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Hyperspaces of CW-complexes
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Bao-Lin Guo and Katsuro Sakai (Tsukuba)

Abstract. It is shown that the hyperspace of a connected CW-complex is an absolute
retract for stratifiable spaces, where the hyperspace is the space of non-empty compact
(connected) sets with the Vietoris topology.

0. Introduction. The class S of stratifiable spaces (Ms-spaces) con-
tains both metrizable spaces and CW-complexes and has many desirable
properties (cf. [Ce] and [Bo;]). Moreover, any CW-complex is an ANR(S)
(i.e., an absolute neighborhood retract for the class S) [Cay]. In [Cas],
it was shown that the space of continuous maps from a compactum to a
CW-complex with the compact-open topology is stratifiable, whence it is
an ANR(S) (cf. [Boa] or [Cag]). It is interesting to find hyperspaces which
are ANR(S)’s (cf. [Wo], [Ke] and [Ta]). By £(X), we denote the space of
non-empty compact sets in a space X with the Vietoris topology, i.e., the
topology generated by the sets

({Uy,....U) ={A€ R(X)|ACU,U...UU,, Vi, ANU; # 0},

where n € N and Uy,...,U, are open in X. Let €(X) denote the subspace
of R(X) consisting of compact connected sets. In this paper, we show the
following;:

MAIN THEOREM. For any connected CW-complex X, the hyperspaces
R(X) and €(X) are AR(S)’s. Hence for any CW-complez X, R(X) and
¢(X) are ANR(S)’s.

One should note that K(X) is not stratifiable even if X is stratifiable (cf.
[MK] and [Mi]). Although Mizokami [Mi] gave a sufficient condition on X
for R(X) to be stratifiable, this condition is not satisfied for any non-locally
compact CW-complex (see §3). For a simplicial complex K, let |K| denote
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the polyhedron of K, i.e., |K| = |J K with the weak (Whitehead) topology.
Since any connected CW-complex X can be embedded in |K| as a retract
for some connected simplicial complex K (cf. [Cay, Corollaire 2]), K(X) and
€(X) can be considered as retracts of K(|K|) and €(|K|), respectively. Thus
the main theorem reduces to the case X = |K]| for a connected simplicial
complex K. By the same reason, the main theorem is valid for a (connected)
ANR(S) X which can be embedded in a simplicial complex as a closed set.
Throughout the paper, we simply write R(|K|) = R(K) and €(|K|) = €(K)
for any simplicial complex K.

In the case where X is a separable CW-complex, it is easy to see that
R(X)isan ANR(S). In fact, let A> be the countable full simplicial complex.
Since |A®°| is the direct limit of n-simplexes A™, K(A>) is homeomorphic
to the direct limit of Hilbert cubes by [CP, Corollary 3.1], whence it is an
AR(S) by [Cag, Corollaire 4.2]. Since X can be embedded in |A*°| as a
closed set, it can be considered a neighborhood retract of |A®°|, whence
R(X) is a neighborhood retract of 8 A>). Therefore K(X) is an ANR(S).

1. A particular base of neighborhoods of A € &(K). Let K
be a simplicial complex. In this section, we construct a particular base of
neighborhoods of A € K(K) in imitation of [Cas]. For each o € K, the
barycenter, the boundary and the interior of o are denoted by &, 9o and 7,
respectively. Moreover, 7 < o (7 < o) means that 7 is a (proper) face of o.
The simplex with vertices vy, ..., v, is denoted by (vp,...,v,). We abuse
the notation (...), but it can be recognized from the context to stand for a
simplex or a basic open set of the Vietoris topology.

For each = € | K|, let (2(0))secx denote the barycentric coordinates of =
with respect to the barycentric subdivision Sd K. Let d be the barycentric
metric on |Sd K| (= |K]|) defined by

dz,y) =) |2(@) —y(@)],

ceK
and let Ny(z,e) denote the e-neighborhood of z € |K| with respect to d.

Let dy be the Hausdorff metric on R(K) induced by d, that is, for each
A,B € R(K),

di(A, B) = inf{e > 0| A C Ny(B,e) and B C Ny(A,¢)},

where

Ny(C.e) = | J Nalz,e) = {y € |K| | distq(y,C) < e}
zeC
One should not confuse Ny, (C,¢) with N4(C,e), where Ng, (C,e) denotes
the e-neighborhood of C' € K(K) with respect to dg. Note that these
metrics are continuous but they do not generate the topology of |K| nor the



Hyperspaces of CW-complexes 25

Vietoris topology of R(K) if K is infinite. For each finite subcomplex L of K,
they do.
For each 0 € K and 0 <t <1, let

ot)y={r€o|0<z(0)<t} and oftj]={rco|0<z(0)<t}.

Then each o(t) is an open neighborhood of do in ¢ and ot] = cl, o(t). Each
x € 0(1) =0\ {0} can be uniquely written as

=1 —2(0))r,(x) + z(0)o, ms(x)€ do.
Then for each 0 € K, we have a map 7, : o(1) — 0Jo, called the radial
projection.

1.1. LEMMA. Let 09 < ... < 0, = 0 € K. For each x € (0g,...,0,) N
o(1),
5@
To(z) =) ma and d(z, 7, (x)) = 22(5).

=0

Proof. The first equality follows from
x=(1—z(0p))ms(x) + 2(0,)0, = x(0;)0; .

Since 1 — #(5,) = Y7 (), we have
arto =5 (2L - 00)

=0
= x(an) nll’O" Tr\o r\o X n
[ a5 2 00 + (6 = 20(62) = 20(0)

Let L be a subcomplex of K. Then
W(L) ={z € |K| | Jo € L such that z(c) > 0}

is an open neighborhood of |L| in |K|. For each n € Z; = NU{0}, we write
Ké”) = LUK where K™ denotes the n-skeleton of K. Let

Wn(L) =W(L) N K" | ={z e W(L) | 2(5) =0, Vo e K\ K"},

Thus we have a tower |L|=Wo(L)CWi(L)C ... with W(L)=U,ez, Wa(L).
Since W,,(L) \ W,,_1(L) is covered by

Sp(L) ={o e K"\ K"V | on|L| # 0},

we can define a retraction pZ : W, (L) — W,,_1(L) by the radial projections,
i.e., pEloNW, (L) = 7s|ocNW,, (L) for each o € S,,(L). We define a retraction



26 B.-L. Guo and K. Sakai
7l W(L) — |L| by wt|W,,(L) = pl ... pE for each n € N. Let
S(L)= ] Sn(L)={o € K\L|on|L| #0}.
neN
For each ¢ € (0,1)%(%) we inductively define an open neighborhood W (L, ¢)
= Unez, Wa(L,¢) of |L] in |K| as follows: Wo(L, ) = |L| and
Wa(L,e) = [L| U J{o(e(0)) N (07) T (Wi (L,€)) | 0 € Su(L)}

(=120 Uto(e0) N (W1 (L,2)) | o € Su(L)})
For each m € N, let
L — (e € (0,1)5P) | Vo € S(L), e(0) < 2~ (mHdimoti)y
1.2. LEMMA. Let m € N and € € EL. Then dg(A,nE(A)) < 27™ for
any A€ R(W(L,¢)).

Proof. From compactness of A, A C W, (L,¢) for some n € N. Each
x € Wy (L,¢€) is contained in o(g(0)) for some o € S, (L), whence

d(z, pt(z)) = d(z, 1, (x)) = 22(6) < 2e(0) < 27 M+

Then d(z,pk(z)) < 27"+ for each z € A, whence dy(A,pk(A)) <
2= (m+n) — 9=m9o=n_ Note pL(A) C W,,_1(L,¢). By induction, we have

du(py ... ph(A), A) <du(pf ...p5_1(pF(A)), pE(A)) + du(ps (A), A)

<27y 27 (<27 .
i=1
Let A € R(K). By L(A), we denote the smallest subcomplex of K which

contains A. Since A is compact, L(A) is a finite subcomplex of K. For each
§>0and e € (0,1)5L(A) | we define

V(A,68,¢) = {B e RW(L(A),¢)) | du(x> M (B), A) < 5} .

Since (W (L(A),¢)) is an open neighborhood of A in £(K) and 7%(4) in-
duces a map from R(W(L(A),e)) to R(L(A)), V(A,0d,e) is an open neigh-
borhood of A in K(K).

1.3. LEMMA. For each A € R(K), {V(A,6,e) | 6 >0, € € (0,1)5L(AD}
is a neighborhood base of A in K(K).

Proof. In the proof, we simply write p,, = pﬁ(A). Let (Uy,...,Ug) be a
basic neighborhood of A in K(K). For each i = 1,...,k, choose z; € ANU;
and 6; > 0 so that cl Ng(z;,0;) N |L(A)| C U;. Let n > 0 be a Lebesgue
number for the open cover {U; N |L(A)| | i=1,...,k} of Ain |L(A)|, that
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is, each B C |L(A)| is contained in some U; N |L(A)]| if diamy B < n and
BNA=#(. Let

do = min{n/3,01,...,0k} > 0.
By compactness, we can choose more points z; € A, j = k+1,...,m, so
that

A | Nalzj, 60) N IL(A)].
j=1
For each j =1,...,m, let Vy(x;) = Ng(z;,d0) N |L(A)|. Then for each
J<k,
Cl‘/()(l‘]) C ClNd($j,6j) N |L(A)| C Uj .
Let i(j) = j for each j < k, while for each j > k, choose i(j) < k so that
clVo(z;) C el Ng(xj,m/3) N |L(A)| C Uy -

By induction on dimension, we can choose €;(c) € (0,1) for each o €

S(L(A)) so that
C(j,0) =7, (C(4,00)) Nale;j(0)] C Uy
where
C(j,00) = (90 Nl Vy(x;)) U|J{C(, ) | T € S(L(A)), T <o}

In the above, C(j,00) = do NclVy(z;) if dimo = 1. Thus we have ¢; €
(0,1)5EA) for each j = 1,...,m. We define ¢ € (0,1)5EA) by ¢(0) =
min<j<m €;(0). We inductively define
Va(z;) = {y € Wa(L(A),€) | pul(y) € Va—1(z;)}
= Wa(L(A),€) Ny (Va1 (z;) -
Then V(z;) = U,ez, Va(z;) is an open neighborhood of z; in |K|. Since

V(x;) C V() U{C(j,0) | o € S(L(A))} C Uy ,
we have V(z;) C Uy(;) for each i = 1,...,m. Hence
Ae <V($1), .. ,V(ﬂ?m)> C <U1, .. ,Uk> .

Let ¢ > 0 be a Lebesgue number for the open cover {Vy(z;) | i =
1,...,m} of Ain |L(A)| and let § = min{dp, (,1} > 0. We show that

V(A,d,e) C (V(z1),...,V(zm)) C (U1,...,Ux).
To this end, it suffices to show that for every n € Z,
(%) V(A,6,e) NR(W,(L(A),e)) C (V(x1),...,V(xm)).

To see (), let B € V(A,d,e) NR(Wy(L(A),¢e)). Then B C Wy(L(A),¢)
= |L(A)| and du(A,B) < 6. For any y € B, we have x € A such that
d(z,y) < § < ¢, whence {z,y} C V(x;) N|L(A)| for some ¢ = 1,...,m.
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Therefore B C |J;*, V(x;). For each i = 1,...,m, there is a y € B such
that d(z;,y) < 6 < &p. Then y € Vo(z;) C V(z;), whence BNV (x;) # 0.
Therefore B € (V(z1),...,V(zy)). Thus we have ().

Next assume (*,_1) and let B € V(A,d,¢) N R(W,,(L(A),e)). Since
B Cc W,,(L(A),¢e), we have p,(B) C W,,_1(L(A),¢e), whence

pn(B) € V(A,8,e) N R(W,—1(L(A),e)) C (V(x1),...,V(zm)) .
For each y e BC W,

(L
LmJ V(z;) N Wy—1(L Uan

(A),e), pn(y) is contained in some V,,_1(z;), since

Then it follows that y € V,(x;). Therefore B C J;~, V(z;). For each
1=1,...,m,
Pn(B) N Voo1(2:) = pn(B) NV (i) #
that is, p,(y) € Viu—1(z;) for somey € B C W, (L(A),¢). Theny € Vi(z) C
vV

V(z;), whence B N V(x;) # (. Therefore B € (V(z1),...,V(2y)). By
induction, (*,) holds for every n € Z,. m

1.4. LEMMA. Let Ag € R(K), 6 >0 and € € (0,1)3F(A0)),

(1) If AC V(Ap,d,¢) and A is compact, then |J A € V(Ay,0d,¢).

(2) For each A,B,C € R(K), if AC BC C and A,C € V(Ay,0,¢) then
B e V(Ag,d,e).

(3) If £ € EE) then V(Ag, 2™, €) C Ny, (Ag, 27™F1).

Proof. Since |JA is compact, (1) follows from the definition. By the
definition, (2) is also easily observed. Finally, (3) follows from Lemma 1.2. m

2. A stratification of R(K). Recall that a Tj-space X is stratifiable
if each open set U in X can be assigned a sequence (Uy,)nen of open sets in
X so that

(a) clU, C U,

(b) U = Upnen Un,
(¢c) U C V implies U,, C V,, for all n € N,

where (U, )nen is called a stratification of U and the correspondence U —
(Upn)nen is a stratification of X. In this section, we prove the following:

2.1. THEOREM. For any simplicial complex K, R(K) is stratifiable.
Proof. Forany A € R(K) and 0 € K with 0 N A # 0, let
a(A,o) =sup{z(0) |z € o NA}.
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Then «(A,0) = z() > 0 for some 2 € ¢ N A because o N A is compact and
z(o) =0 for all x € 9o N A. We define

a(A) = min{a(A,0) |c € L(A), cNA#£0}>0.
For each open set U in R(K) and n € N, let
U ={AcU|a(Ad) >27" e e EEM such that V(A,27", &) CcU}.
By Lemma 1.3, U = J,,cyU,,. For each A € U, let
Un(A) = | V(4,270 27%) e e g1 V(4,27 ) c U}

Then U, (A) C Ng, (A,27("FD) by Lemma 1.4(3). Thus we have open sets
Un = U acy Un(A) in R(K) and U = J,, e Uy 1t follows from the definition
that & C V implies U,, C V,, for any open sets U and V in K(K). We will
show that cli,, C U for each n € N. Then U — (Uy,)nen is a stratification.

Now let n € N and C € K(K) \ U be fixed. To see that C ¢ clUf,, it
suffices to construct a neighborhood V¢ of C in &(K) so that VeNU,(A4) =0
for all A € U),. Let Lc be the collection of all subcomplexes L of L(C)
such that L # L(C) and C C W(L). First, we show that if A € U], and
L(A) ¢ L then

Ny (C, 27Dy N1, (A) = 0.

To this end, since U, (A) C Ng, (A, 27"+ it suffices to show that
du(A,C) > 27". We consider three cases. In case L(A) ¢ L(C), we have
o € L(A)\ L(C) such that 0 N A # (). Choose z € 6N A so that z(5) =
a(A, o). Since 0 € L(C), y(o) =0 for all y € C. Then

du(A,C) > disty(x,C) = inf{d(x,y) |y € C}
>z(0)=a(A,o) > a(Ad) >27".
In case L(A) = L(C), since C C |L(A)| and C ¢ V(A,27",¢) for € € gL
such that V(A,27",¢) C U, it follows that dg(A,C) > 27". In case L(A) &
L(C)and C ¢ W(L(A)), we have x € C such that z(c) = 0 forall o € L(A),

whence
disty(x, A) > distq(x, |[L(A)]) = 2,
which implies dg(A,C) > 2.
Next, we construct a neighborhood Vp, of C' in R(K) for each L € L so
that if A € Y], and L(A) = L then V;, N, (A) = (). Then, since L is finite,

Vo= () VinNa,(C,27D)
LeLc
is the desired neighborhood. (In case Lo = ), Vo = Ng,, (C,2~ (1))

Now let L € L, that is, L ¢ L(C) and C C W(L). Since w¥ induces
a map from KR(W (L)) to R(L), C has a neighborhood V, in R(W (L)) such
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that 7%(B) € Ny, (7%(C),2="*V) for all B € V,. For each i € N, define
mf s W(L) — Wi(L) by nf|W;(L) = pfy...pF for each j > i. Since

L ¢ L(C) and C C W(L), we have o € S(L) such that ¢ N C # § and
dimo = dim(L(C) \ L), whence 7k _(C) = C. Let

{01, som} = {0 € S(L) | ¢ N7 o (C) # 0}
Foreachi=1,...,m, let k; = dimo; and
t; =inf{t > 0|} (C)No; Coy(t)} > 0.

Then V] = (Wi, (L), 0; \ 05[5ti]) is a neighborhood of 7f (C) in &(Wy, (L)),
whence C has a neighborhood V; in K(W (L)) such that for each B € V;,
mF (B) € V], that is, mf (B)No; ¢ o3[5ti]. Then Vi, = (2 V; is the desired
neighborhood of C.

In fact, let A € U/, with L(A) = L and ¢ € £L such that V(4,27 ",¢) C
U. Then C ¢ V(A,27"¢) since C € U. In case du(A,75(C)) > 27", it
follows that for each B € Vi, C Vg,

du(A, 7" (B)) > du(A,7"(C)) — du(x"(B), 7" (C))
> 27" — 9=+l 5 9-(n+2)

which implies B ¢ V(A,27("+2) 272¢). In case du(A, 75 (C)) < 27", we
have C ¢ W(L,¢), whence 71(C) ¢ W;(L,¢) for some i € N. Let

k=min{i € N | 75(C) ¢ Wi(L,e)}

and choose o € Si(L) so that 7£(C) No ¢ o(e(c)). Then o = o; for
some i = 1,...,m, whence k = k; and t; > ¢(0;). For each B € Vi, C V;,
mh(B)Noy ¢ oi(3ti), whence T (B) ¢ Wy, (L,27 '), so B ¢ W(L,27"e).
Then B ¢ V(A,2~("+2) 272¢), Therefore Vi NU,(A) = 0. =

3. CW-complexes have no o-CF quasi-base. In [Mi], Mizokami
gave a condition for a stratifiable space X so that K(X) is stratifiable. In
this section, we show that non-locally compact CW-complexes do not satisfy
this condition. Let A be a family of subsets of a space X. Recall that A
is closure preserving in X if cl|UB = |J{clB | B € B} for any subfamily
B C A. Moreover, A is o-closure preserving in X if A = J,,c An, Where
each A, is closure preserving in X [Ce]. It was proved independently by
Gruenhage [Gr| and Junnila [Ju] that a regular space X is stratifiable if and
only if X has a o-closure preserving quasi-base, where a quasi-base of X is
a family B of (not necessarily open) subsets of X such that for each z € X,
{B € B|x € int B} is a neighborhood base of z in X. We say that A is finite
on compact sets (CF) in X if {ANC | A € A} is finite for each compact set
C in X [Mi]. Finally, Ais o-CF in X if A=, yAn, where each A, is
CF in X [Mi].

neN
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The following is shown by Mizokami [Mi, Theorem 4.5]:

3.1. THEOREM. Let X be regular. Then R(X) is stratifiable if X has a
quasi-base B = |, oy Bn consisting of closed sets such that each B, is CF
and closure preserving in X.

Note that if B is a quasi-base for a regular space X then {clB|B € B}
is also a quasi-base for X. We show the following:

3.2. PROPOSITION. Any non-locally compact CW-complex X has no o-CF
quasi-base consisting of closed sets.

Proof. From non-local compactness, X contains the cone C' of N with
vertex v, i.e., C = (N xI)/(Nx {0}) and v = N x {0} € C. Thus it suffices
to show that C' has no o-CF quasi-base consisting of closed sets.

Assume that C has a quasi-base B = |J,,c By consisting of closed sets
such that each B,, is CF in C. Let ¢ : N x I — C be the quotient map and
set I, = q({n} x I) for each n € N. Then each {BN1I, |B € B,} is finite.
Hence for each n € N, v has a neighborhood U,, in I,, such that BNI,, ¢ U,
for all B € B, with v € int B. Then U = |J,,cy Un is a neighborhood of v
in C. Since B is a quasi-base for C, there exists B € B such that v € B C U.
Then B € B,, for some n € N, whence BNI, c UNI, = U,. This is a
contradiction. m

4. Cauty’s test space Z(X). Let X be a stratifiable space. In [Cay],
Cauty constructed a space Z(X) and showed that X is an AR(S) (resp.
an ANR(S)) if and only if X is a retract (resp. a neighborhood retract)
of Z(X). Let F(X) denote the full simplicial complex with X the set of
vertices (i.e., X = F(X)(®). Recall that |F(X)| has the weak topology. The
space Z(X) is defined as the space |F'(X)| with the topology generated by
open sets W in |F(X)| such that

(%) WnNnXisopenin X and [F(WNX)| CW.

The second condition of (%) means that each 7 € F(X) is contained in W
if all vertices of 7 are contained in W N X. For each A C X, Z(A) is a
subspace of Z(X) and

ZX)\ZA) ={(1-t)z+ty|lz e Z(X\A), ye Z(A), 0 <t <1},
whence if A is closed in X then Z(A) is closed in Z(X). Each map f: X —
Y induces a map f : Z(X) — Z(Y') which is simplicial with respect to F(X)
and F(Y). Observe that f(Z(X)) = Z(f(X)), f(Z(X)\X) € Z(Y)\Y. For
eachn € Z,, let Z,(X) = |F(X)™)|, a subspace of Z(X). Then Zy(X) = X
and Z(X) = U,ez, Zn(X).

For each A C X, F(A) is a subcomplex of F'(X). Here using different
notations, we write W(F(A)) = M(A), S(F(A)) = T(A), W,(F(A)) =
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=T,(A) for each n € Z:
) € Z(X) | 3r € F(A) such that z(T) > 0},
) € F(X)\F(A) | TnA#D},
My (A) = Z(A) U (M(A) N Zn (X)),
) =T(A) NFX)™\ FX)0Y.
1

M(Aje)= | Ma(4,e),

nEZy
where My(A,e) = Z(A) = |F(A)| and
M, (A,e) =Z(A)U U{T(EI(T)) N (Mu_1(A,€)) | 7€ T (A)}
for each n € N. Then M(A,e) N X = A. For any open set U in X, M (U, ¢)
is an open set in Z(X).
4.1. LEMMA. Let N'(x) be an open neighborhood base of x in X. Then
{M(U,e) |U € N(z),e € (0,1)"}
is a neighborhood base of x in Z(X).

Proof. As observed above, M(U,¢) is an open neighborhood of x in
Z(X) for each U € N(x) and ¢ € (0,1)7W). Let W be an open set in
|F(X)| satisfying (*) and 2 € W. Since W N X is an open neighborhood of
zin X, W N X contains some U € N(x). Then Z(U) C Z(WNX)C W.
Let Cr =7 forall 7 € F(U) and C; = 0 for all 7 € F(X \ U). By induction
on dimension, we can choose £(7) € (0,1) for each 7 € T'(U) so that

Cr = w71 (Cor) N TlE(R)] € W AT,

where Cyp, = |J C.s. Thus we have € € (0,1)T() such that

T'<T

MUye czZU)u |J C,cW.n

TeT(U)

Let p, = pA : M,,(A) — M,,_1(A) be the retraction defined by the radial
projections and 74 : M(A) — Z(A) the retraction defined by 74|M, (A) =
p1 . ..py for each n € N. Consider M,,(A)’s and M (A) as subspaces of Z(X).
Then it is easy to see that the retractions are continuous.

5. A retraction of Z(8(K)) onto K(K). The main theorem implies
the following:

5.1. THEOREM. For any connected simplicial compler K, there exists a
retractionr : Z(R(K)) — R(K) such that r(Z(€(K))) = €(K). Hence R(K)
and €(K) are AR(S)’s.
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In the proof, we first construct a retraction ry : Z;(R(K)) — R(K) and
then extend r; to r : Z(R(K)) — R(K). To construct 1, we introduce
several notations. Let

M= {{4,B) € F(R(K)Y | A # B, du(A, B) < 1/2}

For each (A, B) € 'H, we define C(A, B) € R(K) so that AUB C C(A, B)
and each component of C'(A, B) meets both A and B. Let n = dim L(AUB).
By downward induction, we define L;, ¢* (: = 0,1,...,n) and R;, ¢; (i =
1,...,n) as follows: L, = L(AU B), ¢ =id and
Ri={oeL;|dimo=i, VreL;, o¢7, cNg'(AUB) Co[27+2]},
¢ |Li\ Ri|U | o[270F?] — |Li \ Ry|
ogER;
is the retraction defined by
¢lo[270?] = m,|o[27F2)]  for each o € Ry,
¢'1=¢...qu]AUB and L;_; =L(¢g(AUB)).
Observe that ¢ N ¢*(AU B) # 0 for each 0 € R;. Next we define 7 :
U;L:l R; — (Oa 1) by
n(e)=inf{t >0| ¢’ (AUB)No Co(t)} >0 ifoceR;.
Now we inductively define N; (i =0,1,...,n) as follows: Ny = |Lg| and

N;=N; 1 U U (qz‘_l(Ni—l) Noln(a)]).

ceR;

Finally, we define
C(A,B) = | {C € ¢(N,,) | diam, C < 2du(A, B), CN(AUB) # 0} .

5.2. LEMMA. For each (A, B) € H, each component C' of C(A, B) meets
both A and B.

Proof. Since C meets at least one of A and B, we may assume that
ANC # () and show that BN C # 0. Let « € AN C. Then we have
y € B such that d(z,y) < du(A, B) < 1/2. Since x,y € |L,| = |Sd L,|, we
have 09 < ... < 0y, € L, and 0() < ... < 0}, € L,, such that dimo; = ¢,
dim o’ = j,

~

z € (00,...,0m) and Y E (Gh,...,0m) -

Let k = max{i|o; € Lo} > 0. Then (0y,...,0%) N {(F0,..., 00, # 0. In
fact, if k& = m, this follows from d(z,y) < 1/2. If k < m, then o, € R,,
and z(0,,) < n(om) since z € N,, \ Ny. For each j = k+1,...,m, by using
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Lemma 1.1 inductively, we have

G (®) = g5 .. qm(x) = ’

Then for each j=k+1,...,m—1

z(05) | »
1= (2(0j41) + ...+ 2(0m)) <n(oj) <2 (7+2)

because ¢jt1 ...qm(x) € 0;(n(c;)). By Lemma 1.1,

d(z, g (x)) = d(, grt1 - - gm (2))

< d(@,qm (@) + ...+ d(qer2 - - Gm (@), Gov1 - - Gm (@)

<om(mHl) o (k42 9=k < q/9.
Since ¢;*(z) € (00, ...,0k) C 0 and
(g (z),y) < d(z,y) +d(z, ;" (x)) <1/2+1/2=1,

we have (0, ...,0%) N (TG, ..., 00 # 0.
Now we write

~

(Fore o B = (Bov.r o G) N (Gl 5

where 79 < ... < 7. Then 7y € Lg since 19 < 0i. We define z € (7o, ...

by
2(0) = min{z(0),y(0)} for each o € K\ {79},
!

2(R) =1-Y 2(7).
i=1
Then (x, z) C (G0, ...,0m) and diamg(z, z) < 2dy(A, B) because

l
d(w,z) = |2(7o) = 2(Ro)[ + Y _|=(7) — =)+ Y «(@)

=1 7T w3l
l
=Y w@ =Y @[+ Y E RN+ Y a(@)
T F£To =1 i=1 TiFT0,5Tl

i=1 TiFET0,- Tl
l

<2 Y lGE) -y@E+ > =@+ Y (@)
i=1 TiFETQy Tl O ATy T

= 2d(z,y) < 2du(A, B).
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For each t € I, let xy = (1 — t)z + tz. Then
24(0) = (1 —t)z(0) +tz(o) < x(o) foreachoe K\ {mn}.
Hence z4(6,,) < n(os,). For each j = k+ 1,...,m, by using Lemma 1.1
inductively, we have
j—1

. B xt(az> =,
qj,l(l’t) = ; 1 — (xt(gj) +...4+ xt(gm))al .

Then foreach j=k+1,...,m—1,
©(6)) ) v(@))

whence ¢} (x;) € 0j(n(0;)). On the other hand, ¢;*(z;) € ox C No C Ny.
By induction, q;”(xt) € Nj for each j > k, so 2, € N,, C N,. Thus
(x,z) C Np.

Similarly we have diamgy(y, z) < 2dy(A, B) and (y,z) C N,,. Therefore
(x,z) U (y,z) C C(A, B), whence (z,z) U (y,z) C C, which implies BN C
#0. m

By the definition of C(A, B) and the above lemma, di(A4,C(A, B)) <
4du(A, B) and dg(B,C(A, B)) < 4du(A, B) for each A, B € H.

5.3. LEMMA. Let Ay € &(K) and e € E59). If A, B € V(Ag, 2-(m+5),
27%¢) and A # B, then (A, B) € H and C{A,B) € V (4o, 2™,¢).

Proof. Since 275 € 571;;(_;450), we have V(Ag, 2~ (M9 275¢) € Ny, (Ao,

2~ (m+4)) by Lemma 1.4(3). Then
dH(A, B) < dH(A,Ao) + dH(B,A()) < 2—(m+3) < 1/2,

whence (A, B) € H and dy (A, C(A, B)) < 4dy (A, B) < 2~ (m+1),

Let dimL(A U B) = n. We use the notations from the definition of
L(Ao)

7 <n(oj),

C(A, B) and simply write p; =p; and pI' = piy1...pn (P} =id). Then
Ly = L(AUB) C K}, and A, B C C(A,B) C |Ly,| C K}, )| Since

A, B € V(Ag,27m+5) 275¢) we have p? (AU B) C Wi(L(Ag),2 ). First
note that

Prl(AUB)\ [L(Ag)| =id = g} (AU B) \ |L(Ap)| .
Moreover, S, (L(Ao)) = R, \ L(Ap). In fact, for each o € S,,(L(Ap)), we
have o ¢ L(Ap) and
(AUB) N o C 0(277(0)) € o(270"0) € 2=+,

whence 0 € R, \ L(Ap). Conversely, for each 0 € R,, \ L(Ap), we have
(AUB)Nc # 0 and AUB C W(L(Ap)), whence o N |L(Ag)| # 0, that is,
o c Sn(L(Ao))
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Assume that
pi|(AUB) \ |[L(Ao)| = ¢;'|(AU B) \ |L(Ao)|
and Sz(L(Ao)) = Rz \ L(Ao) Then
pi (AU B) \ [L(Ao)[) = ¢ (AU B) \ |L(Ao)]) C |Lil,
whence it follows that
pilpi (AU B) \ [L(Ao)]) = ¢ilg;" (AU B) \ [L(Ao)]) -
Since p' | = p;p}’ and ¢}* | = ¢;q}', we have
pit1|(AUB) \ [L(Ao)| = ¢i* 1 [(AU B) \ |L(Ao)| .
Since ¢ ;((AU B) N |L(Ap)|) C |L(Ap)|, it follows that
q?_l(A U B) C p?_l(A U B) U ‘L(Ao)’ C Wl;l(L(Ao), 2_58) .
Then for each o € S;_1(L(Ap)), we have o ¢ L(Ap) and
@' ((AUB)No C o(27%(0)) C o(2-mFiH+9)) ¢ g[27 Y]

whence ¢ € R;_1 \ L(Ap). Conversely, for each ¢ € R;_; \ L(Ay),
q" (AUB)NG # 0 and ¢! ;(AUB) C W(L(Ayp)), whence o N|L(Ap)| # 0,
that iS7 S Si_l(L(Ao)). Hence Sz_l(L(AO)) == Ri—l \L(Ao)

By induction, we have

pi [(AUB)\ |L(Ao)| = ¢i'[(AU B) \ |L(Ao)]
and S;(L(Ap)) = R; \ L(Ap) for each i =1,...,n. It follows that

Lo=1L,\ U R; C Ly \ U S;(L(Ap)) = L(Ay).

Moreover, for each o € S;(L(Ao)) = R; \ L(Aop),
@ (AUB)No=pl(AUB)No C o(27%(0)),
which implies 7(0) < 27%¢(0) < 27%e(0). It follows that
C(A,B) C N,, C W(L(Ap),2 %),
that is, C{A, B) € R(W(L(Ap),2 %)) C KW (L(Ap),e)). Since 27%¢ €

Eﬁl(ﬁf) , we obtain

du (A0 (C(A, B)), C(A, B)) < 27 (m+4)
by Lemma 1.2. Thus we have
du(Ag, ¥ A0 (C(A, B))) < du(Ag, A) + dy (A, C(A, B))
+ du(C(A, B), w40 (C(A, B)))
< 2=(m+d) 4 o=(mtl) 4 o=(mtd) L 9-m
Therefore C(A,B) € V(Ap,27™,¢). m
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Since each compact set in |K| is contained in a metrizable continuum,
the following is a consequence of [Ke, Lemma 2.3].

5.4. LEMMA. Let A,C € R(K) and A C C. If each component of C
meets A, then there exists a map pa.c : I — R(K) such that p4.c(0) = A,
wa,c(l) =C and for eacht € I, A C pa,c(t) C C and each component of
wa,c(t) meets A. m

5.5. LEMMA. Let n > 1 and 7 be an n-simplex. Then each map f : O —
R(K) extends to a map f: 17— R(K) such that

f(rr(2)) € fl@) c f®) =Jf0r) = | v
yeDT

foreach x € 7(1) = T\{7}. Moreover, if f(01) C €(K) then f(1) C €(K).

Proof. Let X = f(0r) C R(K). Then X is a Peano continuum and
¢(X) C €(R(K)) C R(R(K)). As is shown in the proof of [Ke, Theorem
3.3], X has a homotopy h: X x I — €(X) such that

ho(z) = {z} C hi(x) C hi(x) =X foreachz € X and t € 1.

On the other hand, we have the map ¢ : R(R(K)) — K(K) defined by
S(A) =UA=Uupecq A (cf. [Ke]). Then f:7 — K(K) can be defined by

o) = s(f(or)) ife =1,
coh(f(mr(z)),z(T)) otherwise.
Since ¢(A) € €(K) for any A € €(R(K)) with ANE(K) # () by [Ke, Lemma
1.2], we have the additional statement. m

Now we prove Theorem 5.1.

Proof of Theorem 5.1. For simplicity, we write Z(R(K)) = Z,
Z1(R(K)) = Z; and F(R(K)) = F. First, we construct a retraction r; :
Z1 — R(K). For each (A, B) € H, we have defined C(A, B) € K(K). For
each (A, B) € F(U \ H, choose C(A, B) € €(K) so that AU B C C(A, B).
By using Lemma 5.4, we can define 7 as follows: r1|R(K) = id and

A if0<t<1/4,
SOA,CA,B 4t — 1 lf14§t§1 2,
r(l-t)4+1B) = SOB,C<(A,B>)E3 - 475% if 1§2 <t< 3§41
B if 3/4 <t<1,
for each 1-simplex (A, B) € F. If A and B are connected, each r1((1—t)A+
tB) is also connected. Thus r1(Z1(€(K))) = €(K).

We have to show that 71 is continuous. Since Z; \ R(K) is a subspace
of |FM| and r,|(A, B) is continuous for each (A, B) € F(V r |Z; \ R(K) is
continuous. Since Z; \ R(K) is open in Z7, r1 is continuous at each point of
Z1 \ R(K).
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To see the continuity of 71 at each point Ay € R(K), let V be a neighbor-

hood of Ay in R(K). Choose m € N and ¢ € ELA) 5o that V(Ap,27,¢)
C V. Then

r(My(V(Ag, 27 (M+5) 27%) 1/2)) C V.

In fact, let (A, B) € F), A # Band A € V(Ag,2~ (M%) 275). In case
B € V(Ap, 2745 275¢) (A, B) € ‘H and C(A,B) € V(Ay,27™,¢) by
Lemma 5.3. By Lemma 1.4(2), we have ¢4 c(a,p)(t) € V(40,27™,¢) and
¢B,c(a,B)(t) € V(Ap,27™,¢) for t € I. Then r1((A4,B)) C V(A,27™,¢).
In case B & V(Ag, 27" *5) 275 let 7 = (A, B). Then r((1 —t)A+17) =
r((1—t/2)A+ (t/2)B) = A€V for each t € [0,1/2].

Next, by the skeletonwise induction applying Lemma 5.5 at each step,
we can extend ry to r : Z — R(K) such that

r(me(2)) € (@) < r(7) = Jror) = | )
yeDT
ifrer(l)crePF. Sincer;(Z1(€(K))) = €(K), it follows that r(Z(€(K)))
= ¢(K).

We have to show that r : Z — RK(K) is continuous. Since Z \ R(K)
is a subspace of |F| and r|7 is continuous for each 7 € F, r|Z \ R(K) is
continuous. Since Z \ R(K) is open in Z, r is continuous at each point of
Z\ R(K).

To see the continuity of r at each A € K(K), let V be a neighborhood
of A in R(K). We may assume that V=V (A4,d,¢) for some 6 >0 and ¢ €
(0, 1)SA) " Then (1) C V implies r(1) C V for each 7 € F by Lemma
1.4. By the continuity of r1, r~*(V) N Z; =r; *(V) is a neighborhood of A
in Z;. By the topologization of Z, there is an open set W in |F| such that
WNRA(K) is open in &(K), |FIWNR(K))|CW and A € WNZ; Cr=t(V)NZ;.

Let U = WN K(K). Then |[FU)| C r~1(V), that is, r(r) C V for
each 7 € F(U). In fact, this can be shown by induction on dim7 since
r(d7) C V implies r(7) C V and if dim7 = 1 then 7 C WN Z; C r~1(V),
i.e., 7() C V. On the other hand, r=*(V) N7 = (r|7)~1(V) is open in
T for any 7 € F\Féo&l) Let V; = 7 for all 7 € F(U) and V; = () for
all 7 € FOO\ F(U). Similarly to the proof of Lemma 4.1, we can define
n € (0,1)7™ so that

V, =1 (Vo) Nelr(n(r)) cr*(V) N7,

where Vo, = J,.., Vrv. Thus we have a neighborhood M (U,n) of A in Z
such that

MU,n) C [F)IUJ{Vr [T e T} crt(V).
Therefore r : Z — RK(K) is continuous at A € R(K). =
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Appendix. Let K be the class of compact Hausdorff spaces. Here we
show the following:

PROPOSITION. For any connected CW-complex X, R(X) and €(X) are
AE(K)’s. Hence for any CW-complex X, R(X) and €(X) are ANE(K)’s.

Proof. Let Z € K and f: A — R(X) a map from a closed set A in Z.
Since ¢(f(A)) = J f(A) is a compact set in X, we have f(A) C R(Y) for
some compact connected subcomplex Y of X, whence Y is a Peano contin-
uum. Since K(Y) is an AE for normal spaces (in fact, R(Y") is homeomorphic
to the Hilbert cube ([CSy] or [CS2])), f extends to a map f : Z — R(Y) C
R(X). Hence R(X) is an AE(K). =

References

C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.

—, A study of absolute extensor spaces, ibid. 31 (1969), 609-617.

—, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29-30.
—, Connectivity of function spaces, Canad. J. Math. 5 (1971), 759-763.

R. Cauty, Sur les sous-espaces des complexes simpliciaux, Bull. Soc. Math.
France 100 (1972), 129-155.

—, Sur le prolongement des fonctions continues & valeurs dans CW-complexes,
C. R. Acad. Sci. Paris Sér. A 274 (1972), 35-37.

—, Converité topologique et prolongement des fonctions continues, Compositio
Math. 27 (1973), 133-271.

—, Rétraction dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974),
129-149.

—, Sur les espaces d’applications dans les CW-complezes, Arch. Math. (Basel)
27 (1976), 306-311.

J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961),
105-126.

D. W.Curtisand D. S. Patching, Hyperspaces of direct limits of locally compact
metric spaces, Topology Appl. 29 (1988), 55-60.

D. W. Curtis and R. M. Schori, Hyperspaces of polyhedra are Hilbert cubes,
Fund. Math. 99 (1978), 189-197.

—, Hyperspaces of Peano continua are Hilbert cubes, ibid. 101 (1978), 19-38.

G. Gruenhage, Stratifiable spaces are Mz, Topology Proc. 1 (1976), 221-226.
H. J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83-108.

J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942),
22-36.

T. Mizokami, On CF families and hyperspaces of compact subsets, Topology
Appl. 35 (1990), 75-92.

T. Mizokami and K. Koiwa, On hyperspaces of compact and finite subsets,
Bull. Joetsu Univ. of Education 6 (1987), 1-14.

U. Tasmetov, On the connectedness of hyperspaces, Dokl. Akad. Nauk SSSR
215 (1974), 286288 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974),
502-504.



40 B.-L. Guo and K. Sakai

[Wo] M. Wojdystawski, Rétractes absolus et hyperespaces des continus, Fund. Math.
32 (1939), 184-192.

INSTITUTE OF MATHEMATICS

UNIVERSITY OF TSUKUBA

TSUKUBA-CITY 305, JAPAN

E-mail: SAKAIKTR@QSAKURA.CC.TSUKUBA.AC.JP

Received 29 June 1992;
in revised form 30 November 1992



