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Functions provably total in /-3,
by

Zofia Adamowicz and Teresa Bigorajska (Warszawa)

Abstract. We estimate the rapidity of the growth of recursive functions which are provably
total in a finite fragment of Z; parameter-free induction subject to the size of the fragment.

The aim of this paper is to bound the rapidity of the growth of recursive
(2, definable) functions which are provably total in 7~ ¥, (induction for parameter
free X, formulas). We show that if in the proof of the totality of a recursive func-
tion ffrom N to N Z, induction is applied # times then the function can be bounded
by the n+1’s function in the Wainer hierarchy (see [W]).

The result is proved by means of a proof-theoretic analysis of proofs of sentences
of the form (V#)s0(¢) in I™Z, (an analogous analysis for 3, formulas and ™3,
can be found in [A]). We consider here ¥; formulas ¢ without parameters.

Here PA™ denotes the theory of discretely ordered rings. If ¢ is a formula
then Ind¢ denotes the following sentence:

PA™ & [p(0) & (Y1)309 (1) = ¢(t+1)) = (V1)500()].
To simplify the notation we will assume that for every formula of the form ¢ (y, X)
the sentence ¢ (—1,0, ..., 0) is true. Formally, this can be assumed since we can

replace ¢ be the formula ¢* defined as (y >0& @(», x)) v y <0. Then ¢ is equi-
valent to ¢* for all non-negative y's we are interested in. Without causing confusion

we identify @ and ¢*. .

DrFINITION 1. Let the formulas ¢y, ..., @, be of the form

0,() = @DNeit,5) where ¢jedy, i=1,..,0.

We assume that the quantifiers in the formulas ¢; are bounded by the free variable
or by one of the variables of 3. Let M E PA~, vy, ..., v, € M. Assume that we have
a fixed enumeration of polynomials. Let KeN. A set H = M is called a K-closure
of {vy, ..., v} With respect to {¢py, ..., ¢,} if there exist sets Hy, ..., Hg such that

1. H= HyUH,u...UHg and {v;, ..., 0,} = Hy. - .

2. If x e Hj for a certain j < X then for every i€ {1 “ n} there is an ¥ € Hyyy
such that Mk q)i(x, 7). S o
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3. If xeHy;; j<K y<x then yeHp, .
4. If $eH;, j<K pisa polynomial with the number smaller than K then

PR eH s ) )
5. H is a minimal set with the properties (1)-(4).
LeMMA. Let @1y s @, @ be as above. Then the following conditions are equiv-
alent: :
1. Indo, & ... & Inde, b (V1)500(0). o
9. There is a K€ N such that for any sets {iy, .., i,} S{1, ..., n} and {j;, ..., 7}
= {1, e, 1} —{i, ., I} the following is true in every model of PA™:
(V)50 (Vt, o 13)5 -1 (Y55, - 3) (05,1 »
K-closure of the sei {t, 1y, ooy iy Siys oov» 8} With respect 10 {9y, .., 03,
there exists an § such that

50 & .. & 07,8, 8;) = in every

Pulty +1, DV v o+ L)V e, ).

Proof. (1)=(2). Suppose that (1) and :71(2) holds. Then there is a subset
{1, =r» in} {1, .., n} such that (2) does not hold for an infinite set X of K’s. Let
Lgsvesdi} = {1y ey n}={is, o, i} Add to the language of arithmetic the con-
Stants: U, W), , --s Bj1s §j0» -y 5y, and predicate symbols H, H;. Then for Ke X the

following theories are consistent:

Ty = PA™ U {0, (uy> 50 e U{@0 (s, 50} O{H is a K-closure of
{4, gy woos o §jgs oo 55} WoTt {@y .. @} such that for every
JeH, ¢}, +1,7) & .. & 05w, +1, ) & o, D} v

V{20, u,-u,>—1}.

Note that those theories can be formulated in our language. There are for-
mulas 6%, H,) expressing the fact that H, is an i-closure of ¥ w.r.t. {@y,, w5 Pin}-
It follows that for Ke X the following theories are consistent:

Tx = PA™ U{p)(y;,, 1V . v{en,,. 50}
U{B0(U, ), s Uiy Bjys weor So Hody wors Okl gy ooy 8y B, oovs 30 Hi)}
U{(VPm, 105, + 1, P & . & 05+ 1, H & Tow@, 7, ..
o (Vg 100, + 1, D& & 95+ 1, )& To, )}
U{HOEIL;..‘.ng}u{yz(),yhz—l, eoly = =1},

Then the theory T = |J Tk is consistent, by compactness, Let M be a model of T'and
X

let M’ < M be the submodel of M whose universe consists of elements .of M satis-
fying H; in M. Then M’ is an initial segment of M (it may happen that it is the
whole M). Let u, u;, §; interpret u, u;, §; respectively in M. Then M’ F PA™ since
it is closed under polynomials in M.
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M'E @;(u) for je{j, ..., j;} since MF @3;, %), 5, M" and ¢; is absolute
w.r.t. M’ being 4,.

M’ F @+ 1) for je {j, .., ji}-immediate.

M'F Tp(@). Finally, Mk (¥so0r) for ie i,
M FInde; & ... & Indg, & 19 (u) which contradicts (1).

(2)=(1). Let M be a model of Indg, & ... & Indp,. Assume that L/
is the set of those #’s from {I, ..., n} for which Mk (V1)5,0,(f). Let {1y s di}
= {1, ..,m}={is, ..., in}. Then there are u,, ..., u; in M such that

MF ofu) & o u;+1)  for je {j,, R

Let ue M be arbitrary u> 0. Since M k (V1) 04t) for i€ {i,, ..., i,}, there exists
a K-closure of {u,u;,, ..., 4, 3, ., 83} w.rt. {0y, .., @,,} in M, where 3; are
such that M k ¢j(u;, 3;) for je{j, ..., /;} and K is taken from (2). In this closure

there exists an 5. such that MFE (.5, by (2). Since u was arbitrary,
ME®{)z00(). W

Now we are going to formulate the main theorem. We define a hierarchy of
functions based on the hierarchy defined by Grzegorczyk [G] and Wainer [W].

vy Ik Tt follows that

DerINITION 2. Let F; be functions from N to N defined as:
Fo() =2, Fu,t) = FH' @

THEOREM. Let neN. Let ¢y, .., ¢y, ¢ be as before. Define the function
f: N = N as follows:

fo) = we @) e, H&ISW) & VP, o, V).

Assume that Inde; & ...& Indg, F (V)50 (). Then f(t) < F(t) for almost all
teN.

Proof. We need the following definition:

DEerFINITION 3. Let L, KeN. Let ay, ..., a,€ N. We say that a subset H of N
is an Lth K-closure of {a, ..., a,} with respect to @ if H = H;v...w Hy where H;
is a K-closure of {aj, ..., a,} W.r.t. @ and H; is a K-closure of H;., w.r.t. @ for
i=2,..,01

Proof. From the lemma it follows that in consecutive K-closures of the set
{t, —1,0} w.r.t. @ there appear new sequences (m,3) satisfying one of the for-
mulas ¢, ..., @), ¢'. We shall say that a sequence {m, ) satisfying o; or ¢’ is the
mth sequence for @, or ¢, respectively. Assume without loss of generality that for
a given m there is jus: one such sequence.

Tt cannot happen that there appear only consecutive sequences {0,300, {1,315
for one of the formulas ¢, ..., ¢,, say for ¢, and the rth sequence for ¢ does 1-10’:
appear. Indeed, if it was so, then a K-closure of {f, —1, 0} w.r.t. p, would exist.
But in this K-closure there must be the Oth sequence for ome of the for‘rm‘xlas
@35 ..oy 0, say for p,, or the fth sequence for ¢ (by the lemma), contradiction.
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Reasoning in the same way, we infer it cannot happen that building the
consecutive K-closures of {f, —1,0} w.r.t. & only sequences for two of the formulas
@1, - » Oy 52y £OT @, 0, are generated and the 7th sequence for ¢ does not appear.
Similarly for three, etc. :

If so, then there is an L € N such that in the Lth K-closure of the set {7, —1, 0}
w.r.t. @ there are all sequences for ¢,, ..., ¢, which are needed to genérate the ith
sequence for ¢ (L e N since the theorem is formulated for functions from N to N,
in the case of a nonstandard model L can be nonstandard). -

It either can happen that these are all the sequences for.¢,, ..., ¢, which are
in the K-closure of {t} w.r.t: {@;, ..., @,} (those certainly genérate the rth sequence
for ¢ by the lemma) or the fth sequence for ¢ is generated somewlhere earlier in tlie
procedure. . : ) :

- The number L is the biggest in the following situation: for every i =1, .., n
the Oth sequence for ¢; does not appear in any K-closure of {t, ~ 1,0} until all
the sequences for @, ..., ¢;—, occurring in the K-closure of {t, =1, 0} w.i.t.
{@(,..., p;—;} are generated. Neither does the #th sequence for ¢ appear until
a K-closure of {t, —1,0} w.r.t. {@y, ..., @} is generated. =~

Assume that we are dealing with the above (worst) situation. Then we define
LyeN to be the first number such that in the Ljth K-closure of {t, —1,0}
w.r.t. @ there appears the jth sequence for ¢; (i =1,..,n). Then Lo, =1,
Lyy=j+1. = ) ) . o .

Define the functions f(f) bounding the elements of the L,pth K-closure of
{t,—1,0} w.r.t. @: o

(1) Assume i = 1. We have to consider the superpositions of the polynomials
whose numbers are less than K iterated X times. If %> 1 then there is an meN
such that whenever % < and ¢ is a polynomial whose number is less than K then
g(®) <u". Hence, since L; o = 1, we can define f,(£).= (™) . . )" = ™. Then
F*U) < FE@) for almost all r and a KeN, ExK ~  Kimes ’

(2) Assume i = 2. Note that the function. fi(2) bounds the elements .of the
L, jth K-closure of. {t, =1,0} w.r.t. @ (since L; ; = j+1). Let H denote the
K-closure of {t, —1,0} w.r.t. {o,}. To find the number L, , it is.enough to bound
the elements of H. By the definition of a K-closure, H = H,u...u Hg. By the
definition of a K-closure it follows that the greatest element of H, is the tth se-
quence for ¢, (we ¢an assume that it is greater than the values of the polyﬁdmials
having numbers less than K at #). Hence if ae H, then a<f;"!(¢). Similarfy, if
ae H,, then a<fiT'O ) (the 7 1(£)th sequence for ¢,). And so on. If

ae€ Hyg then -

1
ATy,
: K times

a< 1!1 M+ 1 (t)

Hence we can; define f,(1) to bé equal to the above expression. Applying the same
.Teasoning to the set: {3, — 1, 0} where 3 is the Oth sequence for ¢, we infer that the
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function f5( 72(¢)) bounds the elements of the L;,oth K-closure of {z, —1, 0} w.r.t. @
Repeating the same argument j times, we infer that the function f{*'(f) bounds the
elements of the L, jth K-closure of {t, —1,0} w.r.t. &.

(3) The general case. Assume that we have defined the function (). Similarly
as before, we note that the function f{*(f) bounds the elements of the L, th
K-closure of {t, —1,0} w.r.t. @. Let H denote the K-closure of {r,—1,0} W.l.r].t.
{@0 o @}, H= Hyu...uHg by the definition of a K-closure. To define the
function fj 1(¢) it suffices to bound the elements of H. By the definition of a X-closure
we obtain successively: if a e H; then a<f;¥(r) (since the greatest element of H,
is the greatest of the rth sequences for ¢, ..., ¢,, those could be bound by
SN L £ @) respectively and fiTI() < i) <. <fTN0); if ae H, then
a<fI1"' O @); if ae Hy then

Oy

a<ﬁf|‘

Ktimes

n+1 (f)

We can define f;,4(f) to be equal to the above expression.

Let us show by induction w.r.t. i that, for every i = 1, .., n, f{*'(t) < FE,(t)
for almost all . ~

If i="1 then AU < Ff(t) as we have already noticed. Assume that
SN < FEL(r) for almost all t and we shall show that £ 1(r) < FX"'(¥) for
almost all z.

We make the following estimation for t> K:

FHEIORS! AREY w1y
K times - ©+1 K—1 times
13
fiea@®) = £ o < f O (1)
=t
—i FE@®O+1
f(FlK_'l) ! O+
K—~2 times g
< fif: ®O+1 ®
FE (41 O+1
K~2 times t . .
< A OF ) <EE @ = B0 .

In this way we obtain f,(f) < F:(f) for almost all £. Taking a K-closure

of {‘t} w.r.t. {p, ..., »,} and reasoning as before we conclude that f,,(t)<F,,i_" NG
for almost all ¢; therefore, £,(z) < F,(t) for almost-all £ (f; is the function defined
in the way described earlier). B

COROLLARY. The theory 17X, is not finitely axiomatizable.

Proof. Suppose that it is finitely axiomatisable and let T be a finite set of sen-
tences axiomatizing it. Then there is a finite set of X; formulas {@1s s O} SUCh
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that Indg, &...& Indg, + T. Since all the functions Fi(t) are provably total in
I7%,, T proves that F,., is total. By our theorem, F,., < F,, 1 almost everywhere,

contradiction.
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An isomorphism theorem of Hurewicz type in the
proper homotopy category
by
J.L. Extremiana, L. J. Hernandez, M. T. Rivas (Zagaroza)

Abstract. Numerous mathematicians have proved theorems of Hurewicz type in different
contexts shape theory, pro-categories, coherent categories. In this paper we obtain a Hurewicz

Theorem in the proper homotopy category. In particular, we prove:

THEOREM. Let (X, A) be a proper pair such that si(X), st(A4), To(X), 1(d) are trivial. Suppose
that for nz 2(X, A) is (x)n-connected and (t)(n—1)-connected. Then for each proper ray a in A,

0:: (X, A4, AN X, A, @) Jni1(X, A) is an isomorphism. Iri the case where (X, A) is (z)n-simple,
for example if m(A,a) = 0, then gt (X, 4,0) -+ Jn1(X, A) is an isomorphism.

1. Introduction. A natural relationship between singular homology groups and
Hurewicz homotopy groups is displayed by Hurewicz's Theorem. This theorem was
established in terms of simplicial homology and absolute homotopy groups by
Hurewicz [11] in 1935 for simply connected polyhedra. In 1944, Eilenberg proved
that the fundamental group modulo the commutator subgroup is the first singular
homology group. Blakers [2], the proposer of the concept of relative homology
groups, proved in 1948 the Hurewicz Theorem in the relative case given the kernel
of a homomorphism.

There are more Hurewicz type theorems in other homotopy theories. For

“example, in 1969 Artin and Mazur [1] proved a Hurewicz Theorem in the category

pro-%#,, where'%, is the pointed homotopy category of connected pointed CW-com-
plexes, and pro-#, is the category of inverse systems of objects of . Relative Hu-
rewicz type theorems for pro-si?g' and Sh? were proved by Mardesi¢ and Ungar [15]
and independently by Morita [16]. Raussen [17] proved a Hurewicz type theorem
in pro-Ho(Top,), where Ho(Top,) is the homotopy category of pointed topological
spaces. In 1972, Kuperberg [13] proved another Hurewicz type Theorem between
the homotopy groups defined by Borsuk and the Vietoris-Cech homology groups.
In 1979, Kodama and Koyama, [12] proved a Hurewicz type theorem between the
Quigley approaching groups and the Steenrod homology groups. In a recent paper,
Koyama proved a Hurewicz Theorem in the coherent homotopy category of inverse
systems of spaces CPHTop.
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