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Decomposition of special Jacobi sets
by

Mobammad Q. Hailat (Kuwait)

Abstract. In [4], Jacobi sets R are introduced and studied using the Weyl group of the usual
real system of roots K. In this paper, we study a special class of Jacobi.sets using their
combinatorial structure without recourse to the Weyl group of R and show that they can be
decomposed as a sum of a classical root system and a nil root system. Fma]ly, we give an example
of a Lic algebra whose root system is a special Jacobi set,

0. Introduction. In Winter [7, 10], symmetrysets are introduced and studied, and in
Winter [9], Lie rootsystems are also introduced. These variations of rootsystems occur
naturally in the study of classical and symmetric Lie algebras respectively. For
a classical Lie algebra L of characteristic p, with Cartan subalgebra H, we have
a rootsystem called R(L, H). This system is not a rootsystem in Euclidean space due to
p torsion. In Winter [7, 10] it has been shown that certain structures of R(L, H) alone
lead to the identification of R(L, H) with a rootsystem in Euclidean space, and this

_ enabled direct classification of classical Lie algebras of characteristic p along the same

lines as in the theory of complex semisimple Lie algebras [6, 7].

In Hailat [4], Jacobi sets R are introduced and studied using the Wey! group of the
usual real system of roots K. Jacobi sets are symmetrysets with a Jacobi condition. In
this paper we continue our study of Jacobi sets using their combinatorial structure. This
paper is one in a series of papers [2, 3, 4, 5, 7, 10], whose objectives are to classify
rootsystems. The rootsystems under study are beginning to fill out a pattern which thus
far is only partially exposed, the exposed part being the rootsystems of classical Lie
algebras (systems of black roots), the rootsystems of symmetric Lie algebras (systems of
black and white roots) and systems where black and grey roots appear in rootsystems of
Lie algebras over algebraic number fields and other not algebraically closed fields (for
more about the colors of roots see Hailat [2]).

In § 1 we introduce all the definitions and the preliminaries. In § 2- we decompose
a root x into its two parts: regular s and nil n, that is, x = s+ n. Consequently, in § 3 we
decompose R as R = S@R, where § is a regular symmetryset and R, is nil.
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1. Definitions and preliminaries. Let V be a vector space over a field of characteristic
p > 0and let R be a finite subset of V. We regard R as a groupoid with a+beR only for
certain a,beR. For aeV the relation {(b,b+a)|b+aeR} generates an equivalence
relation on R. The corresponding equivalence class of beR is the string R,(a)
= {b—ra,...,b+qa}. We call R,(4) the g-orbit of b with length ¢+r. The orbit R,(a) is
bounded if R,(a) # b+ Za. An automorphism of the set R & V is a bijection r: R—>R
such that a+be R if and only if r{a)+r(b)€ R, in which case r{a+b) = r(a)+r(b), for all
a,beR. We call an automorphism r, which stabilizes all a-orbits R,(a) (beR)
a symmetry of R at a. If R,(a) is bounded we define the Cartan integer a*(h) = r-q, and
the reflection r, by r,(c) = c—a*(c)aif R, (a) is bounded. The element ae R is unbounded
if there exists beR such that R,(a) =b-+Za. We say, more specifically, that « is
unhounded at b if R,(«)=h+Za (heR).

A symmetryset R is a finite subset of ¥V such that AutR contains a symmetry r, of
R at a for all aeR, a#0. A symmetryset R is unbounded if every element in R is
unbounded. Note that every symmetryset contains 0 and —« for all «e R. Also note that
in a symmetryset we have r,(a) = —a and, therefore, a*(a) = 2 for every bounded
element aeR. An element aeV is called a root if acR S V.

The closure mapping of R, a: R—R, is defined by A (a) = 4, where R < R**
= Hom(R*, Z), 4(f) = f(a) and fe R* = Hom(R, Z). We say R is nil if R = Ker A =R,

1.1. DEFINITION.. A symmetryset R is said to be a Jacobi set.if the following
condition is satisfied; if a,b,c,a+b,{(a+b)+ceR such that a # —b and one of the
following conditions holds:

() @+by =0  and é=

() (@+b#0 and é#
then a+ceR or b+ceR.

Note that (J,) reflects the condition for Witt Lie algebras whose rootsets R are
subgroups of the prime field Z, such that a = 0 for all aeR. Also, (J,) reflects the
condition for complex semi-simple Lie algebras that [[L,, L,], L,] # 0 implies that
[L,, L] #0 or [L,, L]+#0.

We fix following notations throughout the paper. R, ={aeR|& =0},
R, ={aeR|a is unbounded element of R}, R, = {aeR|a # 0}. Note that R, = R,
since every unbounded element is in R, by Proposition 1.3.

0,
0,

o

1.2. DEFINITION. Let n = {a,,...,a,} be a subset of R, which satisfies the following
conditions:

(Cy) a;—a;¢R for all i#j;

(C,) there exists no infinite sequence ¢, c,, ..., ¢,... of elements of R such that
c;—cj—yem for all j=1,2,...

(C)) Ifa=(..(«+a)+a,+...+a,_,)+a;,eR and aeR be such that & = 0 then
a#0 where a;,,...,a;,€m

The subset 7 < R, is called regular if = is a maximal subset of R satisfying the
conditions (C,), (C,) and (C,). ‘
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Following Winter [7, 10], a symmetryset R has a unique maximally refined
decomposition where the subsets D,...,D, are symmetrysets and R =D, u...uD,
with D, n D; = {0} for i # j such that a, +...4+a, = aeR ifand only if a,,...,4,,aeD,
for some i =1,...,n. The symmetrysets D,,...,D, are the irreducible components of
R and R is irreducible if n = 1. Thus for any symmetryset R, R is the inner direct sum of
its irreducible components, that is, R=D,®...®D,.

The following results are needed in the paper:

1.3. ProrosirioN (Hailat [2]). Let R be a symmetryset. If & s 0, then a is bounded
and a*eHom(R, Z).

1.4, TugoreM (Hailat [5]). Let a be an unbounded element in a Jacobi set R, and let b,
b4taeR for some t# 0. Then b+i(ta)eR for all ieZ.

1.5 Tuosorem (Hajlat [5]). Let R< Zy be an unbounded Jacobi set. Then
R=20'®...®Z} (inner direct sum).

1.6, Turorem (Hailat [S]). Let R be a symmetryser (Jacobi set). Then the set
Ry=Kera ={aeR|a= 6} is a nil symmetryset (Jacobi set).

1.7. Tirores (Winter [14]). Let R bhe a symmetryset such that R(a) (a, heR,
a#0), Ry (@ beR, a#0) are bounded and ry(b) = (r,(b)) for all a,beR, a+0,
a#0. Then

(1) @by = a(h) for all a,beR, a#0, d#0;

(2) for any a,heR, d # 0, there exists ce R such that the closure mapping maps R, (a)
bijectively onto Ry(d);

(3) the closure mapping R— R is an isomorphism (of groupoids) if and only if it is
bijective.

1.8. TuroreM (Hailut [3]), Let R be a Jucobi set. Then all regular subsymmetrysets of
R are isomorphic to R and, therefore, are rootsystems in the sense of Bourbaki [1] with
0 added.

Note that the symmetryset R is a system of roots in the scnse of Bourbaki [1] with
0 added by Theorem 2.3 of Winter [14].

We say a symmetryset S is regular if there exists a regular subset 7 = R, such that
S=2ZnAR and in this case we write §=S(n). Note that S< R, u (0] since
R=RyUR, and SR, = {0} by Proposition 2.1 below.

2. The decomposition: x = s-n. Let R be a Jacobi set and let S = S(x) be a regular
subsymmetry set of R, We show, in this section, that any element in R can be written as
a sum of two elements, the first of which is in S and the second in R, Bul, to do this, we
need the following proposition which is Proposition 2.5 of [3].

2.1, PROPOSITION. Let R be a Jacobi set and let S be a regular subsymmetry set of R.
Then. § " Ry = {0}.

We now have our decomposition theorem.

2.2, THEOREM. Let R be a Jacobi set and let S be a regular subsymmetry set of R. If
x€R then x = s+n for some seS and for some neR,.
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Proof If xeS then set s = x, n = 0; also, if xeR, then set s =0, n = x. Since
R = R, U R, the only remaining case for x is to bein R, —S. Let xe R, —§. Since § = R
by Theorem 1.8, there exists € S such that ¥ = d. Thus x*(a) = £*(d) = X*(X) = 2 by
Theorem 1.7. This implies that r.(a) = a—2x, so that a—xeR. Set s = 4, n = x—a, We
have neR, since A= (x—a) = 0.

Note that the above decomposition is unique since S~ R, = {0}. We call s the
regular part of x and n the nil part of x.

3. Decomposition of special Jacobi sets. In this section we decompose a special
Jacobi set R (a Jacobi set with the condition R, =R,) as a sum of a regular
symmetryset S and a nil symmetry set R,,. But first we construct some special Jacobi sets
as an example motivating further studies.

- Let G be a finite subgroup of a vector space V over a field F of characteristic p and
let S be a classical rootsystem over F. We may regard S & W where W is a vector space.
Now consider G®S = {g@®a| geG, aeS} = V@& W. Introduce the homomorphism
Ty0a(h®b) = (@ b)~(g @ a)’ (h@b))(g ® a) by specifying (a @ b)° eHom(VO W, Z,) as
follows:

(g@0)y° (h@b) = g°(h),

(g@arh@b)=a°(d), (h#0).

Note that (G@®S)e.(h@®b) = {(hDb)—r(g@a),....(h®b)+q(gDa)} where S,,( )
={b—ra,...,b+qa}. Then b+ga=rb—ra)= (b ra)~(a’(d—rb)b, so that
@) +9(gDa) = r,e.{h®b)—r{g@a)). It follows that G@S is a symmetryset. Let
R=G®S. Since G is a group R,(g) = h+Z g implies that g is an unbounded root for
all ge G. Therefore, § = 0 for every ge G by Proposition 1.3. Also, since S is a classical
rootsystem then 4 3 0 for all ae S— {0} (every nonzero element in S is bounded). Now
letg,@a, g, @b, g:Dc, (9, D) +(g,@b), (9, Da)+(g, D) +(9; D<) be elements of
R such that g, @a # (g,®b). Then a,b,c,a+b,(a+b)+ceS from the definition of
Gas. If (9:90)+(g, @b =0 and (g;Pcf =0 then (a+bj=0 and é =0 so that
d= —b, ¢c=0. It follows that:

©:90)+(9;®¢) = (9, +93) D (a+0) = (g, +g3) DaeR.

Also, if {(g, Da)+(g, b)) # 0 and (9, D cf 0 then (a+bf # 0 and & 0. It follows
thata+ceS or b+ce S since S is a classical rootsystem. This last conclusion reflects the
condition for the complex semisimple Lie algebra L = L that [[L. L), L] #0
implies  that [L,, L]1#0 or [L, L]0 Therefore, (9,@a)+(g, @)
=@,+9)®a+c)eR or (9, ®b)+(g; D) = (9, +9) ®(b+c)eR.  Note that
Ry =G®0 =R, The above discussion implies the following proposition,

3.1. PROPOSITION. Let G be a finite subgroup of a vector space V over a Sield F of
characteristic p and let S be a classical rootsystem over F. Then R= G@®S is a special
Jacobi set.

Now Proposition 2.2 of Winter [8] and Proposition 3.1 imply that the rootsystem
G®S5 of the generalized classical Albert~Zassenhaus (GCAZ) Lggs is a special Jacobi
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set. Also, the rootsystem of the GCAZ Lggs is of the form given by Theorem 3.10
below where G = R, and S = R.
The following theorem, which is Theorem 2.3 of [4], is needed in this section.

3.2. THEOREM. Let R be a special Jacobi set and let aeRy, a,yeR, be such that
a#0 and a+oeR. Then atyeR if and only if a+yeR.

A number of lemmas will precede the proof of the main theorem. The same set up is
involved in all of them. To avoid repetition the notation will now be fixed for this
section.

Let R be a special Jacobi sct and let S be a regular subsymmetryset of R. Also, let
x, X+ px+oeeR such that aeR, and x #0.

3.3, LEMMA. If x,yeS—{0} then y+ueR.
Proof Suppose that x,ye§—1{0} and y+a¢R. Then

Ry(x4a) = {y~r(x+a)....y,...,y+q(x+a)}, r,g>0.
Note that this orbit is bounded by Proposition 1.3 since (x+o) = £ 3 0. It follows that
Ry(x+0) = {J—7%, ..., P, ..., ) +q¥}eR.
But $ = R by Theorem 18, therefore y—rx,...,¥,...,y+gxeR. This implies that
Ry(x+d) = {(y=rx)=rty..., s .., (V+ %) + g0t}

Note that (x+a)*(x) = (x+a) *(%) = £*(#) =2 by Theorem 1.7, so that r,..(x)
=x—2(x+0) = —x—20u Since y-+a¢R we have y+in¢R for all integers i by
Theorem 1.4. Therefore, (x+y)—(x+a) = y—ag¢R. It follows that

Riopx+a) = {(x+¥),....,x+y)+k(x+®)}  and
Rigrp(x+0) = {247, ...,(k+1)%+y} = § for some k.
This implies that y+x, ..., y+(k+1)xeS, since § =R = §, and x, ye S—{0}. Therefore
Rypn(x+0) = {(y+x), ..., (y+(k+ 1)x) +ka}.
Now we summarize the above results as follows:
FeralX) = =x=2t,  Feraly) = y=(r=@)x+0) = () == @x) —— e,
P (P 4%) = (y+ (k+ 1)x) + kat.
But ryepa(yX) = rypq(9)+rerq(x). Hence
(- (k + 1)) -+ kot = ((y—-(r—q)x)—(r—q)a)+ (—x—20).

It follows that r—q= —(k+2) and repaly) = y+(k+2)x+(k+2)eeR. But r:(9)
= Pigba) () = Frray) = = P+(k+2)feR xS Hence y+(k+2)xeS and Fetal¥)

= (y+(k-+2)x)+(k+2)aeR. Choose icZ, such that i(k+2)=k+1 Then
(y+(k+2)x)+(k-+1)ae R by Theorem 1.4, a contradlctlon to the assumption that the
last root to the right in Ry .(x+a) is (y+(k+1)x)-+ko. Therefore y+oeR.
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3.4. LemMa. If xeR,—{0}, yeR, or xeRo—{0}, yeR, then y+aeR.

Proof In either case we have y+aeR, by Theorem 3.2 since x+yeR and
x+aeR.

3.5. LEMMA. If x,y€R, then y+oeR.

Proof. Since R, = R, = Z% U...uZ%and x+e¢, y+xeR itfollows that x,«e Z}!
for some i and x, y& Z" for some j. This implies that i =J and, therefore, y,ae ZY. Thus
y+aeZy = R

3.6. LeMMA. If xeS—{0}, yeR,—S then y+aeR.

Proof, Let xeS—{0} and yeR, —S. Then y = s+neS+R, by Theorem 2.2. But
x+(s+n) =x+yeR. Hence x-++seR or x + neR since (J,) holds. Suppose first that
x+seR. Then s+aeR by Lemma 33 since x-+aeR. But (x—(s+0))+y =neR,
therefore a+yeR or jz-—(s+a)eR. If y+aeR then we are done. But if y—(s+a)eR
then n—a = (y—s)—a = y—(s+a)eR. This implies that +n and +« are in the same
component of R, But y—n=seR, so y+aeR by Theorem 3.2 since n+oaeR.
Suppose, second, that x+neR. Then a+ne R by Theorem 3.2 since x+o € R. It follows
that y+aeR by Theorem 3.2 since y—n=seR.

3.7. LeMMA. If xeR,—S, y€eS then y+aeR.

Proof Let xeR,—S, yeS. Then x=s+neS-+R,. This implies that
x—n = seR, so that a+ne R by Theorem 3.2 since x+aeR. But (s+n)+y = x+yeR.
Hence s+yeR or n+yeR since (J,) holds. If y+neR then y-+aeR by Theorem 3.2
since a+neR. If s+ yeR then y+aeR by Lemma 3.3 since 5, ye S, s+ue R. (Note that
s+oeR by Theorem 3.2 since s—n=x€eR and +n+oeR)

3.8. LEMMA. If x,yeR,—S then y+oeR.

Proof. Let x,yeR,;—S. Then y =s'+n'eS+R, and x+(s'+n’) = x+yeR. This
implies that x+s'eR or x+n'eR since (J,) holds. If x+n'eR then n'-+ueR by
Theorem 3.2 and, therefore, y+ax &R by the same theorem since y—n' = '€ R, Now if

x+s€eR then & +oeR by Lemma 3.7. But s'+n' = yeR. so that +n'+aeR. This
implies that y+o-+R since y—n' = s'eR.

3.9. LEMMA. Let R be a special Jacobi set and let x,x +o,ye R such that oe Ry and
x#0. If xtyeR then y+oeR.

Prool If x+yeR then y+aeR by the previous lemmas, If x—yeR then
x+(—y)eR, so that —y+aeR. This implies that y—o = —(—y-+a)eR so that
y+i(—a)eR for all ieZ, by Theorem 1.4. Choose i= p—1. Then p+aeR.

3.10. TUEOREM. Let R be an irreducible special Jacobi set and let S be any regular
subsymmetry set of R. Then R = S@®R, (direct sum).

Proof. Let R be an irreducible special Jacobi set and let § be any regular
subsymmetry set of R. Then R < S®R, by Theorem 2.2. For the other inclusion,
let se§ and neR,. Since R is irreducible then there exists a chain of roots
Co = 8C1,Cp,..., 6 =n in R such that ¢;+¢;;eR forall i =0, 1,...,k—1. Now, we
proceed by induction on k. If k = 1 then s+n = ¢,+¢, € R. Suppose it is true for k—1.
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That is, s+Ce—1 = Co+Cx-1 €R. Then s+n =s+ceR since ¢, ,+c¢,6R by Lemma
3.11. Therefore, S®R, < R. 1t follows that R = S@R,,.
Now Theorem 1.8 and Theorem 3.10 imply the following main result.

i 3.11. THEOREM. Any irreducible special Jacobi set R is a direct sum of a rootsystem
R in the sense of Bourbaki [1] with O added and a nil symmetryset R,.
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