164 R. Levy et al.

We close with some questions: ' -

1. Does Corollary 15 hold with no set-theoretic assumptions:

2. Does Corollary 15 hold under MA + -1CH? . . .

3. Is there a generalization of Corollary 15 to hxlgh.er carélnals. o

4. Given an index set I and an ultrafilter % on [, is 1t possible to deter'mme he
cardinality of the set of prime ideals between (%) and () (perhaps assuming some

additional set-theoretic hypothesis)?
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On some subclasses of Darboux functions
by
J. M. Jastrzebski (Gdansk), J. M. Jedrzejewski and T. Natkaniec (Bydgoszcz)
Abstract. The maximal additive, multiplicative and lattice-like classes for some classes of real
functions are computed.

1. Introduction. We shall consider mainly real functions of a real variable, however,
some of the considered functions will be defined on different sets, and sometimes the
range sets will be different. Let us settle some of the notations to be used in the article.

@onst  — the class of constant functions,

Bon ~ the class of connected functions,

€ — the class of continuous functions,

o — the class of almost continuous functions,

2 — the class of Darboux functions,

D%, — the class of Darboux functions of the first class of Baire,

F — the class of functionally connected functions ([5]),

Isc(usc) — the class of lower (upper) semicontinuous functions,

M — the class of Darboux functions f with the following property: if X, 18

a right-hand (left-hand) point of discontinuity of f, then f (%) =0 and
there is a sequence (x,) converging to x, such that x, > x, (x, < X,) and
f(xn) = 07

the class of all functions f such that for each x from the domain
fx)eL™(f, x) n L* (f, x) and the sets L™(f, x), L* (f, x) are closed intervals.

The symbols L™(f, x), L™(/; x) denote the cluster sets from the left and right,
respectively, of the function f at the point x.

Notice that if fe.#, then the set E of all points of discontinuity of f is nowhere
dense and f(x) = 0 for each x in E. Consequently, f is a function of the first class of
Baire, hence # < 9 " B, . Since f "B, = Gonn B, = D B, ([1]), we have A < o
Thus for the classes of real functions defined on an interval we have

CsHcASbnSF D D,

Let & be a class of real functions. The maximal additive (multiplicative, lattice-like,
respectively) class for & is defined to be the class of all fe & for which f+ge % (fye ¥,
max(f, g) and min(f, g)e %, respectively) whenever geZ. The respective classes are
denoted by (%), A, (%), H(Z).
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Moreover, let
M oin( ) = {feX; if geZ, then min(f, g)e%},
Max (&) = {feX; if geZ, then max(f, g)eZ}.

Then (%) = M (X)) N M in(Z)-
For real functions of a real variable we know that

M (Con) = M(F)=M(DB)=% (see [2], [5]),
MADNB)=ll ([4]), M(D)= M, (D)= %onst ([9]).

In the present article we shall prove the following:

M (A) = M, (Con) = M (F)= M,

M () = M\ (Gon) = M(F) =%,

M (A)=% (compare [8]).
We omit some proofs that can be left to the reader.

2. Some basic lemmas

LeEmMA 2.1. Let ¢ be some property of functions and X a topological space. Let &,
be the class of all functions f: X —R with property @ and let %, be the class of all
Sunctions g: X — R x R with property ®. Suppose the classes %, %', fulfil the following
conditions:

(1.1) if ge&, and he®, h: R* >R, then hogeZ,

(12) if feZ,, ge%, g: X—=R, then k=(f, g)eX,, where k(x) = (f(x), g(x)) for
xeX.

Then 6 S M%) A M, (T ) O M.
LEMMA 2.2. Let ¥ € 9D, fulfil the following conditions:
1Y) if f: IR, feZ, J is a subinterval of an interval I, then f|JeX,

(22) if h: (@, b)=R, heX, yeL*(h, a), ze L"(h, b) then the functions hy: [a, b)—R,
hy: (8, b]>R and hy: [a, b]—>R belong to %, where hy =hu{(a )},
hy =hu{(, 2)}, hy =h;Uh,,

(23) if I SR is an interval, acl and f{In(—c0, al}eZ, fil N [a, +c0))ed, then
feZ,

(24) %onst = MX), —1e, (X)
Then

@) A,(Z) =%,
(i) M min(®) € D "Isc and M0 (X) S D Nusc (hence M (%) < E).
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If moreover the class % fulfils the additional condition
25 if f: I=(0, ) and fe &, then 1ffeq,
then also

(i) A, (%) < A.

Proof (i) Assume that fe& and suppose that

J is not right-continuous at x,.
Since & & 2, we have ’

J o) e L™ (f; xo) N L*(f; Xg)-
Suppose that

J(x0) < lim sup f (x).
Let “
(f (o) +lim sup f ()2 if limsup £(x) < oo,
(*) c= X~ xg x-rxg
Sxg)+1 if limsup f(x) = oo,
. _ f(x) for x < x,
(rs) o) {2c—f(x) for x > x,.

Notice that in view of (2.4) the function g{(x,, co) belongs to & Since f(x,)e L* (g, x,),
according to (2.2) and (2.3) we infer that ge . Moreover, (f+g) (x,) = 2f (x) < 2¢ and
(f+9)(x) = 2¢ for x > x,. Thus f+9¢9D,.

If f(xo) > lim infy-xy f(x) the proof is quite the same.

(i) Assume that f is not upper semicontinuous at x, from the right, ie.
(%) < lim SUPx-xz f(x), for some x,eR. Let ¢ be defined by () and define ge&
by (x+). Then max(f; g)(x,) =/(x;) < ¢ and max(f, g)(x) = ¢ for x> x,, hence
max(f; g)¢ D, and consequently fé M u(Z).

In the same way we can prove that (% )€ Pynlse, and since
DBy =D B (see eg [2]), Mun®) S D isc.

(iii) Let fe4 and suppose that f is discontinuous at some point X, say from the
right. Assume that there exists d > 0 for which S(x) #0 for xe(x,, x,+d]. Let ¢ # 0,
¢ #f(xp), be a point from L*(f, x,). Define g: R~ R by

1/c for x < x,,
gx) = <1 (x) for xe&(xo, xo+d],
1f(xo+d) for x> x+d.

'll“ihcn ljee L*(1/f, x,). We infer from (2.5) that g|(x,, X, +d]€%, and from (2.2), (2.3)
that ge .
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Notice that fg(xq) = f(xo)/c # 1 and fg(x)=1 for x€(xq, Xo+d]. Thus fg¢ 2,

and hence f¢.#,,(%).
Thus there exists a sequence (x,) such that x, > X,, X,—X,, and f(x,) =0. Let
f(xo) = @ and suppose that a #0. Then we define

2 —
g(x)z{zz -f (x)

for x > xq,
for x < xg.

1t follows from (2.2)-(2.4) that g€ 2. On the other hand, fg ¢ 9, since fg(xo) = 24? and,

for x > xo, fg(x) = (2a~—‘f(X))f(x) <a*<2a

3. Almost continuity. If X, Y are two topological spaces, then a function f: X —»Y
is almost continuous iff each open subset G of X x Y containing the function f contains
a function continuous on X (here a function and its graph coincide).

LemMa 3.1 If f: XY is continuous and g: X —Z is almost continuous, then
h: X—Yx Z defined by h = (f, g) is almost continuous.
(See [8] for metric spaces. The proof for topological spaces needs no change.)
Lemma 3.2 ([7]). If f: X — Y is almost continuous and g: Y— Z is continuous, then
gof is almost continuous.

COROLLARY 3.1 If f: S— X is almost continuous, and g: S—Y and F: XxY—Z
are continuous, then Fo(f, g): S— Z is almost continuous. Since addition, multiplication,
min, max are continuous functions of two variables, this implies

G =M (A M (H) O M i) O M i ().

Remark. There are almost continuous functions f: R—R, g: R—R such that

h=(f, g) from R into R* is not almost continuous.

Proof. By [7] there are almost continuous functions f and g with f+g not almost
continuous. For such pairs of functions the transformation (£, g) is not almost continuous.

LemMa 3.3. If I =[a, b], f: IR is almost continuous, and G = I x R is an open
neighbourhood of f, then there is a continuous function g: I-R such that g < G,
g(@) = f(a), and g(b) = f(b).

Proof. Let U,xV,=G, U,xV,< G be neighbourhoods of (a,f(a), (b, /(b))
respectively. Choose x, e U\{a}, x,eU,\{b} such that f(x,)eV,, f(x;)eV,. Then
Gy = G\[({x1} x (R\V)) U ({x2} x (R\W;))]
is an open neighbourhood of f, hence there is a continuous function h: I —R such that

h < G,. Now define g as follows:
for xe[x,, x,]1,

h(x)
g(x)= {f(x) for xe{a, b},

linear on each of the intervals [a, x,], [x,, b].

This function fulfils the requirements of the lemma.
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Lemma 34. If h: (a, b)—R is almost continuous, ye L* (h, a), ze L~ (h, b) then the
Junctions hy =hu{(a, )}, hy =hu{(b, 2)}, hy = h, U h, are almost continuous.

Lemma 3.5. If I < R is an interval and I is the union of a finite or countable sequence
(I,) of closed intervals such that | J,<i 1, is connected for every k, and a function f|I, is
almost continuous for every n, then f|I is almost continuous.

Proof Let I, = [a,, b,]. Let G < I x R be an open neighbourhood of f In view of
Lemma 3.3, for each n there is a continuous function g,: I, —R such that

9SGl xR, gla)=f(a) g,0b,)=r(b).
Then g = U,‘;°=1g,, is a function that is continuous and contained in G.
THEOREM 3.1. M () = M (L) =F and M, (L) = H.
Proof. By Corollary 3.1 we have
€ = M (L) M,(A) O M.
Notice that the class « fulfils the conditions (2.1)-(2.5) from Lemma 2.2. Hence

‘ﬂa(d) = (g’ -’”min(ﬁ) < lSC, "”mnx('-d) < usc,

therefore
MH(A) € and M ()= M.

It now suffices to prove that .4 < .4,,().

Let fe.#. In view of Lemma 3.5 one can assume f to be defined on a closed
interval I=[a, b], where f(a)#03#f(b). Let g: I-R be an almost continuous
function and G an open set in I x R such that fg = G. Put E = {xel; f(x) = 0}. This set
is closed and contains the set of all points of discontinuity of f For each x e E we take
intervals U, < I and ¥, = R such that

(x,0eU,xV,cUxV. =G.

There is a finite sequence of intervals U,,, ..., U,, such that E = U;’;l U,,. Now let
V=t Vs. Let W,, ..., W, be the components of the set (U1 U,, such that if xe W,
yeW; for i <j then x < y. Notice that E< W, u...U W, and W;n W, =@ for i # j.
Moreover, the end-points of the intervals W, do not belong to E.

For each i=1,...,n choose a closed interval [a,, as+(] S W, such that
EnW, = Enay, azi+1] and ay;, a4 1€ E. Let us remark that it can happen that
Qi = A4y, and f{[azi-1, az;] is continuous. Since g|[a,,— 1, a,;] is almost continuous,
the product fg|[as;-1, az;] is almost continuous too. Since fal[azi-1, azi] = G there
exist continuous functions h;: [dsi-1, @] = R such that h; € G, haz) = hiagi-1) = 0.
Therefore the function h: I—R defined by

n+1 "

h= le b [(I\}:_)1 [82i-1, a2:1) x {0}]

is contained in G and continuous, which completes the proof.
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PROBLEM. Is it true that ,..(of) = D nusc and M i, (L) = D N Isc?

4, Connectedness. If X, Y are two topological spaces, then a function f: X -Y is
called connected provided f is a connected subset of X x ¥. The next two lemmas follow
from the fact that the continuous image of a connected set is connected.

LemMA 4.1. Let X, Y, Z be topological spaces. If f: X =Y is a connected function
and g: Y~ Z is continuous, then gof is connected.

LemMA 4.2. If f: X — Y is a connected function, g: X — Z is a continuous function,
then h = (f, g): X—»YxZ is connected.

CoRrOLLARY 4.1. If F: Xx Y—>Z is a continuous . function, g: S— Y is connected,
f: 8= X is continuous, then Fo(f, g): S—Z is a connected function.

In particular, the following inclusions hold:
C = M, (Gon) N M, (Con) N\ My (Con) N M pin(Gon).

Lemma 4.3. If h: (a, b)— R is a connected function, ye L (h, a), ze L™ (h, b), then the
functions hy, hy, hy are connected, where hy = hu {(a, Y)}, hy = h U {(b, 2)}, by = h; U h,.

LeMMA 4.4. If I = R is an interval and I is the union of a finite or countable sequence
(I,) of closed intervals such that \ ),<i I, is connected for every k, and a function f|I, is
connected for every n, then f|I is connected.

THEOREM 4.1. A,(Gon) = M (%on) =4, M, (Gon) = M.

Proof First, notice that the class %on fulfils the conditions (2.1)-(2.5) of
Lemma 2.2. Thus

M (Con) =¥, M, (Bon)s M, M(Gon)=4C.
According to Lemma 4.1 we infer that
M (Bon)=F, M(Fon)=F

(compare [5]). Only the inclusion = #,,(%on) has to be proved. By Lemma 4.4 it
suffices to consider functions fe.# defined on a closed interval I = [a, b] with a, b¢ D,
where D denotes the set of all points of discontinuity of f,

Suppose that there exists a conmmected function g: I—R such that fy is
not connected. Let (4, B) be a partition of fg and suppose that (a, f(a)g(a)e 4,
(b, f(B)g(b)) € B. Let now

Ay ={xel; (x,f(x)g(x)e 4}, B, = {xel; (x, f(x)g(x))e B},

and let ¢ = sup 4, . Of course, ¢ < b. Notice that if J is a component of I\D, then either
J= Ay, or J < B, for if not then fg|J would not be connected. Thus ce J. Moreover,
(¢, f(©)g(c) € A n B. Indeed, either c is an end-point of a component of the set I\D that
is contained in 4, , and hence ce A, or there exists a sequence (J,) of components of the
set I\D that are contained in 4, and such that J, < A;. Therefore there exists
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a sequence (x,) of points x,e 4, such that f(x,) = 0 and x,~c. Then (x,, 0) e 4, for
n=12, ..., and (¢, 0)e A. Similarly one can prove that (c, 0)e B. Since (c, 0)e 4 or
(¢, 0)e B we infer that (4 n B) U (4 n B) # @, hence a contradiction. This completes the
proof.

PROBLEM. Is it true that . ;.(%on) = D lsc and M ., (@on) = P ~usc?

S. Functional connectedness. Assume now that I is an interval. A function f: I—R
is called functionally connected provided for each [a, b] = and each continuous
function g: [a, b] — R, if (f (a) —g(a)) (f (b)—g(b)) < O, then there exists a point c & [a, b]
for which f(c) = g(c).

LemMma 5.1 If f: I >R is functionally connected and x €I, then S n(—o0, x] and
fIn[x, 00) are functionally connected.

Lemma 5.2. If I is a finite or countable union of a sequence 1) of closed intervals
such that | Jn<i 1, is connected for every k, and a Junction f|I,, is functionally connected,
then f|I is functionally connected.

Lemma 53. If h: (a, b)—R is functionally connected, yeL"(h, ), zeL™(h, b)
then the functions hy, h,, hy are functionally connected, where h,=huy {(a, »},
hy=h0{(b,2)}, hy=h, Uh,.

Lemma 5.4. (a) If f: I-R is functionally connected and both g: I—(0, + co) and
h: I—+(—c0, 0) are continuous, then fh, fg are functionally connected.
(®) If f: I=(0, ) is functionally connected, then so is 1/f.

LemMA 5.5. Let C be a nowhere dense subset of an interval I. Let (I,), be the sequence
of all components of the set I\C.
If f: IR fulfils the conditions

@) fII, is functionally connected for each neN,
(i) f(x) =0eL™(f, x) nL*(f, x) for x in C,

then f is functionally connected.
Proof Let a, bel and let h: IR be a continuous function such that
hia) < f(a) and f(b) < h(b).
By Lemma 5.2, with no loss of generality we can assume that a, beC. Hence
h(a) < f(a) =0=f(b) < h(b).

Notice that {xe(a, b); h(x) =0} is a non-empty compact set.
If h(x) = O for some xe C (g, b), then we are done. Assume now that h(x) # 0 for
all xeCn(a, b). Then

{xe(a, b); h(x)=0} ={J1,

and {n; I, " {xe(a, b); h(x) = 0} # @} is a finite set. Let L, ..., I, be the sequence of

2 — Fundamenta Mathematicae 138.3
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all components which meet the set {xe(a, b); h(x) = 0} and for which
supl,, <infl, if i<j.

Let I,,,, = (an,» by,) for m < k and ny = min{m < k; h(b,,) > 0}. Notice that h(by,) > 0
and h(a,,) < 0. Since f|I,, is functionally connected, so is ST, and consequently
h(z) = f (2) for some zel,,, which completes the proof.

THEOREM 5.1. M (F) = C = M\(F), M, (TF) = M, Mool F) = D O\ 15¢, M s (F)
= 9D nusc.

Proof. For the equality ./,(#) = % see [5]. To prove the other equalities notice
that & fulfils the conditions (2.1)~(2.5) of Lemma 2.2. Thus

MANF)E M, Moin(F) D N sc, Mo (F) = D N usc.

First we shall show that A ,;,(%#) = @  lsc and M oax(F) = D " usc. Let f, g, h be
real functions defined on an interval J such that feF, geD nusc, he® and

(max(£, 9)(@)—h(@) (max(f, g) (b)— (b)) <0,

for-some a, bel. Since max(f, g)—h = max(f—h, g—h)and g—he D A usc, the function
k = max(f, g)—h has the Darboux property (see [5]). Since k(a)k(b) < 0, there exists
ce[a, b] such that k(c) = 0. Hence max(J; g)(c) = h(c) and, consequently, max(f, g) is
functionally connected.

In the analogous way we prove that @ nlsc < M in(F). Hence

Muin(F)=DIse, Mo F) = D Nuse, M(F)=%.

Now we shall prove that J < 4, (%). Let 1, g be real functions defined on I such
that fe # and ge.#. Then the set E of all points of discontinuity of g is nowhere dense
and the set

B={xel: g(x)=0}

is closed. Let the sequence (I,) be the union of the set of all components of Int(B) and the
set of all components of I\B; moreover, let C = I \U,, I,,. Thus C is a closed, nowhere
dense set contained in B and all the assumptions of Lemma 5.6 for the function fg are
satisfied. Consequently, fg is functionally connected.

Acknowledgement. The authors would like to thank the referee for his (her) valuable
remarks which allowed them to correct many mistakes in the. first version of the
article.
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