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sparser than P. By Lemma 6, for all but finitely many natural numbers » the intersection
Pn{Q,, Q,+1, ..., Qur1—1} is non-empty. Thus P does not belong to I, since in this
case I has to contain all but finitely many natural numbers, which is impossiblé as I is
an ideal. m
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The space of Lipschitz maps from a compactum to
an absolute neighborhood LIP extensor

by

Katsuro Sakai (Tsukuba)

Abstract. Let X be a non-discrete metric compactum and Y a separable locally compact
absolute neighborhood LIP extensor. The spaces of continuous maps and Lipschitz maps from
X to Y are depoted by C(X, Y) and LIP(X, Y), respectively. Let I, be the Hilbert space and

1§ = {(x)el,} supli-x| < o}.

It is proved that (C(X,Y), LIP(X,Y)) is an (,, 19)-manifold pair if each point of Y has
a neighborhood V admitting a map y: ¥V—LIP(I, Y) such that each y(y) is an embedding with
y(»)(0) = y and the Lipschitz constant of each y(y) does not exceed some k >0, e.g, Euclidean
polyhedra without isolated points and Lipschitz n-manifolds (n > 0) have such a property.

Introduction. Let [, be Hilbert space and 12 the subspace of I, which is the linear span
of the Hilbert cube [[n[—i™!, i7'] < L, that is,

lg = {(x)el,| supi-x| < ©}.

An I,-manifold or an 12-manifold is a separable metrizable space locally homeomorphic
to I, or 2, respectively. An (I, lg)-mamfold pair is a pair (M, N) of an l,-manifold

* M and an [$-manifold N which admits an open cover % of M and open embeddings

0y U—l, Ued, such that @y(NAU) = §ngy(U).
Let X = (X, dy) and Y= (Y, dy) be separable metric spaces. In case there is no
confusion, d stands for both metrics dy and d,. We assume that

X is non-discrete compact and Y has no isolated point.
The spaces of (continuous) maps and Lipschitz maps from X to Y are denoted by

C(X, Y) and LIP(X, Y), respectively. The topology of these spaces is induced by
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the sup-metric
d(f, g) = sup{d(f (x), g(x))| xeX}.

It is known that C(X, Y) is an [,-manifold if Y is a completely metrizable ANR
[Ge,, To, Sa,]. Naturally arises the following:

ProBLEM. Under what conditions is LIP(X,Y) an %-manifold? Or is
(C(X, Y), LIP(X, Y)) an (l,, [$)}-manifold pair?

In [SW,], it has been shown that (C(X, ¥), LIP(X, Y))is an (I, 12)-manifold pair if
Y is a locally compact, locally convex set in a normed linear space, where Y is said to be
locally convex if each point of ¥ has a convex neighborhood. Locally Lipschitz maps are
shortly called LIP maps. If the domain is compact, a LIP map is Lipschitz. In the
category of metric spaces and LIP maps, we can introduce notions corresponding to
AR, AE, ANR and ANE, namely ALR (absolute LIP retract), ALE (absolute LIP
extensor), ANLR (absolute neighborhood LIP retract) and ANLE (absolute neighborhood
LIP extensor) (). Then Y is an ALR or an ANLR if and only if Y is an ALE or an
ANLE, respectively [Lu, Theorem 4.7]. Euclidean polyhedra and Lipschitz manifolds
are ANLR’s (ANLE’s) [LV, 5.12]. However, a normed linear space is generally not an
ALE [Lu, 3.13]. For LIP maps and ANLE’s (or ANLR’s) refer to [LV] and [Lu]. The
Lipschitz constant of feLIP(X,Y) is denoted by lipf. For each k>0, let
k-LIP(X, Y) = {feLIP(X, Y)| lip f < k}. In this paper, we prove the following:

MaN THEOREM. Let Y be a locally compact ANLE. Then (C (X, Y), LIP(X, Y))isan
(5, 18)-manifold pair if each point of Y has a neighborhood V admitting a map
y: V—=k-LIP(I, Y) for some k > 0 such that each y(y} is an embedding with y(y)(0) = id.

It can be shown that LIP(X, Y) is a g-compact ANR which is dense in C(X, Y) if
Y is a locally compact ANLE, but it is unknown whether LIP(X, Y) is an [2-manifold
without any other condition. If so, (C(X, ¥), LIP(X, Y)) is an (I, [§)-manifold pair.
(See Remarks.) A Lipschitz n-manifold (n > 0) clearly satisfies the condition of the Main
Theorem. We can also show that a Euclidean polyhedron without isolated points
satisfies the condition. Thus we have the following

CoroLLARY. Let Ybe a Euclidean polyhedron without isolated points or a Lipschitz
n-manifold (n > 0). Then (C(X, Y), LIP(X, Y)) is an (I,, lg)-manifold pair.

It is unknown whether every Lipschitz manifold has a LIP triangulation, ie.,
whether it is LIP homeomorphic to a Buclidean polyhedron (cf. [SS]). By [Su,
Corollary 3], every (topological) n-manifold can be metrized so as to be a Lipschitz
manifold if n#4,5 or if n=15 and the boundary is empty.

Proofs of Main Theorem and Corollary. We denote by I and Q the unit interval
[0, 1] and the Hilbert cube I®, i, the countable-infinite product of I, respectively. Let
M = (M, d) be a metric space. For xe M and 4 < M, we write

dist(x, A) = inf{d(x, y)| ye A}.

() In [LV], an ANLE is called an ALNE (= absolute LIP neighborhood extensor) but we
prefer “ANLE”.
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A closed set A = M is called a Z-set in M if for each & > 0 and each map f: Q—M,
there is a map ¢: Q- M\A with d(f,g)<e A cap set for M is a subset
N =JienN; = M, where N; = N, < ... is a tower of compact Z-sets in M such that for
each compact set A =M, ieN and &> 0, there is a j>i (€N) and an embedding
h: A— N; such that WlANN; =id and d(h, id) < & It is well known that (M, N)is an
(I, 19)-manifold pair if and only if M is an I,-manifold and N is a cap set for M (cf.
[Ch]). The following is a modification of Theorem 4.8 in [Cu] which can be easily
proved, so the proof is omitted.

LemMA. Let Ny« Ny = ... be a tower of compacta in an I,-manifold M satisfying the
Jollowing conditions:

(i) for each compact set A < M, ieN and ¢ > 0, there is a j=i(eN) and a map
fi A= N; such that fIANN;=id and d(f,id) <e; and

(i) for each ieN, there is a j > i (€N) and an embedding g: NyxQ—N; such that
g(x, 0) = x for each xeN;.

Then N = UiEN N;isa cap set Jor M, that is, (M, N) is an (I, lg)-manifold pair.

Proof of Main Theorem. Let x,, & X be a cluster point. For each ye ¥, let V()
be an open neighborhood of y such as in the condition and let

G ={feCX,Y) flx,)eV(M}.

Since {G(y)| yeY} is an open cover of C(X,Y), it suffices to show that each
G)NLIP(X, Y) is a cap set for G(y).

Now let y,eY be fixed. For simplicity, we write V = V(y,), G = G(y,) and
L=GnLIP(X,Y). Let y: V—k-LIP(I, Y) be a map such that each y(y) is an
embedding with y(y}(0) = y. Let Y= Jen ¥; and ¥ = | Jsen ¥}, where Y} and ¥; are
compact, ¥; <int Y4y, yoeint ¥, V,cint ¥4, and (V) = k-LIP(I, Y)).

Since x,€X is a cluster point, we can choose mutually disjoint closed balls
B;, (i, neN) in X with center x;, and radius r;, > 0 so that

Lm d(x;,1, X)) =0,  Fipey <3,  and

inm
Tims AXine 15 X)) S 3 dlxen, ).

Let B, = {Jyew Biwand Ly = {fe L] lip f <, f(X) € Y. f (Uis; B) = f(x,,)€ V;}. Then
each L; is compact and U.,-EN L; = L. By [Ch, Theorem 6.6], it suffices to show that
U jen Ly is a cap set for G. We verify the conditions (i) and (i) of Lemma L.1.

(i) Let F be a compact setin G, ke N and ¢ > 0. Let ev: F x X — Y be the evaluation
map, ie., ev(f, x) = f(x). Since F x X is compact, by [Lu, Theorem 4.11], we have § > 0
such that any LIP map ¥ [rom a closed set in F x X to Y which is é-close to ev extends to
a LIP map from F x X which is e-homotopic to ev. (Note that 6 in [Lu, 4117 is obtained
in the proof as the restriction of = which is independent of 4.) Choose j' > j so that

dist(f(x,). f(UB)) <6 forall feF
izj

and let
I'=(FnL)xXUFx(,

izf

Biu{xw})'
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Then I' is closed in FxX. We define a map y: I'>Y by
Y(FNL)xX =ev and

V() = Y(f, xo) = f (%) i (f; X)eFx | By.

izj

Then as is easily observed, i is Lipschitz. Since v is é-close to ev, it extends to a LIP
map J: Fx X - Y which is e-homotopic to ev. Note that f is Lipschitz since F x X is
compact. Then we can choose j”eN so that

j' = max{j, lipy}, FEFExX)c Y, and
f(x,)eVy for all feF.

Let ¢: F—L; be the map defined by ¢(f)(x) = (f, x). Then ¢p|FnL;=id and
d(¢, id) < & Thus (i) is satisfied.
(i) For each jeN, we define ¢: L;xQ—C(X, Y) as follows:
o(f, 2)lX\B; = fIX\B;
(£, () = 11 (xe)(z (rin—d(x, X)) for xeBy,.
Then ¢ is an embedding. In fact, if f # f'eL; then f|X\B; # f'|X\B;, which implies

that o(f, z) # @(f’, ) for any z, z’€Q by the definition. If z # 2’ € Q then z, 5 z, for
some neN, hence

and

o, Dpn) = 1S (X )z, 750)
# 1 XMz tin) = ¢(f; 2)(%pm)-

We will show that ¢(Lyx@)<Ly for some j>j For each (f,z)eL;xQ,
o(f, 2(X) < ¥; and

e, (U B)=olf, Dxe) = f(x) €V

izj+1

Then it suffices to find j > j so that ¢(f, 2) is j’-Lipschitz for all (f, z)e L;x Q. In case
x, x'€ X\B;,

d(o(f, (), o(fs D)) = d(f (), () <jedlx, ).
In case x, x'eB;, for some neN,
do(f, (), o(f, ) S ke lz,°d(x, x3,)—2,d (X', x;,)|
< k-d(x, x').
In case xeB;, and x'eB;, for n<n,
d(x, X) 2 d(x, X)—d(x', Xo) > $d(Xjn, Xoo)~%d(xj, X o)
2 5 d(x)m %) —§d(%jms %) = § A0y, Xoo)-

Therefore we have
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d(o(f; D), @(f, () < k(rjutF5,0)
Sk, <k$di,, x,) <2k-dx, x).
In case x&B;, and x'e X\B;, note f(x)= f(x,) and d(x, Xjn) =1y then
d(o(f; D), o, ) < d(o(f, D00, fx)+d(f (), f 1)
Sk (rja—d(x, Xp)) i d(x, x)
Sk(d, xpn)—d(x, x;,))+i-d(x, X))
< (k+j)-d(x, x').
Consequently, ¢(f, z) is (2k+j)-Lipschitz. m
Proof of Corollary for a Euclidean polyhedron. Let Y be a Euclidean
polybedron with K a simplicial triangulation. For each vertex veK®, let S,(v)
= 8d*(St(v, K)) be the second barycentric subdivision of the star at v in K, let S, (v) be

the simplicial neighborhood of §, (v) in the second barycentric subdivision Sd2K of K,
that is,
5, = {reSd*K| I'eSd*K st Un[S,(0) #D and t<7},
and let
U(v) = int(iS, (0)\ISt(v, Sd2K))).

Then {U(v)] ve K} is an open cover of ¥. We will construct a map y: U(v)—k-LIP(I, Y)
so that each y(y) is an embedding with y(3)(0) = y.

Let v, K® be fixed. For simplicity, we write S, = S, (o), Ny =Sl 5, = S, (o),
N, =|5,| and U = U (v,). We define a Lipschitz deformation ¢': N, xI— N, as follows:

W'(x, ) = (1—1)x+tv,.

As is well known, there exists a simplicial retraction r: S, — S, . Give a linear order on
89 so that v < ¢/ if v'e 89 and v" € SI\S?. For each ve S, let o/ =(, ), j =0, 1. Let
§, x J be the product simplicial complex of S, and the triangulation J = {0, 1, I} of I,
that is, '

Sy xJ =8,%x{0, 1}u{v]... 0?0l ;... 08| vg...v,€S8,,
U< oo <0, Uiy <. <0}

Then S,xJ is a triangulation of N,xI. We define a simplicial deformation
V' §,xJ =S, by

V@) =0 and Y'(®))=r@)
Then Yt NyxI—-N, is a Lipschitz deformation with W{=r. Let S, ={r€S,|
©AN,; =@}, Ny =S, and let a: S, J be the simplicial map defined by a(S§) =0
and «($9) = 1. Then «: N,—I is a Lipschitz map with a(N,) = 0 and «(N,) = 1. Each
xeN,\(NguN,) can be written as follows:

x = (l=s)x'+sx", x'eNgy x"'€bdNy, s€(0, 1).

for each veS9.
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Then a(x) =s and
Y (x, a(x) = (1 —s)x +sx", 5)
=y ((L—9)(x', 0)+s(x", 1)) = (1—5)x'+5x" = x.
If t > a(x) = s then

W, 1) = Y (=) X %", 1)

- (“E)'W((l =5y (', 0)+5°(x", 1)
t—s
V(=5 (2, D46, 1)

f—
= (1 —i—_:%)((l —8)x' +5°x")

By [LV, 2.21 &2.23], we can define a Lipschitz deformation y: N,x[—1, 1]+ N, as
follows:
"(r(x), t for t 20,
v, n = {000 )
Y(x, t+1) for t<0.

Observe that for all xe U, y(x, a(x)—1) = x and ¥(x, 1) # Y(x, t) if £ # ¢ > a(x)-1.
Let §: U — [0, 1) be the Lipschitz map defined by f(x) = (1 —a(x))/2. By [LV, 2.40], the
desired Lipschitz deformation ¢: UxI—N, can be defined by

w(x, t=B(9)

o, 0= 1=
x//(x, 2-(t_,B(x))) for t < B(x).

Then ¢ induces the desired map y: U—k-LIP(I, Y), where k =lipp. »

) for t = B(x),

Remarks. The following is a modification of Theorem 4.11 in [Lu]:
LIP APPROXIMATION THEOREM. Let f: M — Ybe a map from an arbitrary metric space
M to an ANLE Y such that f|A is LIP for a closed set A in M. Then there is a homotopy
h: M xI—Y such that hy = f, h,|A = f for each teI and hIM x (0, 1] is LIP, where the
metric for M x I is defined by :
d((x, 0), (3, 9) = dps(x, y)+lt—s|.

Proof. By Theorem 4.11 in [Lu], we have a LIP map h': M x (0, 1]— Y such that

©
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K)Ax (0, 1] = flAxid and
d(W(x, ), f(x) <t for each (x, )eM x (0, 1].

Then h' can be extended to the desired homotopy h by hy = f =
As an application of the above, we have the following:

ProOPOSITION. Let Y be an ANLE. Then for any metric compactum X and k > 0, there
exists a homotopy ¢: C(X, Y)xI—-C(X, Y) such that ¢, = id, ¢, |k-LIP(X, Y) = id for
each tel and ¢(C(X, Y)x (0, 1]) = LIP(X, Y). _

Proof We denote by ev: C(X, Y)x X — Y the evaluation, that is, ev(f, x) = f(x).
Then evlk-LIP(X, Y)x X is Lipschitz. By the above proposition, we have a homotopy
Y: C(X, Y)x X xI—=Y such that Y, =ev, {,[k-LIP(X, Y)x X = ev and y|C(X, )
x X %(0, 1] is LIP. The desired homotopy ¢ is induced by i, that is, each ¢(f, 1)
eC(X, Y) is defined by o(f, )(x) =¥(f, x,t). m

Thus if Yis a locally compact ANLE, then LIP(X, Y) is a 6-compact ANR by [Hu,
Ch. 1V, 6.3] since C(X, Y) is an ANR. Moreover, if LIP(X, Y) is an lg-manifold then
(Cx, Y),LIP(X, ) is an (I, 19)-manifold pair (cf. [Sa,, Proposition 2.1]).

Let 1 be the subspace of I, which is the linear span of the usual orthonormal basis,
that is,

= {(x)el,] x;,=0 except for finitely many i}.

Similarly to an (I,, lg)-manifold pair, we define an (I, Y)-manifold pair as a pair of
spaces which is locally homeomorphic to (I, I). In case X and Y are polyhedra, let
PL(X, Y) be the space of PL maps from X to Y. Itis known that (C(x, Y), PL(X, Y))is
an (l,, )-manifold pair [Ge,]. Analogously a triple of spaces which is locally
homeomorphic-to (I, $, If) is called an (I, 2, H)-manifold triple. For (I, 1§, l)-mani-
fold triples, refer to [SW,]. It is natural to conjecture the following:

CONJECTURE. In case X and Y are Euclidean polyhedra,

(C(X, Y), LIP(X, Y), PL(X, Y))

is an (I, 12, )-manifold triple.
In case Y is an open set in Euclidean space, this conjecture has been proved in [Sas]-
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Caractérisation topologique de Pespace
des fonctions dérivables

par

Robert Cauty (Paris)

Abstract. Let % be the space of continuous functions from [0, 1] into the reals, with the
topology of uniform convergence. We give a topological characterization of the subspace £ of
% consisting of everywhere differentiable functions. We show that & is homeomorphic' to the
subspace of the countable product = consisting of convergent sequences, as well as to the
subspace of the hyperspace 2! consisting of countable sets.

1. Introduction et notations. Tous les espaces considérés dans cet article sont
supposés métrisables et séparables. Soit % lensemble des fonctions continues de
I =10, 1] dans R, muni de la norme de la convergence uniforme, et soit & (resp. 2*) le
sous-espace de % formé des fonctions ayant une dérivée finie en tout point de I (resp. en
au moins un point de I). Nous nous proposons ici de caractériser topologiquement les
espaces 9 et @* et de donner quelques applications de ces caractérisations.

Pour formuler les caractérisations de 2 et 2* (théorémes 1.1 et 1.2}, il nous faut
rappeler quelques définitions. Si f et g sont deux fonctions de Y dans X et si % est un
recouvrement ouvert de X, nous dirons que f est %-proche de g si, pour tout y dans ¥; il
y a un &lément de % contenant 4 la fois f () et g(¥). Un sous-ensemble F d’un rétracte
absolu de voisinage X est appelé un Z-ensemble dans X s'il est fermé et si, pour tout
recouvrement ouvert % de X, il existe une fonction continue f de X dans X, %-proche de
Pidentité et telle que f(X) = X\F; si, de plus, il est toujours possible de choisir la
fonction f de fagon que Tf()?)r\F =@, alors F est appelé un Z-ensemble au sens fort
dans X. Une fonction f: Y-+ X est appelée un Z-plongement si Cest un plongement et si
f(Y) est un Z-ensemble dans X,

Soit # une classe d’espaces, Un rétracte absolu de voisinage X est dit 4 -universel
si, pour tout espace K appartenant 4 ., toute fonction continue fi K—X et tout
recouvrement ouvert % de X, il y a un Z-plongement g: K ~X qui est %-proche de
f: X est dit fortement A -universel si, pour tout espace K appartenant & ", tout fermé
L de K, toute fonction continue f; K — X dont la restriction 4 L est un Z-plongement,
et tout recouvrement ouvert % de X, il existe un Z-plongement g: K—X qui est
-proche de f et vérifie g|L = f|L.

Nous noterons .2, (resp. Z,) la classe des espaces analytiques (resp. coanalytiques).
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