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Another application of
the Effros theorem to the pseudo-arc

by

Kazuhiro Kawamura (Ibaraki) and Janusz R. Prajs (Opole)

Abstract. Let P be a pseudo-arc. Among other things, it is shown that for each integer n > 0
and each real number ¢ > 0, there exists a § > 0 such that for any unions U, U’ of sequences of
n continua lying in mutually distinct composants of P, every §-homeomorphism h: U — U’ can be
extended to an e-homeomorphism h*: P — P. This generalizes an earlier result of the first author.

1. Introduction. In [L], Lehner has shown the following theorem.
LEHNER’S THEOREM. Let P be a pseudo-arc and let K,,...,K,, L, ..., L, be
a sequence of proper subcontinua of P which satisfies the condition:
(0)  Pisirreducible between K; and K;, L; and L; for i # j, and K, L; are homeomorphic
fori=1,..,n )
Then each homeomorphism h: K, U
sion h*: P—P.
Previously, the first author has considered in [K] the following question, closely
related to Lehner’s result:
Let n be a positive integer. Given ¢ > 0, does there exist a § > O satisfying the
conditions (1) and (2) below?
Let Ky, ..., K,, Ly, ..., L, be a sequence of proper subcontinua of P satisfying the
condition (0).
(1) Ifdist(X;, L) < é and K, L; are homeomorphic fori=1, ...,
¢-homeomorphism h: P—P such that h(K;) = L
2 ¥ hKu.uK,—»Lu.. UL, is a d-homeomorphism, then it admits an
¢-homeomorphic extension h*: P— P. !

UK,—»Liu...0L, has a homeomorphic exten-

n, then there is an

Applying the classical method (introduced by Bing in [B]) of constructing
autohomeomorphisms of the pseudo-arc with the help of chain covers, Kawamura has
answered this question in the affirmative for n < 2. In the present paper we generalize
this result-to arbitrary positive integer n. Our method is completely different from that
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of [K]. Avoiding any advanced technique of chain covers or inverse limits, we only use
the Effros theorem and some mapping properties of the pseudo-arc due to Lehner,
Cornette and Lewis.

Throughout the paper, a compact connected metric space is called a continuum.
A continuum is called chainable if it can be represented as an inverse limit of arcs.
A continuum X is said to be hereditarily indecomposable if no subcontinuum Yof X is
a union of two proper subcontinua of Y. A hereditarily indecomposable, chainable
continuum is topologically unique, and it is called a pseudo-arc. It is known that the
pseudo-arc is homogeneous.

In what follows P denotes a pseudo-arc with a metric d, and C(P) its hyperspace
consisting of all nonempty subcontinua equipped with the Hausdorff distance denoted
by dist. The term “mapping” means always a continuous mapping. Let A4 be a subset of
P. Then H (A) denotes the space of all autohomeomorphisms of 4 equipped with the sup
metric d. Let & be a positive number. Two maps f, g: A— P are said to be e-near
if d(f,g)<e A homeomorphism feH(4) which is e-near to id, is called an
g-homeomorphism. '

The following version of the Effros theorem [E] will be used.

ErrrOS’ THEOREM. Let a topological group G and a space X be separable and
completely metrizable, and let f: G x X — X be a transitive action (ie. for each x, ye X
there is a g€ G such that f (g, x) = y). Fix a point ae X. Then the map T,: G— X defined
by T,(g) =f (g, a) is an open map onto X.

Now we formulate the main result of this paper.

THEOREM 1. For every real number ¢ > Q and every integer n > 0, there is a § > 0 such
that if K, ..., K,, Ly, ..., L, are proper subcontinua of P fulfilling condition (0), then (1)
and (2) hold.

It can easily be observed that part (2) of Theorem 1 follows from part (1) of the
present theorem and the following assertion: :

(2) For every ¢>0, there exists a 6 >0 such that if K,,..., K, are subcon-
tinua of P lying in distinct tomposants of P, then each d-homeomorphism

h:K,u..0K,»K u...UK, can be extended to an e-homeomorphism of

P onto P.

(This is a special case of part (2) of Theorem 1, when L; = K;.)
Thus in order to prove Theorem 1, we shall first prove condition (1) and then (2').

2. Proof of Theorem 1. Our argument starts with the following lemma (see also
Question 1 in Section 3 concerning a possible generalization).

Lemma 1. For any finite sequence Q,, ..., Q, of nondegenerate continua lying in
mutually distinct composants of P, and any monotone surjections f: Q;=P,i=1, ..., n,
there is a common extension f: P—P of all f,.

Proof. Consider first the case where the f, are homeomorphisms. By Lehner’s
Theorem it suffices to show that
(2)  there exist continua Q,, ..., @, lying in mutually distinct composants of P, and
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there are homeomorphisms f;: Q;—P, i=1,...,n which have a common
extension to P.

We will prove the lemma by induction on n. Since each subcontinuum of P is

a retract of P by the result of Cornette [C], the case n = 1 is clear. Assume that the

lemma holds for n—1. There is an obvious homeomorphism k e H (P) such that h* = idp

and h has a unique fixed point. There is also a sequence of nondegenerate continua
Q45 ..o Qn—y in P such that

P is irreducible between Q;, Q; for i+ j, and between h (@), Q; for any

Lji=1,..,n—1.

We will show that there exist homeomorphisms f;, ..., f, on the continua
Q1. s Que1> @n = h(Q,- ) satisfying (a). To see this, we consider the family {{x, h{x)}:
xeP}. This family is a continuous decomposition of P. Denote by g the quotient map,
which is open. By [R], g(P) is again a pseudo-arc. The continua g(Q1)s - 9(Qu-1)
= g(Q,) lie in mutually distinct composants of g (P). By the inductive assumption, there
exist homeomorphisms k;: g(Q)—g(P), i=1, ..., n—1, and their common extension
h0: g(P)_'g(P) Plltﬁl‘lg fl = hlgIQIx -'-sﬂt*l = hn—-lQ]Qm-i:f,. = hn—lg]Qm we ob-
tain homeomorphisms f;: P— g (P) which have a common extension hog. Thus (a) is
satisfied, implying the lemma for n.

If some f’s are nontrivially monotone, we consider the quotient space P’ of P,
induced by the decomposition of P into the sets /i (x) and single points. The quotient
map is monotone, and hence P’ is a pseudo-arc (see [M1, (8.16), p. 747). Applying the
above argument to P’ instead of P, we obtain the conclusion.

Let Q,, ..., @, be fixed continua lying in mutually distinct composants of P. Define

Py, ..., P, as follows;
P
P, ={
C(P)

Let .# be the space of all surjective maps f: P — P equipped with the sup metric. Define
amap T: .M —-P x...x P, by

T()=(f(Qus-...S (@)

if-Q; is degenerate,

otherwise.

Put

Z,=2Z,0y,....0)={lx,...,x,)ePy x ... xP,: if Q, is nondegenerate,
then so is x;, and x;, x; lie in distinct

composants of P for each i # j}.

Note that Z, is a Gsset in Py, x ... x P,.

LEMMA 2. For any ¢ > 0 and any z, = (23, ..., 20)e Z,, there exists a & > 0 such that
Jor any (zy, ..., z,)e Z, with dist(z;, 2/) < § (i =1, ..., n), there exists an e-homeomor-
phism he H(P) which carries z{ onto z;.

Proof. Define an action f: H(P) x Z,~Z, by f (h, (2y, .-, 2,)) = (A(z). ..., h(z,):
Then f is transitive by Lehner’s Theorem. Apply Effros’ Theorem to G = H(P), X = Z,,
and a = (29, ..., z0).
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LemMa 3. For any x = (Xq, ..., X,)€Py X ... X P, there is a map fed S'fc}.' that
T(f) = x and T is interior at f (i.e. xeint T (U) for every open s.et Uin 4 co&tazmng £).
Moreover, if x; is nondegenerate, then f|Q;: Q;—x; can be a homeomorphism.

Proof Let R, be a continuum such that

{Qi if x;=P,

a proper subcontinuum of P properly containing Q; otherwise.

i
Let f;: R;—P be such that
a monotone open surjection if x; is degenerate and Q; is not,
j; —_

a homeomorphism otherwise,

and fi'(x)= Q;. Further, let f: P»P be a common extension of all f,-’s,‘whlose
exist;ance is guaranteed by Lemma 1. Given a neighbourhood N of idp in H (P), in view
of Lemma 2 and the definition of f;, we observe that xeintT(fN), where
fN ={fg: geN}. Hence the lemma follows.

LEMMA 4. For any &3>0, there is a 6 >0 such that if x=(xy, ..., X)EZ,,
y=(Vyy e Vi) EZ, and dist (x;, y) < 8 fori=1,..., n, then there are mappings f, ge M
with T(f)=x, T(g)=y, and d(f, g) <e&.

Lemma 4 follows from Lemma 3 and the compactness of Py x ... X P,.

LEMMA 5. For any ¢ > 0, there is a § > 0 such that if (1, ..., X,), (15 --» VJEZ, and

dist(x, y) <6 for i=1,....n, then there is an e-homeomorphism h: P—P with
h(x;) = y;.
Proof For a given >0, let § be as in Lemma 4. If x = (X, ..., X,) and

y=(J1s ..., ¥a) in Z, satisfy the hypothesis of the lemma, then there are maps f, g el
as in Lemma 4. By [Lw3] there are homeomorphisms f,,, g,,€ H (P) such that limf,, = !
and limg,, = g. Applying Lemma 2, we obtain homeomorphisms g, r.€H(P) such
that g,.f,(Q) = Xi, 'wdn (Qy) = y; and lim g,, = limr,, = id,. We have d(G,.fy» "wdm) < €
for sufficiently large m, and thus the required h'is r,g,f migmt.

For a fixed n there are exactly 2" distinct sets Z,. They are constructed by taking all
combinations of Q’s, each Q, being either degenerate or not. For any ¢ > 0 and any set
Z,, there is a § guaranteed by Lemma 5. The minimum of these ¢’ satisfies conclusion
(1) of Theorem 1, and thus this conclusion is proved.

Next we proceed to find, for a given ¢>0, a 6 >0 which satisfies the con-
clusion (2').

Again, consider a fixed set Z,.

Lemma 6. For any (zy, ..., z,)€ Z, and any & >0, there is a & > 0 such that every
8-homeomorphism h: z, U ... Uz,~2,; U... Uz, with h(z)) = z; possesses an e-homeomor-
phic extension h*: P—P.

Proof. Put

H, ={heH(P): h(z)=1z for i=1,...,n},
H,={heH(z u...uz): h(z)=z for i=1,...,n}.

The action ay: H, x H,—H, is defined by
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ag (b, f) = h.f, for heH,.

Clearly, a, is transitive by Lehner’s Theorem. Since both H , and H, are completely

where h, = hjz,u...uz,

. metrizable, the lemma follows from Effros’ Theorem.

To show the next lemma, we need a certain preparation.
Let X be a space, and & a continuous decomposition of X into compact sets. The
following property of 2 will be considered:
(*) (a) each autohomeomorphism of X/ can be lifted to an autohomeomorphism
of X, and
(b) for each De 2 and each autohomeomorphism f of D, f can be extended to an
autohomeomorphism f* of X such that f*(D') = D’ for every D' e 9.
In [Lw5] Lewis has shown that for any one-dimensional continuum X there is
a one-dimensional continuum X with a continuous decomposition 2 into pseudo-arcs
satisfying (), such that X /% is homeomorphic to X. Another result of Lewis [Lw4] 5ays
that in the case when X = P, the space P, which must be hereditarily indecomposable, is
again a pseudo-arc. Hence P admits a continuous decomposition into pseudo-arcs
satisfying (+). In the next lemma we prove that the elements of such a decomposition can
be arbitrarily small.
LemMA 7. There are continuous decompositions & w m=1,2,..., of P into
pseudo-arcs, satisfying (+), such that mesh#, = sup{diamF: Fe#,} -0 as m—co.
Proof Let P =lim(A4;, f{), where the A; are arcs. Lewis’ construction of P can be

sketched as follows. Arcs of pseudo-arcs A, (i.e. chainable continua with continuous
decomposition into pseudo-arcs, which have the arcs 4; as quotient spaces) are
considered instead of the arcs 4; with the quotient maps g;: 4,—4;. The maps
f: A;j— A; are lifted to some maps fi: 4, 4;. The space P is defined as lim (4, f).

We modify this construction to obtain pseudo-arcs ﬁ,,, defined as lim (B;, gf), where

B; = {’fﬁ
4;

We assume that all considered spaces are contained in the same Hilbert cube. Being
homeomorphic to P, each pseudo-arc P, has a continuous decomposition 2,, into
pseudo-arcs, satisfying (x), and lim mesh &,, = 0. On the other hand, limB,, = P and
thus, by [Lw2, Theorem 1], there are g,-homeomorphisms h,: P, —P such that

m*

limg, = 0. Then the decompositions &%, = {h, (D): De %,) are those desired.
m m m ms

LemMA 8. For every &> 0, there is a 6 >0 such that for any P'eC(P), every
O-homeomorphism he H(P') has an s-homeomorphic extension h*e H(P).

Proof Given any ¢ > 0, take 25, as in Lemma 5 for ¢/4 and n = 1. By Lemma 7,
there exists a continuous decomposition # of P into pseudo-arcs whose mesh is less
than ;. Let

(1) C, = {AeC(P): diam A < 5,}

fi for j<m,
g=<f

. fi for i<m<.

for i <m, .
. for i,j=m,
for i = m,


Artur


K. Kawamura and J. R. Prajs

152

and assume that P'eC,. Then there exists an ¢/4-homeomorphism fe H (P) which
carries P’ onto a member Q of #. Assume that he H(P) isa 6 ;-homeomorphism. Then
. fhf"*|QeH(Q) has a §,-homeomorphic extension G by (+) and the choice of #. An
g-homeomorphic extension of k is defined by f~ Laf.

Next we fix a nondegenerate proper subcontinuum Q, of P. By Lemma 3 (n = 1),

there exists a map g: P—g(P) =P such that

2 - glQ,:Q,—P isa homeomorphism,

and

(3) PeintT(N) for each neighbourhood N of g in 4.

Take & > 0 such that if d(x, y) < & then d(g(x), g(y)) < &2 for any x, yeP. Let >0

be a number whose existence is guaranteed by Lemma 6 for &/4 and Q, (n = 1). By (2),

there exists a 8, > 0 such that &, < &/16, and the following conditions are satisfied :

(4)  for any homeomorphism k: Q, — P which is 49,-near to g|Q,, k™'and(g]Q,)"*
are 7/3-near,

(5) for any pair x,yeP with d(x,y) < 46,,

(91007 (0, (91207 () < n/3.

By (3) applied to the N = 26,-neighbourhood of g, there exists a g > 0 such that the
g-neighbourhood of P in C(P) is contained in int T(N). Define C, by

6) C,= {AEC(P)Z dist (4, P) < Q/Z}a

and assume that P'eC,. Take a §,-homeomorphism he H (P). We will construct an
e-homeomorphic extension of h By the choice of ¢, [Lw3], and Lemma 5, we may
assume that there exists a ke H (P) which is 45,-near to g with k(Q,) = P'. Then
d(k™'hk|Q,, idg,) < 1. Take a é-homeomorphic extension G of k~*hk|Q,. Then the
required extension of h is kGk™*. Let

Cs={AeC(P): diamA4 > §, and dist(4, P) > 0/2}.

Since C, is compact, by Lemmas 5 and 6 we can find a ;3 >0 such that each
d;-homeomorphism on each P'eC, has an s-homeomorphic extension to P.

Taking & = min(J,, 8;, §5) we obtain the number required in the conclusion of
Lemma 8. ’

LeMMA 9. For every ¢ > 0, there is a 8 > 0 such that for any z = (zy, ..., z,)€ Z, and
any 8-homeomorphism h: z, U...Uz,—z, U... Uz, With h(z)) = z;, there is an ¢-homeo-
morphic extension h*e H(P) of h.

Proof. Consider any given ¢ > 0. Fix nondegenerate proper subcontinua L, ...
lying in mutually distinct composants of P, and some homeomorphisms g;: L;— P,
i=1,...,n By Lemma 1, g,,..., g, have a common extension g: P—P. We take
positive numbers §,, §,, 6; and ¢ which satisfy the following conditions:

(1} For any pair of points x, y in P with d(x, y) < d;, d(g(x), g(y)) < ¢/4.

s Ln
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(2) Each §,-homeomorphism on Lyv...uL, which carries L, onto L; has
a d,-homeomorphic extension to P (Lemma 6).

(3) EBach §j-homeomorphism on any proper subcontinuum K; of L; has
a d,-homeomorphic extension to L; (Lemma 8).

(4) For any pan' of points x,y in P with d(x, y) < 5, d(g

=1, 1()’))<‘53a

Hx), g
Such a 5 is the required one. To see this, we take a z = (245 -+, 2,)€Z, and

a §-homeomorphism he H (z, u... Uz ) Which satisfies h (z;) = z,. We will construct an

3~homeomorph1c extension of h Deﬁne a homeomorphism f on (J7-,g7'(z) b

Slgi " (z) = (gl * ) 'h(g;1 g7 * (z)). Then d(f!gfl(- D, idy7icy) <53 by (4). Hence
we have a d,-homeomorphic extension f,e H(L,) of f | g7 Yz)fori=1,...,nby(3), and
a J,-homeomorphic extension F eH(P) of fl, < fy by (2). ‘

Take 05, &4, 8, satisfying the following conditions:
(5)  Each 24;-homeomorphism on VU
to P (Lemma 6).

(6)  Each pair of points x, ye P with d(x, ¥) < ¢ satisfies the inequalities d (gF (x),
gF () < 65 and &5 < &s.

(7)  For any homeomorphism k: g;"!(z,)—z, which is é,-near to g|git
dg-near to (glgi* (z))™*, and 8, < &, &/8.
By [Lw3] and Lemma 5, there exists a homeomorphlsm p € H(P) which is §,-near to

U z, has an &/2-homeomorphic extension

(), k™t is

g, with p(gi *(z)) = z,. Then, since 9F(glgi ' (z))"* = h, we have
d(h(pF (plgr* 2))71)"", id,) = d(h, pF (plgr* (z))~1)
<d(pF(plgr* z)) ™", gF (plgi* @) ™)+ d(GF (plgi* (z))™" aF (glar (z)) < 25,
for i=1,

Hence there exists an ¢/2-homeomorphic extension Re H (P) of h(pF (plgi (z; ) )‘1.
The extension which we want is #* = RpFp~!. This completes the proof.

For any fixed n, any ¢ > 0 and any Z, there is a § guaranteed by Lemma 9. The
minimum of these &’s satisfies the conclusion (2'). The proof of Theorem 1 is complete.

3. Some other results. In this section we will prove two results related to the lemmas
to Theorem 1. The first one is also related to a result of Cornette. He has shown that
every subcontinuum of a pseudo-arc is a retract of the whole space. We prove

THEOREM 2. Let X be a continuum having only pseudo-arcs for proper nondegenerate
subcontinua. Then X is a pseudo-arc if and only if it satisfies the following condition:

For every &> 0, there exists a §>0 such that each proper subcontinuum Q of

X satisfying dist(Q, X) < & admits an e-retraction r: X - Q onto Q.

Proof. This theorem can also be proved by a chain argument similar to that used
by Cornette. However, using an idea due to Cook [Co], we will apply here Theorem
1 and the following theorem [Mo, p. 3].

MooRE’s THEOREM. Let M be an uncountable metric space. Suppose that a relation = on
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M satisfies the following conditions:

(1) For each x, yeM, x=y or y =

@ ifx=yand y2 X, then x=y.
Further, assume that every uncountable subset of M has a limit point. Then there exists
a pe M which is a limit point of both the set {xe M: x > p} and the set {xeM: p>x}.

To prove Theorem 2, suppose that X is a pseudo-arc, and take a point pe X. Let
2 be the collection of all subcontinua of X which contain p. For each Ae#, take
a retraction r,: X —A onto A. The set R = {r,: Ae#} with the sup metric is separable,
so every uncountable subset of R has a limit point. Define a relation = by

ry=zry if and only if 4> B.

Being a linear order, > satisfies the hypothesis of Moore’s Theorem. Hence there is
a continuum A € such that r, is a limit point of both {ry: BG A4} and {ry: 4 S B}.
Therefore there exists a sequence of subcontinua 4; & 4 such that limry, =r,4. Note
that Lim 4; = 4. Since 4 is homeomorphic to X, we infer that there is a sequence P, of
proper subcontinua of X converging to X and a sequence r; of retractions of X onto P,
such that limr, = id,. Using this fact and the conclusion (1) of Theorem 1, we sec that
the conclusion of Theorem 2 is satisfied.

The converse implication is easy. It follows from the fact that a continuum which
admits e-retractions onto chainable continua for each &> 0 is chainable.

Recall that a continuum is said to be a triod if it has a subcontinuum with the
complement containing at least three components. A continuum containing no triod is
said to be atriodic. A map f: X - Y is said to be atomic if f~'f(K) = K for each
continuum K < X such that f(K) is nondegenerate.

The next result, connected with Lemma 7 and the remark just before it, concerns

continuous decompositions of a pseudo-arc. Lewis has shown [Lw4] that a pseudo-arc

is the unique hereditarily indecomposable continuum which admits a continuous
decomposition into pseudo-arcs such that its decomposition space is a pseudo-arc.-Here
we will show that a pseudo-arc is the unique atriodic continuum which has this
property. We will essentially use [Lw4].

THEOREM 3. Let f: M —P be an open map from an atriodic continuum M onto P. If

each fibre of f is a pseudo-arc, then M is a pseudo-arc.

We need the following two lemmas for the prool. The first has been shown by
Mackowiak and Tymchatyn in [MT, (13.7), p. 32].

LemMa 10. If f is a monotone open mapping from an atriodic continuum, then [ is
atomic.

The proofl of the next Jemma is easy, so we omit it.

LemMma 11, Let f+ X — Y be an atomic surjection from a continuum X such that, for any
yeY, the spaces Y and f~'(y) are hereditarily indecomposable continua. Then X is
hereditarily indecomposable.

Proof of Theorem 3. The map f is atomic by Lemma 10. From Lemma 11 it
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follows that M is hereditarily indecomposable. Applying [LW4], we see that M is
a pseudo-arc. This completes the proof.

Finally, we will pose two questions related to lemmas to the main theorem. The first
one is related to Lemma 1. Maékowiak [M2] has extended the result of Cornette [C] by
showing that the pseudo-arc is an absolute extensor among hereditarily indecomposable
continua. In view of Lemma 1, the authors wonder whether the following generalization
of the results [C] and [M2] is possible.

QuesTiON 1. Let X be a hereditarily indecomposable continuum (e.g. a pseudo-arc),
Q. ..., @, be mutually disjoint subcontinua of X and f;: Q,—P be mappings. Does
there exist a common extension f: X —P of all mappings f;?

If all fs are onto, the proof similar to [M2] gives an affirmative answer. This
generalizes Lemma 1, but the proof of Lemma 1 is direct and “more geometric”.
The next question is related to Lemma 7.

QUESTION 2. Let & and &' be arbitrary continuous, nontrivial decompositions of
P into pseudo-arcs. Do they satisfy (x)? Does there exist a homeomorphism he H (P)
such that &' = {h(D): De2}?
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