, then z would belong to Yn.

Indeed, suppose that rk+1(z) ∈ Yk for k ≥ n. Then, in particular,
rn+1(z) ∈ Yn. Assuming that rk+1(z) ∈ Yn for some k ≥ n, we obtain
(recall that rk+2

k+1 is a retraction) rk+2(z) = rk+2
k+1(rk+2(z)) = rk+1(z) ∈ Yn.

Hence, by induction, rk(z) is in Yn for every k ≥ n, and so is z.
Thus rk+1(z) 6∈ Yk for some k ≥ n. Then by (3.6), rk+1(z) ∈ As − Yk

for some s ∈ Sk, and by (3.7), r−1
k+1(As − Yk) is open. We now show that

r−1
k+1(As − Yk) ⊆ V .

Indeed, since k ≥ n ≥ m, rk+1
k (As) is a one-point set (see (3.10) and

(3.11)); thus

rk+1
k (As) = {rk+1

k (rk+1(z))} = {rk(z)} ⊆ Kn .

Obviously, r−1
k+1(As − Yk) ∩Kn = ∅, and so r−1

k+1(As − Yk) ⊆ V .

Having proved the lemma, we can turn to the proof of inequality (3.5);
recall that β stands for the predecessor of α. Let z ∈ Zα, and F ⊆ Zα a
closed set not containing z. We prove that there exists a partition in Zα
between z and F of dimension not greater than β.

Take m such that rm(z) 6∈ rm(F ), and p ≤ m such that rm(z) ∈
Zp − Zp−1; we assume that Z0 = ∅, that is, if rm(z) ∈ Z1, then p = 1.
We shall define by induction for n = p, p + 1, . . . ,m a partition Yn in Zn
between rm(z) and rm(F ) ∩ Zn with the following property:

(3.13) for every cube D ∈ Dn the set D ∩ Yn is the union of a finite
number of cubes of dimension less than that of D, each parallel to
a proper face of D;

moreover, we will require indYp ≤ β. Simultaneously, we shall define sets Sn
and As for s ∈ Sn and n = p, p+ 1, . . . ,m− 1 satisfying (3.6)–(3.9), (3.11)
and

(3.14) indAs ≤ β for every s ∈ Sn .
Since Zp −Zp−1 is a neighbourhood of rm(z) homeomorphic to an open

subset of Hβ(α), the existence of a partition Yp with the required properties
follows from Lemma 2.2. Assume that we have defined a partition Yn with
the required properties for an n < m.

Let Un, Vn ⊆ Zn be open sets such that rm(z) ∈ Un, rm(F ) ∩ Zn ⊆ Vn
and Yn = Zn − (Un ∪ Vn). Set

Y ′n+1 = (rn+1
n )−1(Yn), U ′n+1 = (rn+1

n )−1(Un), V ′n+1 = (rn+1
n )−1(Vn) .
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Then Y ′n+1 is a partition in Zn+1 between rm(z) and rm(F ) ∩ Zn.
Since Ln,k has properties (3.2)–(3.3) and Yn satisfies (3.13),

(3.15) Yn ∩ Ln,k is finite for every k = 1, 2, . . .

Hence Y ′n+1 ∩ Hn,k is the union of a finite number of pairwise disjoint
sets homeomorphic to Hν , where β(α) = ν+1, for every k = 1, 2, . . . Denote
these sets by As, s ∈ Tk (see Fig. 3.4). Observe that As ∩ Yn is a one-point
set for every s ∈ Tk and k = 1, 2, . . .

Since rm(F ) ∩ (Un ∪ Yn) = ∅, it follows that rm(F ) ∩ (U ′n+1 ∪ Y ′n+1) ⊆⋃{Hn,k−Ln,k : k ∈ N}; furthermore, since the sets Hn,k−Ln,k are pairwise
disjoint and rm(F )∩ (U ′n+1 ∪Y ′n+1) is compact, there exists l ∈ N such that
rm(F ) ∩ (U ′n+1 ∪ Y ′n+1) ⊆ ⋃{Hn,k − Ln,k : k = 1, . . . , l}.

Fix k ≤ l, and an orientation of Ln,k. Then Ln,k =
⋃j
i=1 ai−1

∧ai, where
a0, a1, . . . , aj are ordered consistently with the orientation, and either

ai−1
∧ai ⊆ Un ∪ Yn, whereas ai

∧ai+1 ⊆ Vn ∪ Yn ,
or

ai−1
∧ai ⊆ Vn ∪ Yn, whereas ai

∧ai+1 ⊆ Un ∪ Yn
for i = 1, . . . , j − 1, that is, {a1, . . . , aj−1} is the set of all points at which
Ln,k goes across Yn; of course, a0 and aj are the endpoints of Ln,k (see
Fig. 3.4).

Let T ′k = {(i, k) : i = 1, . . . , j and ai−1
∧ai ⊆ Un ∪ Yn}. For every

s = (i, k) ∈ T ′k, the arc ai−1
∧ai is identified with a segment contained in

the edge In,k of the base of Hn,k = Hβ(α). Let As, Us, Vs stand for sets
Y, U, V with the properties described in Lemma 2.3 for J = ai−1

∧ai and
E = rm(F ) ∩Hn,k (see Fig. 3.4).

The set

Yn+1 =
(
Y ′n+1 −

⋃
{Hn,k − Ln,k : k ≤ l}

)
∪
⋃
{As : k ≤ l and s ∈ T ′k}

= Yn ∪
⋃
{As : k > l and s ∈ Tk} ∪

⋃
{As : k ≤ l and s ∈ T ′k}

is a partition in Zn+1 between rm(z) and rm(F ) ∩ Zn+1; indeed,

Un+1 =
(
U ′n+1 −

⋃
{Hn,k − Ln,k : k ≤ l}

)
∪
⋃
{Us : k ≤ l and s ∈ T ′k}

and

Vn+1 =
(
V ′n+1 −

⋃
{Hn,k − Ln,k : k ≤ l}

)
∪
⋃
{Vs : k ≤ l and s ∈ T ′k}

are open sets in Zn+1 such that rm(z) ∈ Un+1, rm(F ) ∩ Zn+1 ⊆ Vn+1,
Un+1 ∩ Vn+1 = ∅ and Yn+1 = Zn+1 − (Un+1 ∪ Vn+1).

Let Sn+1 =
⋃{T ′k : k ≤ l}∪⋃{Tk : k > l}. It is easy to check that our sets

have the required properties. Thus we have constructed inductively the sets
Yp, Yp+1, . . . , Ym and the sets Sn and As, s ∈ Sn, for n = p, p+ 1, . . . ,m−1.
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Fig. 3.4

We define Yn for n = m + 1,m + 2, . . . by induction setting Yn+1 =
(rn+1
n )−1(Yn) (see Fig. 3.5).

Let Sn,k = (Ln,k ∩ Yn)× {k} for n = m,m+ 1, . . . and k = 1, 2, . . . , and
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Fig. 3.5

next Sn =
⋃∞
k=1 Sn,k; let

As = (rn+1
n )−1(x) ∩Hn,k for s = (x, s) ∈ Sn,k (see Fig. 3.5).

One can check by induction that Yn satisfies (3.13) for n = m,
m + 1, . . . , and hence Yn ∩ Ln,k is finite for k = 1, 2, . . . (see (3.2) and
(3.3)). By construction and the above observation, it follows that (3.6)–
(3.8), (3.10)–(3.11) are also satisfied for n ≥ m; since each As, s ∈ Sn, is
homeomorphic to Henderson’s space Hν , where ν is the predecessor of β(α),
condition (3.14) is also satisfied (recall that indHµ < α for every µ < β(α),
see Section 2).

Since Ym is a partition in Zm between rm(z) and rm(F ), it follows that
r−1
m (Ym) is a partition in Zα between z and F . It is easily seen that r−1

m (Ym)
is homeomorphic to lim←−{Yn, rn+1

n |Yn+1, n ≥ m}; thus ind r−1
m (Ym) ≤ β by

Lemma 3.1.

4. Appendix. We complete the description of the construction of
{Zn, rn+1

n }. To wit, we show that there exist arcs L1,k in Z1 satisfying (3.1)–
(3.3), and having some additional properties: each L1,k is a D1-broken line
(see Definition 4.1). We also show that if each Ln,k ⊆ Zn is a Dn-broken
line, then there exist Dn+1-broken lines Ln+1,k ⊆ Zn+1 with properties
(3.1)–(3.3).

First, we have to prepare an auxiliary apparatus.

4.1. Definition. Let D be a countable covering of a topological space
X by cubes. An arc L is said to be a D-broken line in X if it is contained in
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the union of a finite number of cubes belonging to D, and for every D ∈ D,
L ∩D is the union of a finite number of segments and one-point sets.

4.2. Definition. Let D be a countable covering of a topological space
X by cubes of dimension greater than 1. We say that D has property (∗) if
the following conditions are satisfied:

(4.1) for every pair of distinct cubes C,D ∈ D, C ∩D is either a proper
face of C and a proper face of D, or is the union of a finite number
of segments and one-point sets contained either in a proper face of
C or in a proper face of D,

(4.2) for every pair of cubes C,D ∈ D, there exists a sequence of cubes
D1, . . . , Dn ∈ D such that C = D1, D = Dn, and |Di ∩Di+1| ≥ ℵ0

for i = 1, . . . , n− 1.

Note that (4.1) does not exclude that C ∩D = ∅ for some C,D ∈ D, and
it implies that if |C ∩D| ≥ ℵ0, then C ∩D contains a segment.

4.3. Lemma. For every countable non-limit ordinal α > 1, the covering
Cα of Hα has property (∗).

The proof is by induction on α.

4.4. Lemma. Let Y be a topological space. For k = 0, 1, . . . , let Xk be a
subspace of Y , Ek a covering of Xk by cubes with property (∗), and (Lk)∞k=1
a sequence of E0-broken lines in X0. Furthermore, suppose that

(4.3) X0∩Xk = Lk, and Xk∩Xm = Lk∩Lm for distinct k,m = 1, 2, . . . ,

(4.4) for every cube D ∈ Ek, Lk ∩ D is the union of a finite number of
segments and one-point sets contained in a proper face of D.

Then E =
⋃∞
k=0 Ek is a covering of X =

⋃∞
k=0Xk by cubes with property (∗).

P r o o f. Obviously, E is a countable covering of X by cubes of dimension
greater than 1. It is a simple matter to check that (4.1) is satisfied. We now
show that (4.2) is also satisfied.

Let C,D ∈ E . If C,D ∈ Ek for some k = 0, 1, . . . , then the existence of a
sequence D1, . . . , Dn with the required properties follows from the assump-
tion that Ek has property (∗); thus suppose that C ∈ Ek and D ∈ Em, where
k 6= m. We only consider the case when k,m > 0; if k = 0 or m = 0, the
reasoning is similar.

Since X0 ∩ Xk = Lk, and E0 and Ek are countable, |C ′ ∩ C ′′| ≥ ℵ0 for
some C ′ ∈ E0 and C ′′ ∈ Ek; by a similar argument, there exist D′ ∈ E0 and
D′′ ∈ Em such that |D′ ∩D′′| ≥ ℵ0. Let

• D1, . . . , Dj ∈ Ek be such that D1 = C, Dj = C ′′, and |Di ∩ Di+1| ≥ ℵ0

for i = 1, . . . , j − 1,



Cantor manifolds 59

• Dj+1, . . . , Dl ∈ E0 be such that Dj+1 = C ′, Dl = D′, and |Di∩Di+1| ≥ ℵ0

for i = j + 1, . . . , l − 1, and
• Dl+1, . . . , Dn ∈ Em be such that Dl+1 = D′′, Dn = D, and |Di ∩Di+1| ≥
ℵ0 for i = l + 1, . . . , n.

Then the sequence D1, . . . , Dn has the required properties.

4.5. Lemma. Let (X, %) be a totally bounded metric space, and D its
covering by cubes with property (∗). Then for every ε > 0, there exists a
D-broken line L in X with the following properties:

(4.5) for every x ∈ X, the distance between x and L is not greater than ε,
(4.6) if J is a cube contained in a cube D ∈ D, the dimension of J is less

than that of D, and J is parallel to a proper face of D, then L ∩D
is finite.

The proof of Lemma 4.5 will be preceded by two preliminary lemmas,
both concerning the situation described in Lemma 4.5.

4.6. Lemma. Let C ∈ D; suppose T ⊆ C is finite and x, y ∈ C−T . Then
for every δ > 0, there exists a broken line K ⊆ C − T satisfying (4.6) with
endpoints x and y and such that

(4.7) %(z,K) ≤ δ for every z ∈ C .
P r o o f. Since the dimension of C is not less than 2, it is a simple matter

to find a broken line K ⊆ C−T satisfying (4.7) with endpoints x and y (see
Fig. 4.1).

Fig. 4.1

Since D is countable and satisfies (4.1), C ∩ [
⋃

(D − {C})] is the union
of a number of faces of C, a countable number of segments (say F1, F2, . . .),
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and a countable number of one-point sets. In order to show that (4.6) is also
satisfied, it suffices to ensure that K is the union of segments K1, . . . ,Km

none of which is parallel either to one of F1, F2, . . . or to a proper face of C.
Indeed, for every cube J ⊆ C with dimension less than that of C and

parallel to a proper face of C, and each i = 1, . . . ,m, the set Ki ∩J consists
of at most one point; for every cube D 6= C, the set C ∩ D is, by (4.1),
either a proper face of C or the union of a finite number of the segments
F1, F2, . . . and a finite number of one-point sets, and thus D ∩Ki is finite
for each i = 1, . . . ,m.

4.7. Lemma. Let C ∈ D; suppose U is a connected open subset of C and
K1,K2 ⊆ C are disjoint broken lines such that Ki∩U 6= ∅ for i = 1, 2. Then
there exist disjoint broken lines M1,M2 ⊆ U both with property (4.6) and
such that

(4.8) Mj ∩ K1 = {cj} and Mj ∩ K2 = {dj}, where cj and dj are the
endpoints of Mj , for j = 1, 2.

P r o o f. Since U is a connected subset of a cube, there exists an arc
J ⊆ U such that J ∩ Ki 6= ∅ for i = 1, 2; without loss of generality we
can assume that J ∩ K1 = {x} and J ∩ K2 = {y}, where x and y stand

Fig. 4.2
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for the endpoints of J . Let J ⊆ V ⊆ U with V =
⋃m
i=1Bi, where each Bi

is an open ball and K1 ∩ V ⊆ B1 −
⋃m
k=2Bk, K2 ∩ V ⊆ Bm −

⋃m−1
k=1 Bk,

and Bk ∩ Bl = ∅ whenever |k − l| ≥ 2 (see Fig. 4.2). Since C is a cube of
dimension not less than 2, it is a simple matter to find disjoint broken lines
M1,M2 ⊆ V satisfying (4.8) (see Fig. 4.2).

Just as in the proof of Lemma 4.6 we can ensure that M1 and M2 satisfy
(4.6).

P r o o f o f L e m m a 4.5. Let S ⊆ X be a finite ε/2-dense set. Since D
is a countable covering of X and satisfies (4.2), there exist D1, . . . , Dm ∈ D,
not necessarily distinct, such that S ⊆ ⋃mi=1Di and |Di ∩ Di+1| ≥ ℵ0 for
i = 1, . . . ,m− 1; let Y =

⋃m
i=1Di. Then

(4.9) %(x, Y ) ≤ ε/2 for every x ∈ X .

We now show that for n = 1, . . . ,m, there exists a D-broken line Ln ⊆⋃n
i=1Di satisfying (4.6) and such that

(4.10) %(z, Ln) ≤ ε/2m−n+1 for every z ∈ ⋃ni=1Di,

(4.11) Ln intersects the geometrical interior of Di for i = 1, . . . , n.

We apply induction on n. The existence of an ε/2m-dense D-broken line
L1 ⊆ D1 satisfying (4.6) follows from Lemma 4.6, because D satisfies (4.1),
and thus each broken line contained in a cube of D is D-broken; since L1

cannot be contained in the geometrical boundary of D1 by (4.6), it follows
that (4.11) is satisfied. Assume that there exists a D-broken line Ln with
the required properties.

If Dn+1 = Di for some i = 1, . . . , n, then Ln+1 = Ln has the required
properties. Thus suppose that Dn+1 6= Di for i = 1, . . . , n.

Since |Dn ∩Dn+1| ≥ ℵ0, there exists a closed segment K1 ⊆ Dn ∩Dn+1

(see the remark following (4.2)). Without loss of generality we can assume
that K1 ∩Ln = ∅ (see Fig. 4.3). Indeed, Dn ∩Dn+1 is contained either in a
proper face of Dn or in a proper face of Dn+1 (see (4.1)); thus K1 ∩ Ln is
finite (see (4.6)), and we can consider a segment contained in K1 with the
required property instead of K1.

Take y in the intersection of Ln and the geometrical interior of Dn (see
(4.11)), and x ∈ K1. Consider an arc J joining x and y; without loss of
generality we can assume that J ∩ Ln = {y}. Let K2 be a broken line
containing y, contained in the intersection of Ln and the geometrical interior
of Dn, such that Ln −K2 intersects the geometrical interior of Dn and

(4.12) diamK2 ≤ ε/2m−n+1

(see Fig. 4.3). Consider a connected open set U ⊆ Dn containing J and such
that U ∩ Ln ⊆ K2.
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Fig. 4.3

By Lemma 4.7, there exist disjoint broken lines M1,M2 ⊆ U with prop-
erties (4.6) and (4.8) (see Fig. 4.3); since D satisfies (4.1), M1 and M2 are
D-broken lines.

Let T ′ = (Ln ∪M1 ∪M2)∩Dn+1; since Dn+1 ∩Di is contained either in
a proper face of Dn+1 or in a proper face of Di for i = 1, . . . , n (see (4.1))
and each of the D-broken lines Ln,M1,M2 ⊆

⋃n
i=1Di has property (4.6),

the set T ′ is finite. Let T = T ′−{c1, c2}, where c1 and c2 are the endpoints
of M1 and M2, respectively, belonging to K1.

By Lemma 4.6, there exists a broken line K ⊆ Dn+1−T with endpoints
c1 and c2 such that

(4.13) %(z,K) ≤ ε/2m−n for every z ∈ Dn+1

(see Fig. 4.3); since D satisfies (4.1), K is a D-broken line.
Let Ln+1 = [Ln − (d1

∧d2 − {d1, d2})] ∪M1 ∪M2 ∪K, where d1 and d2

are the endpoints of M1 and M2, respectively, belonging to K2 ⊆ Ln.
Obviously, Ln+1 ⊆

⋃n+1
i=1 Di. Since

{d1, d2} ⊆ [Ln − (d1
∧d2 − {d1, d2})] ∩ (M1 ∪M2)

⊆ Ln ∩ (M1 ∪M2) ∩ U ⊆ K2 ∩ (M1 ∪M2) = {d1, d2} ,
{c1, c2} ⊆ K ∩ ([Ln − (d1

∧d2 − {d1, d2})] ∪M1 ∪M2)

⊆ K ∩Dn+1 ∩ (Ln ∪M1 ∪M2) ⊆ K ∩ T ′ = {c1, c2}
(see (4.8)), and M1,M2 are disjoint, it follows that Ln+1 is a D-broken line.

By the inductive assumption, Ln has property (4.10); hence by (4.12)
and (4.13), so does Ln+1. Moreover, Ln+1 satisfies (4.6) since M1, M2, Ln,
and K do. It remains to show that Ln+1 has property (4.11).

The set Ln − K2 meets the geometrical interior of Dn, and so does
Ln − (d1

∧d2 − {d1, d2}) ⊆ Ln+1; since K has property (4.6), it meets the
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geometrical interior of Dn+1, and so does Ln+1. Consider the cube Di,
where i ∈ {1, . . . , n − 1}, and assume that Di 6= Dn. By the inductive
assumption, Ln meets the geometrical interior of Di. From (4.1) it follows
that the geometrical interiors of distinct cubes of a covering with property
(∗) are disjoint. Since K2 is contained in the geometrical interior of Dn

and so is d1
∧d2 ⊆ K2, d1

∧d2 does not intersect the geometrical interior of
Di. Thus Ln − (d1

∧d2 − {d1, d2}) ⊆ Ln+1 meets the geometrical interior
of Di.

This completes the inductive proof of the existence of the D-broken lines
L1, . . . , Lm. Obviously, L = Lm satisfies (4.5) and (4.6).

Now, we can complete the description of the construction of the sequence
{Zn, rn+1

n }. By Lemmas 4.3 and 4.5, there exist D1-broken lines L1,k in Z1

with properties (3.1)–(3.3). Assume that the arcs Ln,k ⊆ Zn which appear in
the construction are D-broken lines. Then by Lemmas 4.4 and 4.5 applied to
Y = Zn×(Hγ)ℵ0 , X0 = Zn, E0 = Dn, and Xk = Hn,k, Ek = Dn,k, Lk = Ln,k
for k = 1, 2, . . . , there exist E-broken lines with properties (4.5) and (4.6) in
the space X described in Lemma 4.4. Since X = Zn+1 and E = Dn+1, there
exist Dn+1-broken lines Ln+1,k in Zn+1 with properties (3.1)–(3.3).
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