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Abstract. In [AK], we asked when a recursive structure A and a sentence ϕ, with
a new relation symbol, have the following property: for each B ∼= A there is a relation S
such that S is recursive relative to B and (B, S) |= ϕ. Here we consider several related
properties, in which there is a uniform procedure for determining S from B ∼= A, or from
(B, b) ∼= (A, a), for some fixed sequence of parameters a from A; or in which B and S are
required to be recursive. We investigate relationships between these properties, showing
that for certain kinds of sentences ϕ, some of these properties do or do not imply others.
Many questions are left open.

We consider only those structures having universe ω. In [AK] we con-
sidered the question, for a recursive L-structure A and a recursive infinitary
sentence ϕ(P ) of L ∪ {P}, whether every isomorphic copy B of A allows a
relation S on B, recursive relative to (the diagram of) B, for which ϕ(P ) is
true in (B, S). We showed that, for a recursive Π2 sentence ϕ(P ), this was
true if and only if a corresponding recursive-syntactical condition held for
ϕ(P ) and A. It was observed by Slaman that, in this case, it follows that
there is a uniform procedure which obtains some such S recursively from B.

Having recognised this, we see that there are several senses in which one
may consider whether “every copy of A has a relatively recursive S satisfying
ϕ(P )”.

Definitions. Let A be a recursive structure with universe ω and let
ϕ(P ) be an infinitary sentence. We say that ϕ(P ) has the property A
(respectively, UA, UAP, R, UR, URP) on A if the following holds:

(A) On every isomorphic copy of A there exists a relatively recursive
relation satisfying ϕ(P ).

(UA) There is a uniform recursive procedure which yields from each iso-
morphic copy of A a relatively recursive relation satisfying ϕ(P ).
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(That is, there is an index e such that, for each B ∼= A, ϕBe is the
characteristic function of a relation S for which (B, S) |= ϕ(P ).)

(UAP) For some finite sequence a from A, ϕ(P ) has the property UA on
(A, a).

(R) On every recursive copy of A there exists a recursive relation
satisfying ϕ(P ).

(UR) There is a uniform recursive procedure which yields, from each re-
cursive isomorphic copy of A, a recursive relation satisfying ϕ(P ).

(URP) For some finite sequence a from A, ϕ(P ) has the property UR on
(A, a).

In this paper we consider which implications between these properties
do or do not hold, depending on the complexity of the sentence ϕ(P ). The
class Σ0 = Π0 consists of precisely the open finitary formulas. The class
Σn+1 consists of formulas

∨∨
i(∃yi)ϕi where each ϕi is Πn, and the class

Πn+1 consists of formulas
∧∧

i(∀yi)ϕi where each ϕi is Σn. A formula is a
recursive Σn (similarly Πn) formula if it is in the Σn (Πn) form and each
disjunction or conjunction appearing is recursive, using a system of Gödel
numbers, defined simultaneously.

We give, in §2, some implications we have found and, in §3, some exam-
ples. In §4, we tabulate these results by considering all Boolean combina-
tions of the conditions A, UA, UAP, R, UR, URP. The gaps in this table
represent unanswered questions.

1. Theorems. In this section we prove four positive results:

Theorem 1. If ϕ(P ) is a recursive Σ1 sentence and A has some expan-
sion satisfying ϕ(P ), then ϕ(P ) has property UA on A.

Theorem 2. If ϕ(P ) is a recursive Σ2 sentence having property UR on
A, then ϕ(P ) also has property UAP on A.

Theorem 3. If ϕ(P ) is a recursive Π2 sentence having property UR on
A, then ϕ(P ) also has property UA on A.

Theorem 4. If ϕ(P ) is a recursive Σ3 sentence having property A on
A, then ϕ(P ) also has property UAP on A.

We begin by proving Theorem 1.

Theorem 1. If ϕ(P ) is a recursive Σ1 sentence satisfiable on a recursive
structure A, then ϕ(P ) has property UA on A.

P r o o f. It is possible to express ϕ(P ) in the form∨∨
n

(∃xn)(ψn(xn) &Θn(xn))
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where each ψn(xn) is a conjunction of negated or unnegated atomic formulas
of L and each Θn(xn) is a conjunction of negated or unnegated instances of
P or ¬P .

Since ϕ(P ) is satisfiable on A, so is (∃xn)(ψn(xn)&Θn(xn)) for some n.
Then for any B ∼= A, we may find a suitable relation on B by searching for
elements b such that B |= ψn(b) and defining S so that B |= Θn(b). Clearly
this procedure is uniform in (the diagram of) B.

C o m m e n t. We assume, here and elsewhere, that ϕ(P ) is rewritten so
that function and constant symbols are treated as relation symbols.

In the next few results, we shall use a kind of forcing which produces
generic copies of a given L-structure A. This kind of forcing was developed
in [AKMS] and applied in [AK]. The forcing language includes the symbols of
L, constant symbols naming the natural numbers (ω is the universe of all the
structures considered) and a function symbol f , standing for a permutation
of ω which will be the isomorphism from B to A.

It is possible to use the forcing language to make various statements
about the copy B. There are sentences with the following intended meanings:

(1) B |= α(b), where α(x) is a quantifier-free formula in the language L,
(2) ϕBe (k) = j,
(3) ϕBe (k)↓,
(4) ϕBe is total 0, 1-valued.

The first sentence, saying B |= α(b), is just α(f(b)). The second sentence,
saying ϕBe (k) = j, is a recursive disjunction of sentences like the first. There
is one disjunct for each computation that starts with input k and halts with
output j, having asked questions about atomic sentences in the language of
D(B). The disjunct carries the answers to the questions. Having indicated
how the symbol f is used in writing sentence (1) formally, we shall not need
to use f further.

We shall write simply α(b), ϕD
e (k) = j, ϕD

e (k)↓, and “ϕD
e is total 0, 1-

valued” for the sentences (1), (2), (3), and (4).
Let P be a relation symbol not in the language L, and let ψ be a sentence

involving P . We want to be able to say in our language that ϕBe is the
characteristic function of a relation P such that (B, P ) |= ψ. Let ψe be the
result of replacing all positive occurrences of Pb in ψ by ϕD

e (b) = 1, and all
negative occurrences by ϕD

e (b) = 0.
The forcing conditions are finite partial permutations of ω, thought of

as having domain in the generic copy B and range in the given structure A.
We write p, q, etc. for forcing conditions, and we write p ‖−A ϕ to indicate
that p forces ϕ, and A is the structure being copied. Forcing is defined in
a fairly standard way except for sentences of the first kind. If α(x) is a
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quantifier-free formula in the language L, then p ‖−A α(b) iff b is included in
dom(p) and A |= α(p(b)).

We shall prove several lemmas.

Lemma A. Let A be a recursive structure, and suppose that for all re-
cursive B ∼= A, ϕBe is total 0, 1-valued. Then φ ‖−A ϕD

e is total 0, 1-valued.

P r o o f. We must show that for all forcing conditions p and all k, there
exists q ⊇ p such that q ‖−A ϕD

e (k) = 0 or q ‖−A ϕD
e (k) = 1. There is

a recursive copy B of A with an isomorphism f from B to A such that
f ⊇ p. Since ϕBe (k) converges to 0 or 1 for this B, there is some q such that
p ⊆ q ⊆ f and q ‖−A ϕD

e (k) = 0 or q ‖−A ϕD
e (k) = 1. (We put into dom(q) all

elements mentioned in the part of the diagram needed for the computation.)

Lemma B. Let A be recursive. Let P be a new relation symbol , and let
ψ be a (recursive) Π2 sentence involving P. Suppose that ψ has property
UR on A, where the uniform procedure has index e. Then φ ‖−A ψe. Also,
φ ‖−A ϕD

e is total 0, 1-valued.

P r o o f. The idea is like that in Lemma A.
Let ψ =

∧∧
i(∀xi)

∨∨
j(∃yj)δij(xi, yj). To show that φ ‖−A ψe, we must

show that for any p, i, and b (appropriate to substitute for xi), there exist
q ⊇ p, j, and d such that q ‖−A δij(c, d)e. We take q such that p ⊆ q ⊆ f and
q carries the information needed to compute ϕBe (u) for u in c∧d.

When we say that ψ has property UR, as witnessed by e, this implies that
for all recursive B ∼= A, ϕBe is total 0, 1-valued, so by Lemma A, φ ‖−A ϕD

e is
total 0, 1-valued.

In Lemmas A and B, we had in mind building a generic copy of a fixed
structure A, and the forcing conditions had range in A. The statement
p ‖−A ϕ may be thought of as saying that a = ran(p) has a certain property
in A.

We could substitute another L-structure C for A (still with universe ω).
We may regard p as a forcing condition for building generic copies of C. We
write p ‖−C ϕ when we are thinking of p in this way and we are saying that
a = ran(p) has a certain property in C. Then the following fact is obvious.

Lemma C. If φ ‖−A ϕ, then for all C ∼= A, φ ‖−C ϕ.

Lemma D. Let A be a fixed structure, let P be a new relation symbol ,
and let ψ be a recursive Π2 sentence involving P. Suppose φ ‖−A ϕD

e is total
0, 1-valued , and φ ‖−A ψe. Then there is a uniform procedure which, when
applied to any C ∼= A, yields a function f and a structure B such that

(1) f ≤T C and B ≤T C,
(2) B ∼=f C,
(3) ϕBe is the characteristic function of a relation P such that (B, P ) |= ψ.
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P r o o f. By Lemma C, φ ‖−C ϕD
e is total 0, 1-valued, and φ ‖−C ψe. Let

ψ =
∧∧

i(∀xi)
∨∨

j(∃yj)δij(xi, yj). The universe of C and B will be ω, but
we write c0, c1, c2, . . . for the elements of C, and we think of b0, b1, b2, . . . as
constants naming the elements of B.

Let (in, bn)n∈ω be a recursive list of the pairs (i, b) such that b is appro-
priate to substitute for xi. Focusing on the first pair (i0, b0), we enumerate
D(C), searching for j0, d0, and p0 such that p0 ‖−C δi0j0(b0, d0)e. We ex-
tend p0, if necessary, so that the elements of b0 and d0 are in dom(p0) and
c0 ∈ ran(p0). Given pn, we consider (in+1, bn+1) and search for jn+1, dn+1,
and pn+1 such that pn+1 ⊇ pn and pn+1 ‖−C δin+1jn+1(bn+1, dn+1)e. We
extend pn+1 so that the elements of bn+1, dn+1 are in dom(pn+1), and
cn+1 ∈ ran(pn+1). In addition, we make sure that

pn+1 ‖−C ϕD
e (n) = 0 or pn+1 ‖−C ϕD

e (n) = 1 .

Now, let f =
⋃

n∈ω pn, and let B be the structure such that B ∼=f C. We
have f and B recursive in C. We made sure that ϕBe is total 0, 1-valued, and is
the characteristic function of a relation P such that (B, P ) |= δinjn(bn, dn) for
all n. Therefore, (B, P ) |= ψ. The procedure described above for obtaining
f and B is clearly uniform in C.

We now have all of the lemmas we shall need for the next two theorems.

Theorem 2. Let A be recursive. If ϕ(P ) is a recursive Σ2 sentence
having property UR on A, then ϕ(P ) also has property UAP on A.

P r o o f. Let e witness the fact that ϕ(P ) has property UR on A. By
Lemma A, φ ‖−A ϕD

e is total 0, 1-valued.

Claim. For some forcing condition p, p ‖−A ϕ(P )e.

Suppose that the claim is true. Let ϕ(P ) =
∨∨

i(∃xi)
∧∧

j(∀yj)δij(xi, yj).
Then for some i and b, we have p ‖−A ψi(b)e, where ψi(b) is the Π1 sentence∧∧

j(∀yj)δij(b, yj). Let b1, a1 be the domain and range of p. We may assume
that b ⊆ b1, and let a = p(b).

At this point, we appeal to the proof of Theorem 1.1 of [AK]. This proof
describes a uniform procedure which, when applied to any (C, c1) ∼= (A, a1),
yields a relation P ≤T C such that if c is the part of c1 corresponding to a,
then (C, P ) |= ψi(c), so (C, P ) |= ϕ(P ).

All that remains is to prove the claim.

P r o o f o f C l a i m. Suppose there is no p such that p ‖−A ϕ(P )e. Then
for each p, i, and b, there exist q ⊇ p, j, and d such that for no r ⊇ q do we
have r ‖−A δij(c, d)e. Since φ ‖−A ϕD

e is total 0, 1-valued, we can take q such
that q ‖−A ¬δij(c, d)e. The negation of ϕ(P ) is logically equivalent to the
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recursive Π2 sentence ϕ∗(P ) =
∧∧

i(∀xi)
∨∨

j(∃yj)¬δij(xi, yj), and we have
φ ‖−A ϕ∗(P ).

We apply Lemma D to the structure A itself to get a recursive copy B of
A and a recursive f such that B ∼=f A and ϕBe is the characteristic function
of a relation P for which we have (B, P ) |= ϕ∗(P ). This contradicts the
assumption that ϕ(P ) has property UR on A as witnessed by e.

Theorem 3. If ϕ(P ) is a recursive Π2 sentence having property UR on
A, then ϕ(P ) also has property UA on A.

P r o o f. Let e witness the fact that ϕ(P ) has property UR on A. By
Lemmas A and B, φ ‖−A ϕD

e is total 0, 1-valued, and φ ‖−A ϕ(P )e. We apply
the procedure from Lemma D to an arbitrary C ∼= A to get B and f , both
recursive in C, such that B ∼=f C and ϕBe is the characteristic function of a
relation P such that (B, P ) |= ϕ(P ). If Q = f(P ), then (C, Q) |= ϕ(P ). The
procedure for obtaining Q is clearly uniform in C.

Theorem 4. If ϕ(P ) is a recursive Σ3 sentence with property A on A,
then ϕ(P ) also has property UAP on A.

P r o o f. Assume ϕ(P ) is Σ3 and has property A on A. So for each
B ∼= A there exists S ≤T B with (B, S) |= ϕ(P ). Then, in particular, if B is
a generic copy of A then some p ‖−A ϕ(P )e. Say that ϕ(P ) is

∨∨
i(∃xi)ψi(xi)

where each ψi is Π2. Then p ‖−A ψi(b∗)e for some i and some b∗ ∈ B. We may
suppose that b∗ ∈ dom(p), say p(b∗) = a∗. Let a = ran(p). Now, applying
the method of Theorem 1.1 of [AK] to the structure (A, a) and the Π2

sentence ψi(a∗), we get a formally Σ0
1 expansion family for ψi(a∗) on (A, a)

involving parameters a. Then there is a uniform procedure which, when
applied to an arbitrary (B, c) ∼= (A, a), yields S ≤T B with (B, S) |= ψi(c∗),
where c∗ is the part of c corresponding to a∗. Therefore, (B, S) |= ϕ(P ).

2. Examples. In this section we show that there exist recursive sen-
tences ϕ(P ) and recursive structures A, with ϕ(P ) satisfiable by a recursive
relation on A, providing examples as indicated:

Example 1. ϕ(P ) is Π1 and does not have property R on A.

Example 2. ϕ(P ) is Π2 and has property UAP but not UR on A.

Example 3. ϕ(P ) is Σ2 and has property UAP but not UR on A.

Example 4. ϕ(P ) is Π2 and has property R but not A on A.

Example 5. ϕ(P ) is Σ3 and has property UR but not A on A.

Example 6. ϕ(P ) is Σ2 and has property UR but not UA on A.

Example 7. ϕ(P ) is Π3 and has property UR but not A on A.

We produce the examples, in order.
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Example 1. There exist a recursive Π1 sentence ϕ(P ) and a recursive
structure A such that ϕ(P ) is satisfiable by a recursive relation on A but
ϕ(P ) does not have property R on A.

P r o o f. Take A to be a graph (A,N) consisting of infinitely many dis-
connected copies of Z, where vertices are adjacent when one is the successor
of the other in the same copy of Z.

Take ϕ(P ) to be the Π1 sentence

(∀x)(∀y)(N(x, y) → ((P (x) & ¬P (y)) ∨ (¬P (x) & P (y))))

so that the relations making ϕ(P ) true correspond to 2-colourings of the
graph A.

Clearly, A can be chosen so that it has a recursive 2-colouring. We may,
however, construct a recursive copy B of A which does not, as follows.

Construct B, in steps, to consist of copies 0, 1, 2, . . . of Z, computing val-
ues of the ϕe simultaneously. If and when ϕe gives ϕe(a) = 0 and ϕe(b) = 1
where a is in the (2e)th copy of Z and b is in the (2e+ 1)th copy, merge the
partly constructed (2e)th and (2e + 1)th copies into a single copy, making
a and b an even number of edges apart.

If A′ is the variant of A with just two copies of Z, then ϕ(P ) has property
UAP but not property R on A′.

Example 2. There exist a recursive Π2 sentence ϕ(P ) and a recursive
structure A such that ϕ(P ) has property UAP but does not have property
UR on A.

P r o o f. Take A to be the partially ordered set consisting of unrelated
chains, one of order type ω and one of each finite length.

Take ϕ(P ) to be a recursive Π2 sentence equivalent to the conjunction
of:

(∃x)(P (x))
(∀x)(∀y)((P (x) & P (y)) → (x ≤ y ∨ y ≤ x))
(∀x)(P (x) → (∃y)(P (y) & x < y))

so that the relations on A making ϕ(P ) true correspond to chains in the
p.o. set A having no largest element.

Clearly, ϕ(P ) has property UAP since we need only take a parameter
from the chain of type ω. We show that ϕ(P ) does not have property
UR. For a contradiction, suppose that, for each recursive B ∼= A, ϕBe is the
characteristic function of a chain in B having no largest element. Construct a
recursive copy B of A in steps, evaluating ϕBe simultaneously until ϕBe (b) = 1
for some b. At this stage, finitely many finite chains have been constructed,
and the one containing this element b can be kept finite, contradicting the
assumption on ϕBe .
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Example 3. There exist a recursive Σ2 sentence ϕ(P ) and a recursive
structure A such that ϕ(P ) has property UAP on A but does not have prop-
erty UR on A.

P r o o f. Take A as in Example 2. Take ϕ(P ) to be a recursive Σ2

sentence equivalent to the conjunction of:

(∃x)P (x)
(∀x)(∀y)((P (x) & P (y)) → (x ≤ y ∨ y ≤ x))
(∃x)(P (x) & (∀y)(¬x < y)) .

The relations satisfying ϕ(P ) are the chains in A containing a maximal
element of A.

Clearly, ϕ(P ) has property UAP, since we need only take a parameter
from one of the finite chains. We show that ϕ(P ) does not have property UR
on A. For a contradiction, suppose there exists e such that for each recursive
B ∼= A, ϕBe is the characteristic function of a chain inA containing a maximal
element of A. Construct a recursive copy B of A in stages, evaluating ϕBe
simultaneously until ϕBe (b) = 1 for some b. At this stage, only finitely many
finite chains have been constructed, and the one containing the element b
can be made into the copy of ω, contradicting the assumption on ϕBe .

Example 4. There exist a recursive Π2 sentence ϕ(P ) and a recursive
structure A such that ϕ(P ) has property R on A but does not have property
A on A.

P r o o f. The structure A is of the form (A, S, R, G, {Pe}e<ω) where
(A,S) is a forest, S being the successor relation on the component trees,
and R, G and all the Pe being unary relations on A.

First, for every infinite sequence, s, of symbols R and G, we define an
augmented tree T∞s = (T∞s , S,R,G, {τn}n<ω, τ∞) in which (T∞s , S) is a
tree, and the remaining constituents are unary relations on T∞s such that
for each node exactly one of τ0, τ1, . . . , τ∞ holds, for each node other than
the root, exactly one of R and G holds, and for the root neither R nor G
holds.

We first define (T∞s , S, {τn}n<ω, τ∞), independently of s, to be the unique
countable structure of this kind, such that

(i) τ∞ holds for the root,
(ii) for each node satisfying τ∞ there are infinitely many successors sat-

isfying each of τ0, τ1, . . . , τ∞,
(iii) for each node satisfying τn, for n < ω, each successor satisfies τk for

some k < n and there are infinitely many of these successors for each k < n.

Thus, an element satisfying τ0 has no successors, and, more generally,
the {τn}n<ω assign to each node a rank, namely the least n < ω for which
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each successor node has rank < n, while unranked nodes are assigned the
symbol ∞.

Now we define R and G on T∞s as follows. The root satisfies neither R
nor G. A node of level k = 1, 2, 3, . . . and satisfying τn for n = 1, 2, . . . ,∞
satisfies R or G to agree with the kth entry of the sequence s. A node of
level k ≥ 1 and satisfying τ0 satisfies R or G to disagree with the kth entry
of s.

Suppose now that we have a recursive procedure which evaluates each
term in a sequence s of R’s and G’s in turn, so that the computation at some
stage may not converge, resulting in only a finite sequence. Then there is
a uniform procedure which enumerates either, when s is infinite, a copy of
T∞s or, when s is finite, a structure T fin

s defined as follows.
Let k be the length of s. Then define T fin

s to consist of the first k levels of
T∞s′ for any infinite s′ extending s plus a (k+1)th level. This level consists,
for exactly those nodes at level k whose R,G sequences are s, of infinitely
many successors satisfying each of R and G, and not satisfying any of the
τn or τ∞.

For each such s, let T∞s (−) and T fin
s (−) denote the reducts which ignore

the relations τn. To obtain the desired structure A, we shall define a certain
uniform sequence s0, s1, s2, . . . of such recursive procedures. Then we take
A to be a labelled forest (A,S,R,G, {Pe}e<ω) consisting of unrelated trees
T0, T1, T2, . . . , where each Te is either a copy of T∞se

(−), if se is infinite, or a
copy of T fin

se
(−), if se is finite. For each e, we let the unary relation Pe hold

for the root of Te and for no other element.
The {se}e<ω chosen to construct A are obtained as follows. Let

B0,B1,B2, . . . be a uniformly recursive enumeration of the partial recur-
sive structures of type (F, S,R,G, {Pe}e<ω). Now, uniformly in e, let pe be
the sequence of elements of Be obtained by beginning with the first element
discovered in Be satisfying PBe

e and continuing at each later stage by taking
the first element discovered in Be satisfying either RBe or GBe and in the
relation SBe with the last previously chosen element.

From each pe, we uniformly obtain the corresponding sequence of R’s
and G’s which we take to be se in the description of A above.

For this A, we take the sentence ϕ(P ) to be a Π2 sentence equivalent to

(∃x)(P (x))
& (∀x)(P (x) → (∃y)(P (y) & S(x, y)))
& (∀x)(∀y)(P (x) & P (y) → x = y ∨ (∃z)(P (z) & (S(z, x) ∨ S(z, y))))
& (∀x)(∀y)(∀z)(P (x) & P (y) & P (z) & S(x, y) & S(x, z) → y = z)

so that the sets satisfying ϕ(P ) in A correspond to infinite branches in the
forest A.
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We see that ϕ(P ) does have property R on A, as follows. Each recursive
B ∼= A is one of the Be. Suppose, for a contradiction, that the corresponding
pe is finite. Then, by construction, Te = T fin

se
(−) has no terminal node whose

corresponding R,G sequence is se, while in Be, by choice of pe, there is such
a terminal node above the element satisfying Pe. This contradicts Be

∼= A.
Hence, if B = Be

∼= A, then pe is infinite, is recursive and satisfies ϕ(P )
on A.

Now we wish to show that ϕ(P ) does not have property A onA. Suppose,
for a contradiction, that it does. Then we may appeal to the results of [AK]
(obtained by considering a generic copy of A). By Theorem 1.1 of [AK] there
exists a formally r.e. expansion family for ϕ(P ) onA. This consists of a set S
of consistent finite sets σ(a1, . . . , ak) of sentences P (ai) or ¬P (ai) such that,
by Lemma 1.2 of [AK], for each σ in S there is a chain σ = σ0 ⊆ σ1 ⊆ . . .
determining a relation satisfying ϕ(P ) in A and also satisfying each σi. It
follows both that there are infinitely many a ∈ A for which P (a) occurs
positively in some σ ∈ S and that each such a ∈ A lies on an infinite path
in A.

Since the expansion family is formally r.e., the set of all such a ∈ A is
defined by a recursive disjunction of existential formulas with some single
finite set of parameters. The contradiction is therefore obtained if we show
that A has no infinite set of elements, all lying on infinite paths, which is
definable by a recursive Σ1 formula with finitely many parameters.

However, this fact is reasonably obvious. For a hypothetical such formula
having parameters c, we may consider an element, a, of the set which is not
above any of c (considering the trees to grow downwards). Let b be witnesses
for the fact that a satisfies theΣ1 formula. Then, because of the homogenous
nature of A, we may find a′ satisfying τn for some n < ω and b′ such that
c, a′, b′ satisfy the same quantifier-free formulas as do c, a, b.

Example 5. There exist a recursive Σ3 sentence ϕ(P ) and a recursive
structure A such that ϕ(P ) has property UR on A but does not have property
A on A.

P r o o f. Take A to be a recursive structure such as that of Example 4
for which some formula ψ(Q) has property R but not A, on A. Let B ∼= A
be such that no S recursive in B has (B, S) |= ψ(Q).

Then we note that there can be no isomorphism f from B to a recursive
structure B′ for which f is recursive in B. If there were such f,B′, then by
assumption on ψ(Q) there would exist S′ on B′ for which (B′, S′) |= ψ(Q),
and then we could take S to be f−1(S′) and have (B, S) |= ψ(Q) where S is
recursive in B, in contradiction to the choice of B.

Thus, for our present purpose, it is sufficient to give ϕ(P ) for which the
S for which (B, S) |= ϕ(P ) correspond to isomorphisms from B to some
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recursive structure, since certainly there is a uniform procedure for finding
such a recursive isomorphism when B is recursive, by taking the identity
function.

To consider isomorphisms from B to recursive structures, we may discuss
bijections f : B → ω by working instead with the binary relation S(x, y) for
which S(b1, b2) if and only if f(b2) = f(b1) + 1 or f(b2) = f(b1) = 0. In
terms of the corresponding relation symbol P (x, y), there is a formula Pk(x)
true in (B, S) for the unique x such that f(x) = k. We may take Pk(x) to
be the formula

(∃y0) . . . (∃yk)(P (y0, y0)& y0 6= y1 &P (y0, y1)& . . .&P (yk−1, yk)& yk = x) .

Now let Θe(P ) be a recursive Π2 formula equivalent to the conjunction
of the following, and let ϕ(P ) be

∨∨
eΘe(P ).

(∀x)
∨∨

k

Pk(x)

(∀x)
∧∧
i 6=j

¬(Pi(x) & Pj(x))

“ϕe is total and 0, 1-valued”∧∧
i,n1,...,nk

ϕe(〈i,n1,...,nk〉)=1

(∀x1) . . . (∀xk)(Pn1(x1) & . . .& Pnk
(xk) → Ri(x1, . . . , xk))

∧∧
i,n1,...,nk

ϕe(〈i,n1,...,nk〉)=0

(∀x1) . . . (∀xk)(Pn1(x1) & . . .& Pnk
(xk)→¬Ri(x1, . . . , xk)) .

In the last two sentences, the conjunction is taken over all relation symbols,
Ri, of the language of A.

Example 6. There exist a recursive Σ2 sentence ϕ(P ) and a recursive
structure A such that ϕ(P ) has property UR but does not have property UA
on A.

P r o o f. First let T be an infinite r.e. subtree of 2<ω having no infinite
∆0

2 branch. (It is fairly easy to construct such a tree.)
Let A1 be the infinitely branching recursive labelled tree (T1, c, S,R,G),

having root c, defined by the following properties:

(1) The root, c, satisfies neither R nor G.
(2) Every element other than c satisfies R or G but not both.
(3) Every element having a successor satisfying R (respectively G) has

infinitely many successors satisfying R (or G).
For each element of T1, the sequence of elements from the root determines

a finite sequence of 0’s and 1’s, taking 0 for elements satisfying R and 1 for
elements satisfying G.
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(4) The sequences of 0’s and 1’s corresponding to elements of T1 are
exactly the elements of T .

We note that no recursive copy of A1 has a ∆0
2 infinite branch, because

this would give a ∆0
2 branch in T .

Now we obtain the desired structure A = (A, c, S,≡,≤) from A1 =
(T1, c, S,R,G) as follows. Let A be obtained from T1 by replacing each
u ∈ T1 other than c by an infinite set Eu. Let ≡ be the equivalence relation
whose equivalence classes are the Eu and {c}. Let S′ be the binary relation
relating all pairs from Eu and Ev respectively for which S(u, v) and relating
c to each element of Eu for which S(c, u). Let ≤ be a pre-order relating only
elements of the same Eu and having the following properties. The restriction
of ≤ to each Eu is a pre-order of order type ω∗ in which each equivalence
class except possibly the last has two elements. The last equivalence class
of this restriction has one element if u satisfies R in A1 and two elements if
u satisfies G in A1.

We take ϕ(P ) to be a Σ2 sentence equivalent to the conjunction of:

P (c)
(∀x)(∀y)(P (x) & x ≡ y → P (y))
(∀x)(P (x) & x 6= c→ (∃y)(P (y) & S(y, x)))
(∃z)(P (z) & (∀x)(P (x) → ¬S(z, x)))

so that the sets satisfying ϕ(P ) in A are unions of whole equivalence classes
corresponding to maximal branches of T1 which are also finite.

It is clear that there is a ∆0
2 procedure which, when applied to an element

of Eu, determines whether u satisfied R or G in A1, and likewise for each
recursive copy of A.

There is also a uniformly recursive procedure for obtaining in each such
recursive copy of A a subset which is the union of whole equivalence classes
corresponding to maximal branches of T1, namely taking the first successors
which appear and closing under ≡. (The resulting set is recursive since, for
any a, either a itself appears on the path or, for some k and for some b
on the path, the predecessors of b are the (k + 1)th predecessors of a but
b is not a kth predecessor of a.) If the branch in T1 resulting from this
procedure were infinite, then we should have an infinite ∆0

2 branch in T ,
contradicting the choice of T . We have thus shown that ϕ(P ) has property
UR on A.

It remains to show that ϕ(P ) does not have property UA on A. Suppose,
for a contradiction, that for each B ∼= A, ϕBe is the characteristic function of
a relation on B satisfying ϕ(P ). Then we may construct (non-recursively)
as follows C ∼= A such that ϕCe is the characteristic function of a subset of C
having members of infinitely many equivalence classes.
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While defining an enumeration of the diagram of C, we can change an
equivalence class of one type to the other type by inserting new elements,
without affecting any desired finite part of the diagram or finite number
of computations. We may thus begin by enumerating as much of a copy
of any B0

∼= A as is needed to give representatives of a maximal finite
branch. By the choice of T1, changing the types of these equivalence classes
results in a copy, B1

∼= A, containing the finite part already enumerated and
the finitely many computations for the representatives so far, in which the
corresponding path is not maximal. Now we may change to enumerating B1

and repeat the process. If we also ensure that the type of each equivalence
class is changed only finitely often and that each permitted initial segment
of types of equivalence classes occurs infinitely often, then the union, C, of
these Bn will be an isomorphic copy of A while ϕCe will correspond to an
infinite branch.

Example 7. There is a recursive Π3 sentence ϕ′(P ) and a recursive
structure A′ such that ϕ′(P ) has property UR but not property A on A′.

P r o o f. Let A′ be a structure of type (A,∼, c, S,≡,≤) consisting of
an equivalence relation ∼ having infinitely many equivalence classes, each
class containing a copy of the structure A of Example 6. Let ϕ(P, x) be the
sentence of Example 6 relativized to the equivalence class of the variable x,
and let ϕ′(P ) be (∀x)ϕ(P, x).

Thus, relations satisfying ϕ′(P ) onA′ correspond to simultaneous choices
for each equivalence class of maximal finite branches in each of the copies
of A.

By the same argument as in Example 6, ϕ′(P ) has property UR on A′.
It remains to see that ϕ′(P ) does not have property A on A′.

In Example 6, we showed that, for each e, there is a copy C of A in which
ϕCe is not the characteristic function of a subset of C which corresponds
to a finite branch. (If ϕCe is not sufficiently total, then the result of the
construction was that C was equal to some Bn.)

Similarly, we may define a copy C′ of A′ in which ϕC
′

e is not the char-
acteristic function of a subset of C′ which corresponds to a finite maximal
branch of the eth copy of A in C′. Thus, no ϕC

′

e is the characteristic function
of a subset of C′ satisfying ϕ′(P ).

3. Systematic treatment. We may systematize our investigation by
asking which Boolean combinations of the properties A, UA, UAP, R, UR,
URP are possible and, if so, which forms Σ1,Π1, Σ2, . . . of sentences ϕ(P )
may be used.

Clearly, from the definitions, we have the implications

UR ⇒ URP ⇒ R, UA ⇒ UAP ⇒ A .
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This leaves Boolean combinations from the table below:

No Yes
1 ¬R Σ1 Π1
2 R & ¬A& ¬URP Σ1 Π2
3 URP & ¬A& ¬UR Σ2, Π2
4 A & ¬URP Σ3
5 UR & ¬A Σ2, Π2 Σ3, Π3
6 URP & A& ¬UR& ¬UAP Σ3
7 UR & A& ¬UAP Σ3
8 UAP & ¬UR Σ1 Π1
9 UR &UAP& ¬UA Π2 Σ2
10 UA Σ1, Π1

In this table, for example, the appearance of Σ2 in the “No” column of
line 5 records that UR⇒A for Σ2 sentences, while Σ3 in the “Yes” column
records that this implication fails for Σ3 sentences. The table is not com-
plete; for example line 4 shows that A⇒URP for Σ3 sentences, but we do
not presently know whether the implications holds more generally.

Justification of the table

Line 1: Theorem 1 justifies the “No”, since UA⇒R, and Example 1 justifies
the “Yes”.

Line 2: Theorem 1 justifies the “No”, since UA⇒A. Example 4 and Theo-
rem 3 justify the “Yes”. Since UR⇒UA for Π2 sentences, we have
URP⇒UAP, and so, because UAP⇒A, we also have ¬A⇒ ¬URP
for Π2 sentences.

Line 3: Theorem 3 justifies the “No” for Π2 sentences, since, as above, we
have ¬A⇒ ¬URP for Π2 sentences. Theorem 2 justifies the “No”
for Σ2 sentences. We have UR⇒UAP, and therefore URP⇒UAP,
and, since UAP⇒A, also URP⇒A for Σ2 sentences.

Line 4: Theorem 4 justifies the “No”. We have A⇒UAP for Σ3 sentences,
and of course UAP⇒URP.

Line 5: Theorem 2 justifies the “No” for Σ2 sentences. We have UR⇒UAP
and UAP⇒A. Theorem 3 justifies the “No” for Π2 sentences. We
have UR⇒UA and UA⇒A. Example 5 justifies the “Yes” for Σ3

sentences, and Example 7 justifies the “Yes” for Π3 sentences.

Line 6: Theorem 4 justifies the “No” for Σ3 sentences, since it gives A⇒
UAP.

Line 7: Theorem 4 justifies the “No” for Σ3 sentences.
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Line 8: Theorem 1 justifies the “No” for Σ1 sentences; these have property
UA, and UA⇒UR. The variant of Example 1 justifies the “Yes”
for Π1 sentences.

Line 9: Theorem 3 justifies the “No” for Π2 sentences. Example 6 and
Theorem 2 justify the “Yes” forΣ2 sentences. The example satisfies
UR & ¬UA, where by the theorem, UR⇒UAP.

Line 10: We have “Yes” for Σ1 or Π1 sentences, by taking ϕ(P ) to be triv-
ially true.
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