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Expansive homeomorphisms and indecomposability
by

Hisao Kato (Hiroshima)

Abstract. Suppose that F is a finite collection of graphs and a continuum X is F-like. If
X admits an expansive homeomorphism, then X contains an indecomposable (nondegenerate)
subcontinuum,

1. Introduction. A compact connected (nondegenerate) metric space is called
a continuum. A homeomorphism f: X —» X of a compact metric space X is called
expansive if there exists a constant ¢ > 0 (called an expansive constant for f) such that if
x, yeX and x # y, then there is an integer n =n(x, y)e Z such that

a(f*(x), f"0)) > ¢,

where d is a metric of X. Expansiveness does not depend on the choice of metric of X.
We are interested in the following problem [3]: What kinds of continua admit
expansive homeomorphisms? We know that if a continuum X is one-dimensional and
admits an expansive homeomorphism, then X is considerably complicated. In fact, we
know that all known one-dimensional continua admitting expansive homeomorphisms
contain indecomposable subcontinua which play important parts in the dynamics of the
expansive homeomorphisms. For instance, Williams' examples are solenoids [26] and
Plykin’s examples are lakes of Wada [22] and [23], which are well-known indecom-
posable continua. Naturally, we are interested in the following problem (A): Is-it true
that if a one-dimensional continuum X admits an expansive homeomorphism, then
X contains an indecomposable (nondegenerate) subcontinuum? Note that if X is
a continuum with dim X > 2, then X always contains a hereditarily indecomposable
subcontinbum Y with dim ¥ = dimX—1.

In this paper, we give a partial answer to problem (A). More precisely, the following
theorem is proved: Suppose that F is a finite collection of graphs and a continuum X is
F-like. If X admits an expansive homeomorphism, then X contains an indecomposable
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subcontinuum. Note that for any continuum X, dim X <1 if and only if there is
a countable collection C of graphs such that X is C-like. As a corollary, if f: G~ G is
an onto map of a graph G such that the shift homeomorphism 7 is expansive, then the
inverse limit (G, f) of f contains an indecomposable subcontinuum.

We refer the Teaders to [17] for the general properties of expansive homeomorphisms.

2. Definitions and preliminaries. A compact connected polyhedron P is called
a graph if dim P = 1. Let P be a collection of graphs. A continuum X is P-like if for any
&> 0 there is a map f from X to some member P of P such that diam f~ 1(y) < ¢ for any
yef(X) (f is called an e-map). In this paper, “c-map” does not mean onto map.
A compact metric space X is tree-like if X is a one-point set or X is a T-like continuum,
where T = {all trees (= all graphs without simple closed curves)}. Note that
a continuum X is F-like for some finite collection F of graphs if and only if X is {G}-like
for some graph G contained in F.

An onto map f: X— Y is monotone if for any yeY, f~'(y) is connected.
A continuum X is called a @, -continuum if for any subcontinuum Y of X the
complement X —Y of Y in X has at most n components. We can easily see that if
a continuum X is F-like where F is a finite collection of graphs, then there is a natural
number n such that if A and B,,...; B,, are any subcontinua of X satisfying

(1) AnB;#@ fori=1,...,m,
(2) B, is not. contained in AU(Jjuy juiBy) for i=1,...,m,

then m < n. By ‘this fact, the following proposition is easily proved.

(2.1) ProrosITION. Let F be a finite collection of graphs. If a continuum X is F-like,
then there is a natural number n such that X is a ©,-continuum.

A continuum X is decomposable if X is the union of two subcontinua different from
X. A continuum X is indecomposable if X is not decomposable. A continuum X is
hereditarily decomposable (resp. hereditarily indecomposable) if each nondegenerate
subcontinuum of X is decomposable (resp. indecomposable).

We refer the readers to [17] for the properties of decomposable and indecomposa-
ble continua. ‘

The following theorem obtained by Grace and Vought is very useful ([5, Theorem
2] and [25, Theorem 7]).

(2.2) THEOREM. Let X be a hereditarily decomposable @ ~continuum. Then X admits
an upper semicontinuous monotone decomposition 9 such that X/% is a (hondegenerate)
graph which is a O continuum. Furthermore, 9 = {T*(x)|xe X}, where for any
subcontinuum A of X, T(A) = Au {xe X — A|there is no subcontinuum H of X such that
xelnt(H) c H c X~ A4}, and T°(4) = A, T*A) = T(T*"*(A)) for k = 1.

Note that. cach homeomorphism f: X — X satisfies f(7'(4)) = T(f(4)) for any
subcontinuum A4 of X.

3. Main theorem. In this section, we prove the following main theorem of this
paper.
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(3.1) TueOREM. Suppose that F is a finite collection of graphs and a continuum X is
F-like. If X admits an expansive homeomorphism, then X contains an indecomposable
(nondegenerate) subcontinuum.

To prove (3.1), we need the following results and notations.

(3.2) ProrosrTioN ([24, (22)]). If f: X - X is an expansive homeomorphism of
a compact metric space X, then for any integer neZ (n # 0), f: X — X is also expansive.

(3.3) Lemma ([12, Lemma 2.2]). Let f: X — X be an expansive homeomorphism of
a compact metric space X. Then there exists 6 > 0 such that for each nondegenerate
subcontinuum A of X, there exists an integer ny > 0 satisfying one of the following
conditions:

(%) diam f"(4) = & for all n 2 ny, or

(%) diam f~"(4) = 6 for all n 2 n,.

In particular, if A is a nondegenerate subcontinuum of X such that f¥(A) = A for some
integer N # 0, then diam A > 6.

By a refinement of a finite collection % of subsets of a space X we mean, as usual,
any finite collection of subsets of X whose elements are contained in elements of %. Let
Cy, ..., C,, be a sequence of subsets of a space X. It is said to be a chain, and is denoted
by [Cy, ..., C,], provided that C;n C; # @ if and only if [i—j| < 1foreach 1 < i, j < m.
A chain [C,, ..., C,] is said to be an n-chain (yn > 0) if diam C, < # for each i. Let
[V ..., ¥,] be a chain such that ¥" = {¥;|1 < i< m} is a refinement of a finite open
cover % of a space X. Let U,, U, e%. Then the chain [V}, ..., V,] is said to be crooked
between U, and U, if there are 1 <i(1) <i(2) < i(3) < i(4) < m such that ¥, = U,,
Vigy € Uy, Vi) = U, and Viyy = U,. Achain [V, ..., V,] is said to be a chain from x to
y (x,yeX) if xeV; and yeV,. .

(3.4) Lemma ([13, (4.6)]). Let f: X =X be an expansive homeomorphism of
a continuum X. Then there exists § > 0 such that if x,ye X, x # y, and % is any finite
open cover of X, then there is an integer N > 0 and n > 0 such that if [V}, ..., V,]is any
f-chain from x to y, then either the chain [fX(V)),...,fY(V,)] or the chain
LFMVD, ..., S7NV,)] is a refinement of U, and is crooked between U, and U,, where
U, Uye¥ and d(U,, U) = 6—2mesh(%).

(3.5) LemMA (cf. [13, (5.1)]). Suppose that f: X — X is a homeomorphism of
a continuum X and h: Z — Z is a homeomorphism of a continuum Z. Also, suppose that
F: X —Z is an onto map from X onto Z such that F~'(z) is hereditarily decomposable
and tree-like for any zeZ, and for some zeZ, F~1(z) is nondegenerate (ie., F is not
a homeomorphism). I the diagram

£,

X
Fl lF
Z - Z
is commutative, then f is not expansive.
Proof. Consider the set
H = {(x, y)e X x X|F(x) = F(»)}.
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For any cover % of X, put % = {Cl(U)|U e%}. For any subset M of H, define
M/ = {(x, y)e H|for any y > 0 and any finite open cover % of X, there exists (x', y')e M
such that x' # ' and there exists a finite open cover ¥” of X with mesh(?#") < y such that
¥ is a refinement of %, 7'(F(x)) = {Cl(V)|Ve¥", VA F “HF(x') 5= @} is a refinement
of %(F(x)) = {Ue%|UnF~*(F(x)) # @}, the nerve N (#'(F(x))) is a tree, and a chain
[Vis .-, V) from x' to y' in ¥~ (F(x") is crooked between U, U,, where U, and U, are
elements of % such that xeU, and yeU,}.

Then MY is closed in H and M’ >(MYY. For any ordinal numbers, define’

My=M, My, =(M), and M, =(Ve<sM,, where 4 is a limit ordinal.
First, we shall prove the following.
Cramv (I). There is a countable ordinal o such that M, = @.

Proof. Note that H is separable. Since M, is closed in H and M, = M, for o < §,
there is a countable ordinal o such that M, =M, for all a <f. In particular,
(M) = M,. We shall show that M, = @. Suppose, on the contrary, that M, # @.
Choose (X;, ¥;)€M,. By the definition of M”, we may assume that x, 5 y;. Since
F~'(z) is tree-like for any zeZ, there is a finite open cover %, of X such that

a(l) mesh(%,) < min{1/2, d(x,, y,)/3}, and

b(l) the nerve N(#%,(F(x)) is a tree, where &,(F(x,)={Ue#,|Un
F~Y(F(xy) # @} :

By induction, we can choose (x;, y)e(M,) =M, (i=1, 2,...) and a finite open
cover %, of X such that

a() mesh(#) < 1/2!, %4, is a refinement of %, and %, ; (F(x;.1)) is a refinement
of &,(F(x)),

b(i) the nerve N(%(F (xl))) is a tree, and

oi) a chain [Ui, ..., Utk ] from xipy t0 yiry in %41 (F(xi41)) is crooked
between U, and U, where x;e UL e%, and y,eUl e%,

By b(i) and c(j), for each i =1, 2, ..., we can choose a subchain [U%,,
[Ui, ..., Ulgy] such that

(1) Uz, =2 ClUZ) > U = CLUE) = ...,

(2 U3, > Cl(U)> UE o2 CU3) > ..., and

(3) LU, ..., Ui'] is crooked between Ui, and Ul,.

By a(i), limy.., CI(U%,) = x and lim;.,, CL(U},) = y. Note that x # y and F(x) = F(y).
Also, F7'z) is treellike for each zeZ Put Y= ﬂ{‘;l G;, where
G, = {CLU)|Ue,(F(x))}. By a(i) and b(), Y is a continuum such that ¥ = F~*(F(x))
and x, ye Y. Let K be the irreducible subcontinuum between x and y in F™*(F(x)).
Since F™*(F(x)) is tree-like, we see that K = ¥. Thus K is nondegenerate.

We shall show that K is indecomposable. Suppose, on the contrary, that there are
two proper subcontinua A and B of K such that K = AU B. Since K is irreducible
between x and y in Y, we may assume that xe A—B and ye B—A. By a(i), we can
choose i such that Cl(UL)nB=@ and Cl(U.)nA=@. Consider the cover
Ui+ 1(F(xi41) of F7Y(F(x;4,)). Note that the nerve N(%.1(F(xi+1))) is a tree and

o UL of
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W1 (F(%141) is a cover of K. By (3), there are two subchains [UL*, ..., U}*'] and
[ULtY, ..., U] of [ULTY, ..., US'] such that p < g and Uyt < UL, UST < UL,.
Then AnUL %@, BAUN'#£@, AnUL''=0 and BAUYT'=0@. Since
N(i+1(F(xi+1))) is a tree, we see that AnB =@, This is a contradiction.

Hence K is indecomposable. Since F~(F(x)) is hereditarily decomposable, this is
a contradiction. Hence, Claim (I) is true.

Next, we shall prove the following.

Cram (). If f+ X - X is an expansive homeomorphism, then M, +# & for any
countable ordinal a, where M = H.

Proof. Let 6 > 0 be a positive number satisfying the conditons as in (3.4). Choose
zo€Z such that F~'(zo) is nondegenerate. Let x,, yo&F~'(z) with x, # y,. Choose
a sequence %, %,, ... of finite open coverings of X such that

(1) %4, is a refinement of %, and
(2) mesh(%) < 1/2* for each i.

According to (3.4), there is a sequence ¥y, #",, ... of finite open coverings of X such
that for some integer N()eZ,

(3) fY(¥) is a refinement of %,

(@) fYO(7(F(xy) is a refinement of 4,(h"O(F (x,))) and N(¥(F(x,))) is a tree,

() if [Vis..o» V] is a chain from x, to y, in ¥ (F(xo), then
LAYV, +vvs S¥O (V)] is crooked between U4 and U}, where U} and U} are elements
of ,(WO(F(x,))) and d(UY, Uy) > 6—2mesh(%)) for each i.

Since X is compact, we may assume that limy.,., CL(UY) =x, and lim;.,,, CI{U})
= y,. We will show that (x,, y,)e M, and d(x,, y) = é. Clearly, (x,, y,)e M (= H) and
d(x, y,) 2 6 (see (5)). Let % be any finite open cover of X and let y > 0. By the
constructions of x, and y,, there is i such that Cl({U}) < U,,, CUY) = U,, and %, is
a refinement of % with mesh(@,) < 7, where U, (resp. U,,) is an element of % containing
x, (resp. y,). We may assume that f¥O(%(F(x,))) is a refinement of %(F(x,)), because
F~1 is upper semicontinuous. By (4) and (5), (f¥®(xo), fN®(yo)) and f¥O(¥") satisfy the
conditions of the definition of M. Hence (x;, y)eM’ = M,.

For a countable ordinal A, we assume that we have obtained (x,, y,) in M, for all
< A such that d(x,, y,) = &. We will define (x,, y,)e M, recursively in the following
way: Consider two cases.

(i) A=oa+1. By an argument similar to the above one, we can obtain
(%t 1> Ya+1)€ Moy such that A(Xy4 15 Yar1) = 0.

@ii) A is a limit ordinal. Take a sequence a, < o, < ... of countable ordinals such
that lim., o; = 4. Note that d(x,,, y,) > 6. We may assume that {x,,} (resp. {y,})
converges to a point x, (resp. y,) of X. Then d(x,, y») > J and (x,, y,)€ H. Since M, is
closed in H and M, M, for a < f, (x;, y)eM,, for all i. Hence

©
(xls y;.)E ﬂ Mau = ﬂ Ma = Ml'
i=1 ta<ad
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Therefore M, # @ for any countable ordinal A. Claim (IT) contradicts Claim (X), which
completes the proof.

Proof of (3.1). Let f: X — X be an expansive homeomorphism of X. Suppose,
on the contrary, that X is hereditarily decomposable. By (3.3), we can choose a minimal
nondegenerate subcontinuum X in the set {Z|Z is a nondegenerate subcontinuum of
X such that f(Z) = Z}.Put f; = f|X,: X, - X,. Note that X, is F-like. By (2.1), X,
is a @,-continuum for some n > 0. :

For any one-dimensional continuum ¥, we define an index I(Y) as follows:
I(Y) < mif for any ¢ > 0 there is a finite open cover % of Y such that the nerve N (%) is
a graph, mesh(%) < ¢ and the number of all simple closed curves in N (%) is equal to or
less than m. When I(Y) < m and I(Y) < m—1 is not true, we define I(Y) = m. Note that
if Z is any subcontinuum of ¥, then I(Z) < I(Y).

Since F is a finite collection of graphs and X, is F-like, there is a natural number
N such that I(X,) = N < co. By (2.2), there are a monotone map F: X, — G, from X,
onto a graph G, and a homeomorphism h,: G, —» G, making the following diagram
(C,) commute:

x, & ox,

A

G1‘;7G1

Since h; is not expansive (see [2], [7] and [8]), F, is not a homeomorphism.

Put E; = {yeG,|F7'(y) is nondegenerate and not tree-like}. Now, we shall prove
that E, is a finite set, in fact the cardinal number Ef of E, is equal to or less than N.
Suppose, on the contrary, that Ef = N+1. Choose yy,..., yy+1 in E; such that
yi#y; (#)) and Fr'(y) is not treelike for each i Choose & such that
0<e<imin{d(FT'(y), F{'))I1 <i#j<N+1). Let e=¢, >e,>... be a se-
quence of positive numbers with lim;.,,, ¢; = 0. By the definition of N, we have finite
open coverings %, of X, such that N(#) is a graph, mesh(N(%)) < g for i=1,2, ...,
and the number of simple closed curves in N(%,) is < N for each i. Hence we can choose
ko and a subsequence {i;} of {1,2,...} such that N(%,(Fi'(y,) = N({Ueu,|
UnF1'(y,) # 9))is a tree, which implies that F{ !(y,,) is tree-like. This is a contradic-
tion. Therefore E; < N.

Since f, is a homeomorphism and by (C,), h,(E,) = E,. By the definition of X, h,
has no fixed points in E,. If E; # @, we can choose y, in E, such that h{*(y,) = y, for
some ny >2, and Ki(yo) Ah(y)) for 1<i<j<n,. Put X,=Fri(y,) and
fi=f"|X3: X3 — X3, Note that {FT*(yo), F7*(hy(vo), ..., FT (B3~ ()} is a fami-
ly of mutually disjoint continua which are not tree-like. Hence I(X%) < I(X 1). Take
a minimal nondegenerate subcontinuum X, in the set {Z|Z is a nondegenerate
subcontinuum of X% such that f3(Z)= 2} and put f, = f3|X,. Note that I(X,)
< I(X%) < I(X,) = N. By (2.2), there are a monotone map F,: X, = G, from X, onto
a graph G, and a homeomorphism h,: G; — G, making the following diagram
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(C,) commute:

x, & x,

SN
G2 “"aﬁ Gz ‘

Note that f; is also an expansive homeomorphism (see (3.2)). Put E, = {ye G,|F5 !(y) is
nondegenerate and not tree-like}, If E, # &, we continue this process. Then we see that
0 >N =I(X,) > I(X,) > I(X3) >... Note that I(Y) > 0 for any continuum ¥, and
I(Y)=0if and only if Y is tree-like, Clearly, we can reach the situation E, = @, ie,,
there are a nondegenerate subcontinuum X, of X, _,, an expansive homeomorphism
S Xy = X, of X and a monotone map F,: X, - G, [rom X, onto a graph G, such

" that Fy'(y) is tree-like for any yeG,, and a homeomorphism b, of G, making the

following diagram (C,) commute:

x, & x,

of

Gk Iy Gk

Since h, is not expansive, F, is not a homeomorphism. Note that X, is hereditarily
decomposable.
By (3.5), this is a contradiction, which completes the proof.

Let f: X =X be a map of a compact metric space X with a metric 4 and let
(X, f) = {(x)olxi€ X, [ (x140) = X, 120}
Define a metric d for (X,f) by

A%, 9)= 3 dee, y/2',  for %= (<)o, § = G20 (X, 1),
i=0

Then the space (X, f) is called the inverse limit of the map f Note that (X,f) is
a compact mettic space. Also, define a map f: (X, f)— (X, f) by

f((xx)twmo) = (f(x:))ﬂo (= (f(xo)’ Xg» X1 ~--’))-

Then f'is a homeomorphism and it is called the shift homeomorphism of f. Note that
almost all examples of one-dimensional continua admitting expansive homeomor-
phisms are obtained as inverse limits of maps f: G— G of graphs whose shift
homeomorphisms are expansive (see [117, [13]; [14], [22], [23] and [26]).

(3.6) CorOLLARY. Let F be a finite collection of graphs. If a continuum X is
homeomorphic to an inverse limit of an inverse sequence {G,, fun+1} Such that each G, is
an element of ¥, and X admits an expansive homeomorphism, then X contains an
indecomposable subcontinuum. In particular, if f: G — G is a map of a graph G such that
(G, f) is nondegenerate and the shift homeomorphism ' is expansive, then (G, f) contains
an indecomposable subcontinuum.
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(3.7) Remark. In the statement of (3.1) and (3.6), we can not conclude that X itself
is an indecomposable continuum.

The following problems remain open.

ProBreM 1. Is it true that if a one-dimensional continuum X admits an expansive
homeomorphism, then X contains an indecomposable subcontinuum?

ProBLEM 2. Is there a hereditarily indecomposable continuum admitting an
expansive homeomorphism? In particular, does the pseudo-arc admit an expansive
homeomorphism?

ProBLEM 3. Is there a nonseparating plane continuum admitting an expansive
homeomorphism? Moreover, is there a tree-like continuum admitting an expansive
homeomorphism?
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