icm

Boolean semigroup rings and exponentials of
compact zero-dimensional spaces

by

Lutz Heindorf (Berlin)

Abstract. We investigate the algebraic relationship between the ring Clop(X) of clopen subsets
of some compact, zero-dimensional space X and the ring Clop (exp X) of clopensubsets of 1ts ex-
ponential. It turns out that Clop(exp X) is isomorphic to the semigroup ring over the mu]tlphcatlve
semigroup of Clop(X) with coefficients in the field F, with two elements. In the second part of the
paper we investigate the class of all Boolcan rings that can be written inthe form F,[H] for some
semilattice H. The main result is that no complete Boolean ring and no infinite direct product of
Boolean rings can belong to that class.

Let X be a topological space. The exponential of X, denoted by exp X, is a new
topological space whose points are the non-empty closed subsets of X. To avoid
misunderstandings we sometimes write F if we consider the closed set F as
a point of exp X. The topology of exp X is given by a base. It consists of all sets

V(Uy, ..., U) = {FeexpX: FEU,;u..0U, and FNU, # & for all i}

where n < and Uy, ..., U, are open subsets of X.

The construction of exponentml spaces dates back to the early days of topology
and is connected with the names of Hausdorff (who did the metric case, cf. [Ha,
VIIL, 6]) and Vietoris who gave the above definition in [V]. There is a well developed
theory of exponentials of metric continua. It is quite comprehensively represented
in [N]. Important results for other classes of spaces are due to. Marjanovié [M] and
the Moscow school (cf. [S] and what is quoted there). All facts that are necessary to
understand this paper can be found in the exercises (with sufficient hints) of [E].
Our point of departure is the following

Facr. If X is compact and zero-dimensional, then so is exp X.

Compactness is [E, 3.12.26]. To prove zero-dimensionality we consider all
sets V(ay, ..., a,) where n<w and 4, ..., a, are clopen in X. It is an easy exercise
o show that these sets are clopen in epr and form a base of the Vietoris topology
use compactness).
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The main purpose of this paper is to show how the formation of exp translates
into the language of Boolean algebra. To make this precise we have to introduce some
further notions. To each topological space X we attach a ring, denoted by Clop(X).
Its elements are the clopen subsets of X. Addition is set-theoretic symmetric difference
and multiplication js set-theoretic intersection. Clop(X) is a Boolean ring, i.e. each
element is idempotent. @ is the zero- and X is the unit-clement.

Stone duality asserts that any compact zero-dimensional space X is completely
determined by the ring Clop(X). Moreover, cach abstract Boolean ring (with unit)
is isomorphic to one of the form Clop(X). The reader is supposed t6 have a working
knowledge of Boolean algebra, especially Stone duality. Everything needed for Sec-
tions 1-4 can be found in practically all textbooks on the subject, my favourite
being still [H].

In this paper we want to study the algebraic relationship between the rings
Clop(X) and Clop(expX). We shall also consider abstract Boolean rings
R = {R; +, -, 0, 1). In contrast to what has recently become fashionable our + de-
notes addition not union. For this we keep the good old v. So, by definition,
avb=a+b+abh Here arc two more definitions: a—b = a+a'b and a<b
stands for a-b = a.

When we are dealing with rings of sets, the symbols N, U, \ are used alterna-
tively to «, v, —. Let us finally agree that BR will be shorthand for “unitary Boolean
ring”, and BS for “Boolean space”, i.e. compact and zero-dimensional topological
space. We tacitly assume throughout that BR’s are non-trivial, i.e. 0 5¢ 1, and BS’s
non-empty.

1. The structure of Clop(exp X). Every BR can be regarded as a vector space
over F,, the field with two elements. This gives a natural notion of linear indepen-
dence. It will be convenient to have an independence test in terms of v and < rather
than +.

Lemma 1. Suppose that R is a BR and consider a subset HS R which is closed
under multiplication. Then the following are cquivalent:

(1) BHN{0} is linearly independent.

Q@) If h,hy,....h,e H are such that hhov .oV h, then h<h, for some
i=1,..,n

Proof. For the direction (1)=>(2) we use the formula

hlv eV hn = ZSHtss hi

where § runs through all non-empty subsets of {1, ..., n} For n = 2 the formula
becomes hy v hy = hy+hy+hyhy, the definition of v. A straightforward induction
establishes the general case. The condition % < hyv ...v h, can now be expressed as
an equation:

h= h'(hl Voo Vh") = Zs (h 'Hisshi)"
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We drop all zeros and pairs of equal terms that emerge on the right-hand side.
If & # 0, then some terms have to remain and they belong, as does A4, to the linearly
independent set HN{0}. Tt follows that h = h-[[;cg 4 for some S<{l,..,n}.
Hence, 1< h;for each ie S # @. If h = 0, then A< k.

The proof of (2)=>(1) also needs a formula. For arbitrary elements a, ..., a,
of any BR and all h = 1, ..., n it holds that

as<(ay+..+a)v Vjzia.

There is no problem to check this for the ring F,. But then it is true in every BR.

Suppose now that condition (2) is satisfied and consider pairwise distinct’
elements hy, ..., h, of H\{0}. We have to show A;+...+h, # 0. Assuming -the
contrary, the above formula yields #; < \/;s: h; for all i. Applying (2) we find some
J# i such that h,<h;. This being true for all i, we can define a function
S {4, ..,n}={1,..,n} such that f(i) #i and A;<hp for all i=1,..,n

In the infinite sequence 1, f(1), £{F (1)) = £2(1), (), ... there have to be
repetitions, say f7(1) = f*7%1) with ¢> 1. But then

hfl’(l) <hfp+!(1) <... S,h,;-u(“
implies Agpiy = hpperry, Where f7(1) 5 fFPH(1).
This is the desired contradiction. For, the /; were assumed to be distinct.
THEOREM 1. Let X be a BS and consider the mapping

V:ae V(e) = {FeexpX: Fea}

of Clop(X) into Clop(exp X). Let H denote its image. Then the following conditions
are satisfied:

(1) V is multiplicative and injective.

(2) H generates Clop(exp X).

(3) H\{0} is linearly independent.

Proof. (1) Multiplicativity means ¥V(anb) = V(@)nV(b) and is obvious.
If @ # b, then this is witnessed by some point, say x. The closed set {x} witnesses
V(@ # V(b). e

(2) We use the folklore fact that (for BS’s) a subset of Clop generates the whole
ring iff it ceparates the points of the space. If F ¢ G are closed subsets of X, then
there is some point x which belongs to F, say, but not to G. Choose an element
a in Clop(X) such that G- a and x ¢ a. Then, clearly, G e ¥(a), but F ¢ ¥(a). So,
V(a) e H separates F and 6. ’

(3) We use the lemma. Suppose @ # V(a) = V(a)uv...uV(a), but V(a)
& V{a,) for all i. Then, clearly, a a; for all i. Pick x; € a\a; and put F = {x;, ..., X, }»
Then F belongs to ¥(a), but to none of the ¥(a;), contradiction.

2. Boolean semigroup rings. In this section we have a closer look at the situation
described in Theorem 1 and give it a name. Suppose R = (R; +,,0, 1) is a BR,
If we forget the addition (but keep 0), we obtain the semigroup R* = (R;-, 0, 1)
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Let H be a subsemigroup of R* which generates R and contains 0 and 1. If H\{0}
is linearly independent, then each non-zero element of R has a unique (up to the
order of the terms) representation as a sum (= linear combination over F,)
hy+...+h, of pairwise distinct elements of H\{0}.

The same situation can be manufactured from outside. The following kind of
construction being very popular in algebra (just think of group rings) the reader
will allow us to be a bit sketchy in its description. He should, however, pay attention
to the somewhat special role of 0 (and not worry about the sign @. The reason we
prefer it to the usual + will become clear later).

Let a commutative and idempotent semigroup (otherwise known as semilattice)
with 0 and 1 be given and call it H. Take the set of all formal sums h@®.®&h, of
pairwise distinct elements of H\{0}. Identify all such sums that differ only in the
order of their terms. Add.0 and define multiplication and addition (®) in the natural
way (with 2@ A = 0). What comes out is a BR that will be denoted by F,[H] and
called the Boolean semigroup ring over H. For the rest of this paper the abbre-
viation SG will always mean “commutative and idempotent semigroup with 0
and 1”. As with BR’s, all SG’s under consideration will be tacitly assumed non-
trivial, i.e. 0 % 1. .

Remarks. (1) There is no need to restrict the coefficients of the formal linear
combinations to F,. Starting from an arbitrary BR 4 and a SG H we obtain 4 [H]
by considering all formal linear combinations ahi®...@ah, with g, 4 and
h;e H\{0}. It turns out, however, that A [H] is isomorphic with the free (= tensor)
product of 4 and F,[H]. Therefore, we can dispense with the more general con-
struction.

(2) Non-isomorphic SG’s may well lead to isomorphic rings. If, for example,
|H| = |K| <w, then F[H] = F,[K].

In what follows we have to know how homomorphisms behave with respect
to the formation of semigroup rings. Statement (1) of the following lemma could be
used to define F,[H] in the spirit of category theory,

Lemva 2. (1) Let H be a 8G and R a BR. Each semigroup homomorphism
a: H-R* has a unique extension to a ring homomorphism &: F,[H]— R. (H is
considered as a subsemigroup of F,[H T%)

@) Ifa: H-Kisa homormorphism of SG's, then there is a unique homomprphism
Fylal: Fy[H)— F,[K) extending a.

(3) Fy[ 1 is a covariant Junctor from the category of SG's into the category of
BR’s.

Proof. (1) We leave it to the reader to check that the formula

&(hl ®..0 hn) = “(hl)‘{"-" +‘x(hn)
defines the required homomorphism.

(2) Consider « as 2 mapping into F,[K]* and apply (1).

(3) The identity F,[u o Bl = Fy[a] « F,[B] is an easy consequence of the wuni-
queness in (2).
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Using the new notation we can express Theorem 1 in a more concise way.
CorOLLARY 1. If X is a BS, then Clop(expX) = F,[Clop(X)*].

Any BR that can be written in the form F,[H] will be called a semigroup ring
(SGR, for short). The question naturally arises which BR’s are SGR’s. Using
Lemma | it is easy to see that any totally ordered subset of a BR is linearly indepen-
dent. It follows that all BR’s with ordered bases, in particular all countable BR’s,
are SGR’s.

Applied to the free SG on » generators, F,[ ]yields the free BR on x generators.
More generally, one can show that the class of SGR’s is clospd under free px_-oducts.

On the other hand, there is no obvious example of a non-semigroup ring. We
shall produce a class of them in the next section.

3. No SGR can be complete. It is well known that any Hausdorff space can be
identified with a closed subspace of its exponential. ‘

The mapping e: X —exp X defined by e(x) = {x} is a canonical embedding.
Let us find its Stone dual. Generally, the dual of a continuous mapping f/: X— ¥
is the homomorphism f: Clop(¥)— Clop(X) defined by the formula f(a) = f~(a).
Applied to our situation we find for each ae Clop(X)

V(@) = e (V@) = {xe X: {x} e V(a)} = a.

From Theorem 1 we know that every element W of Clop(exp X) can pe written as
W = V(a)A...AV(a,) with a; € Clop(X) and A denoting set-theoretic symmetric
difference. & being a homomorphism we must have &(W) = a;A...Aa,.

These considerations lead to the following abstract definition. Let R be an
arbitrary BR, The canonical homomorphism ¢: F,[R*]— R is the mapping defined
by the formula

?@;®..0a,) = a;+..+a,.

Note that ¢ is the unique extension of the identical mapping R*‘—-» R"f dis?us_scd
in Lemma 2 (2). For R= Clop(X), ¢ is the same as & up to the identification of
F,[R*] with Clop(exp X).

Remark. Suppose that «: R— S is a ring 11omomorphisn}. It gives rise to. the
following diagram in which ¢ and y denote the respective canonical homomorphisms
just defined.

4 :
FyfR¥) >k

lFa[uJ l“
v

Fy[§#] > §

A straightforward verification shows that this diagran? is commutatwe.. amit
Next we discuss under what conditions the canonical homomorphism admits

a right inverse. First a special case
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- Lemma-3. If R= F,[H] is a SGR,

@: Fo[R*]— R has a right inverse. ‘

Proof. Denote the identical embedding H— R* by v. By Lemma 2 (2), F,[v] is

an embedding of F,[H] = Rinto F,[R*]. Writing + for the addition in R and & for
the one in F,[R*] the definition of F,[v] takes the form

FylvI(hy+...+hy) = hi@ ... DA,
whereas for the canonical homomorphism ¢@: Fo[R*]— R it holds that
v (p(h1®... @h) = hy+..+h,.
It follows that ¢ o F,[v] is the identity on R.
Recall that a BR R is called a retract of a BR S iff there are homomorphisms
R—+S-»R such that flo« = idg.
TueOREM 2. For any BR R ihe fol/awmg are equivalent:
(1) The canonical homomorphism @ F,[R*]— R has a right inverse.
(2) R is a retract of F,[R*].
(3) R is a retract of some SGR.
Proof. The implications (1)=(2)=>(3) are obvious,
To prove (3)=>(1) we assume that R is a retract of some SGR S, say R—» S-—» R
with f oo = idg.
Consider the following diagram in which  denotes the canonical homomor-
phism for S.

then -the: canonical homomoiphism

®
Fp[R¥]————— R

Fz[ﬂllTF:[ﬂ] al/[ﬂ
/

Fy[§%) ———>§

By Lemma 3 there s a right inverse for ¥, i.e. some homomorphism y: §— F,[S*]
such that f o y = ids. We arc going to show that @ o (F,[8] 7 o &) = idg. Choose
an arbitrary a € R. Then b= y(a(a)) belongs to F,[S*]. By the remark prececding
Lemma 3 we have

. B ®) = o(F,161(8)) ,

in”other words: ‘ S

@oFy[floyoa(@ = Botpoyou(a).

From oy =idgand foa = 1clR it follows that the right-hand side reduces to a,
as was to be shown.

Remark. There is no obvious reason why a retract of a SGR should be a SGR
again. On the other hand, I have no counterexample even for the simplest case,
a principal ideal of a SGR. Tt would be intetesting to know if all retracts of free BR’s,
otherwise known as projective Boolean algebras, are SGR’s.

E CorOLLARY 2. If X is a BS such that Clop(X) is a SGR, then X is a retract
(in the topological sense) of exp X.
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Proof. Let-e: X—cxp X be the canonical embedding introduced at the begin-
ning of this scction. The theorem yields a right inverse for 2. Its dual is a left inverse
for e.

The question of X being a retract of expX has been discussed before. In
[S, th. 4. 8] Shchepin gives the example exp; D™ of a BS which is not a retract of its
exponential. (Here D denotes the discrete two-point space. The meaning of exp;
will be explained at the beginning of Section 4.)

For this example Clop is a subring of the free ring on w, generators. It follows
that subrings of SGR's need not be SGR’s again. As any BRis a homomorphic
image of a frec one, the class of SGR’s cannot be closed under homomorphic
images either.

Tu order to get more exaniples of non-semigroup rings we prove the following

PrROPOSITION 1. If an infinite BS is a retract of its exponential, then it contains
a convergent sequence of pairwise distinct points.

Proof. Call the space in question X. We begin by mentioning an easy case
that does not depend on X being 2 retract of exp X. There may be an infinite clopen
subset of X that contains only a finite number of accumulation points. Then it is
easy to find a convergent sequence of distinct isolated points. We leave the details
to the reader and turn to the harder case in which there is no such set.

Let S denote the assumed retraction, i.e. f: expX— X is continuous and

F{x}) = x for all xe X.

The envisaged sequence will be constructed by induction. Suppose we already
have clopen subsets @g=2a, 2 ...2 g, of X such that all a; are infinite and all £(8)
are pairwise distinct. (Remember that by writing & we stress that a4 is considered
as a point of expX.) We have to construct a,,,. The set a,\{f(80), ...\ @)} is
infinite. As we are in the hard case, it contains accumulation points of X. Therefore,
we find an infinite clopen subset b of a, that contains no f(3,) for i = 0, ..., n. The
set W= f~1(b)n V(b) S expX is infinite, because it contains all {x} with xeb.

Being clopen in exp X, W is a finite union of basic clopen sets ¥(ey, ..., -
At least one of the ¢’s occuring in this union has to be infinite. For, otherwise, each
V(cg, o, ¢) would be finite and so would be their union W. We choose ~some
Vs, o, cx) S W such that @y = ¢, V.. UG becomes infinite. ‘

From 8,4, ¢ V(ey, o c)E WS V() we have ¢, & cbhbca, and f(am)
e f(W) < b, The latter implies that £ (8,4 ) is distinct from all £(4 Jwith i= 0, .., m
This ends the inductive construction.

Next we show that the sequence @, is convergent in expX. By compactness
B # F = V<ot Suppose that V(Uy, ..., Uy) is a basic open neighbourhood of F.
This means that FA U, & for all § and Fe Uyu...u U, Again by compactness,
a, € U, u...u U, for all sufficiently large n, say n > no. Moxeover a,nU;RFAU#D
for all n and i. We conclude that 4,& V(Uy, .., Uy) for all n>nq.

This proves lima, = F. The continuity of f ﬁnally implies that f(a,) converges_

to f(B).
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Owr argument actually proved a bit more than promised, namely

COROLLARY 3. If the BS X is a retract of exp X, then each infinite clopen subset
of X contains non-trivial convergent sequences.

Proof. By construction, f(8,.) € a,  ap. And we can start with any infinite
clopen ay.

Combining the proposition with Corollary 2 we obtain

COROLLARY 4. Suppose that the infinite BS X does not contain non-trivial con-
vergent sequences. Then Clop(X) is not a semigroup ring. In particular, no homo-
morphic image of a complete Boolean algebra is a SGR.

Using the full strength of Theorem 2 we find

COROLLARY 5. No infinite direct product of BR’s is a SGR.

Proof, Let I'be an infinite index set and (Ry);. & family of BR’s (by tacit assump-
tion non-trivial). The ring {0, 1} is a retract of each R,. Consequently, S = {0, 1}*
is a retract of [[; R;. If the latter were a SGR, then S were a retract of F,[S*], by
Theorem 2, and the Stone space of § would contain non-trivial convergent sequences,
by Proposition 1. On the other hand, S is isomosrphic to the 1ing of all subsets of I
and, therefore, complete. Hence its Stone space does not contain non-trivial con-
verging sequences.

4. An embedding and its applications. Again we start with well-known, topological
considerations. Let a BS X and a natural number | € n<w be given. The formula
(645 ooy %) & {x4, ..., %,} defines a continuous mapping e,: X" expX. Some
authors call the image of X” under e, the nth hypersymmetric power of X and denote
it by exp, X (e.g. [S]). The following two facts are easily established (cf. [E, 2.7.20]).

(1) exp, XS exp,. X
and

(2) Un<w®xp, X is 2 dense subset of exp X,

The dual homomorphisms &,: Clop(exp X) —+ Clop(X") are determined by their
values on the generators and these are easy to calculate:

EV@) = {(xgs s X1 {Xq, o

The two facts from above dualize as follows.

(i) ker(én);—ker(én-é- 1)
and

() Un<oker(g,) = {@}.
Remembering that Clop(X") is isomorphic to the n-fold free product of Clop(X)
with itself we are led to the following abstract definition,

Suppose that R is a BR and put R” = R«.. xR (n-fold free product), For
ae R let a™ denote a'» ... ¥ a e R,

t[‘he mapping a +a™ is, obviously, multiplicative. By Lemma 2(1) it has
a unique extension to a ring homomorphism F, [R*¥] - R™ which we denote by ¢,
and call the nth canonical bhomomorphism. ¢, is the canonical homomorphism con-

. X%}Sal =ax .. Xa
(ntimes)
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sidered in the previous section. Note that ¢, is no longer surjective for n> 1. Up
to the identifications of Clop(exp X) with F,{R*] and Clop(X™ with R™, @, is the
same as &, Together with the fundamental fact that R = Clop(X) is the general
case, (1) and (3) yield

ker ((Pn) = ker ((P.n + 1) and ﬂn -<auker ((/)n) = {0} "

The last assertion implies that the formula a + (¢,(a)),<q defines an embedding
of F,[R*] into [Tu<o R™.

We now use this embedding to explain a somewhat surprising phenomenon
that was hitherto proved by an ad hoc construction due to T. Cramer. Recall that
a BR is called superatomic iff it does not embed the free BR on o generators. The
topological dual notion is that of a scattered space.

ProrosiTION 2 ([C]). For any cardinal number x there is a countable product of
syperatomic BR’s that embeds the free BR on x generators.

Proof. The argument becomes clearer using topological language. Let % which
we assume infinite be given and choose a compact scattered space X with » pairwise
disjoint clopen subsets {a,: o« <x}. The one-point compactification of the discrete
space of power x would be the simplest example of this kind.

Put W, = {Feexp X: Fna, # &} = exp X\V(a,) € Clop(exp X).

CrAM. The elements W, are independent in Clop(exp X).

Indeed, let By, ..., Bys 1y s ¥ < % be pairwise distinct. We have to show that

[m;,ﬁ Al mn]\[WHU'“ ) W.,m]

is non-empty. As »x is infinite, there is no harm to assume n>0. Take
Xy E€dp,, ..., Xy, and put F={x,, .., %} Then FeW, for all i=1,..,n
and, by disjointness, F ¢ W,, for j=1,..,m.

It follows that the free ring on x generators embeds into Clop(expX) and,

.therefore, into JJu<x Clop(X"). It remains to refer to the folklore fact that finite

products of scattered spaces remain scattered,

Our second application of the embedding Fo[R*] = [Tn<a R uses it the other
way round. Recall that the depth of a BR R is the cardinal sup{|4]: 4 SR is well
ordered by <}.

~ Prorosirion 3. F,[R*} and R have same depth.
Proof, Using that R* is a subsemigroup of F,[R*]* and the abovementioned
embedding we obtain
o " dopth(R) < depth(F,[R*]) < depth ([T, <a R™) .
It remains to apply two general facts concerning the behaviour of depth (cf. [MM]:
depth([Ta<w Sy = sup{depth(S,): n < w}
and
~depth (S » T) = max{depth(S), depth(T)} ..
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Remark The length of R is defined as the cardinal
sup{|d|: A< R is totally ordered by <}.

If we try to evaluate the length of F,[R*] by the same method that worked for depth,
we run into difficulties. For, length([Ji<eS,) is in general, not equal to
sup {length(S,): n <} (nor to any other reasonable function, of. [MM]).

. Tt is, however, true that R and F,[R*] have the same length. The proof is some-
what lengthy and will be given elsewhere.

5. Non-unitary rings and locally compact spaces. In Section 2 we defined F,[H]
for semigroups with unit-element. Looking back the reader will convince himself
that this assumption is not necessary for the construction to yield a Boolean. ring
(in general without unit). Moreover, all purely algebraic results that were proved
for ‘wunitary Boolean rings and semigroups (in particular Lemmas 1 and 2, and
Theorem 2) hold true in the non-unitary setting. The proofs remain the same;
there is no mention of 1 in them. Stone duality connects non-unitary Boolean. rings
with non-compact, locally compact zero-dimensional spaces. (Strangely enough,
this part of the theory is not reflected in any of the popular textbooks. Therefore,
I refer the reader to the classical paper {St] by Stone.)

Let X be such a space. The corresponding ring is the subring of Clop(X) that
consists of all compact and open subsets of X. Let us denote that non-unitary Boolean
ring by Coop(X). In order to obtain a result analogous to Theorem 1.we have to
consider not the space exp X, but its subspace comp X consisting of all non-empty
compact subsets of X. It can be shown that comp X is again locally compact
([E; 3.12.26]). To prove that it is zero-dimensional too, one establishes that the family
of all ¥(ay, ..., a,), withn < w and a4, ..., @, compact and clopen in X, forms a clopen
base of comp X. With the appropriate change in notation and the occasional addition
of the word “compact” the proof of Theorem 1 can now be repeated. In analogy
to Corollary 1 the result can be formulated as follows.

CorROLLARY 6. If X is a locally compact, zero-dimensional space, then
Coop(comp X) = F,[Coop(X)*].

Added in proof (February 1990). As I have learned only now Boolean semigtoup rings have
been studied before by Elliott Evans in The Boolean ring universal over a nteet semilattice, J, Austral.
Math. Soc. 23 (1977), 402-415.

Other relevant information on SGR's, though from a completely different point of view, is
contained in the lecture note Pontryagin duality of compact 0-di tonal semilattices and its applj-
cations by K. H. Hofmann, M. Mislove apd A. Stralka. When writing the present paper I was not
aware of that source either.
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