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and hence 3, N(/;, ») <1 on a positive measure subset of B\ Yy. This implies that

there is a k and there is a closed set C'< B\ Y, such that 4(C) >0 and for every
ye€ C we have
1 ifi=k,
N 3) = {0 ik,

We put D = i; '(C). Then D is measurable, and 2,(D) > 0 since A(D) =0
would imply 4,(C) = 4,((D)) = 0.

We prove that D = A,\X,. Obviously, D = AN\X, since ANX, is the domain
of f.. Let x € D and suppose that x ¢ ANXo. Since h(x) e Ca B\ Y, = L¢} h(ANYY),

we have i (x) = h;(x;) with some x, €ANK,. If i =k then x, = x, € AN\X,, and
heace x # x;. Thus N(h, h,(x)) > 2 which is impossible since h(x)e C.If i # [,
then we get N(h;, by(x)) = 1 which also contradicts h(x)e C.

Therefore D < 4;\X, and, consequently, Dnd, = @ for i # k. This implies
that Uf{(4;n D) = fi(D) = hy(D) = C, where C is measurable and

0< 4,(C) < M 2,(D) < MA(D).

In other words, D e 4. However, Dn X, = @, and hence D is disjoint from the
elements of " which contradicts the maximality of . This contradiction completes
the proof. &
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An atriodic tree-like continuum with
positive span which admits a monotone
mapping to a chainable continuum

by

James F. Davis* (Richmond, Va.) and W. T. Ingram (Houston, Tex.)

Abstract. In this paper an example of an atriodic tree-like continuum with positive span is
constructed. It is shown that there is a monotone mapping of this continuum onto a chainable
continuum such that the only nondegenerate point inverse under the mapping is an arc.

1. Introduction. The following problems appear in the University of Houston
Mathematics Problem Book. The first was raised by Howard Cook, the second
by Cook and J. B. Fugate.

ProBreM 92. If M is a continuum with positive span such that each of its proper
subcontinua has span zero, does every nondegenerate, monotone, continuous image
of M have positive span?

ProBLEM 105. Suppose M is an atriodic 1-dimensional continwum and G is
an upper semi-continuous collection of continua filling up M such that M/G and
every element of G are chainable. Ts M chainable?

These problems also appearcd as problems 163 and 15, respectively, in [9].
Several partial positive results concerning these problems have appeared ([2] and
[8] for instance)., . ‘

In this paper we construct an example which answers both questxf)ns in the
negative. The example s constructed as an inverse limit of simple triods with a single
bonding map and has positive span. Tt is similar in this respect to the examples
constructed in [4, 5], The inspiration for this example was an example ot.‘ an attractor
of a discrete dynamical system presented by Marcy Barge at the 1986 Sprl]lg Topology
Conference at the University of Southwestern Louisiana [1]. However, this example
is not the example he discussed.

* The first author was partially supported by a grant from the University of Richmond Faculty
Research Committee,
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All spaces considered in this paper are metric. A continuum is a compact con-
nected space and a mapping is a continuous function.

Suppose X and Y are spaces and d is a metric for ¥. If fis a mapping of X
into Y, the span of f, denoted by o, is the least upper bound of the set of numbers ¢
such that there is a connected subset Z of X x X with equal first and second projections
such that d(f(x),f ()= ¢ for each (x,y) in Z. The span of X, denoted by ¢ X
is the span of the identity mapping on X.

An inverse sequence is a pair {X;, f;} whose first term is a sequence Xy , X, X3, ...
of spaces and whose second term is a sequence of mappings (called the bonding
maps of the system) f;: X4 — X;. The inverse limit of the inverse sequence {X;, f;}
is the subspace X of [] X; consisting of all points (x,, x,, X3, ...) in IT X; such

i>0 >0

that fi(x;4() = x, for each 7. The projection of X onto the ith factor space will
be denoted by ;.

2. The continua X and Y and the mapping u. Let 4, B, C, and O denote the com-
plex numbers 7, 1, 1, and 0 respectively. Let T be the simple triod [0, A]u
v [0, Blu[O, C] lying in the complex plane. Let /2 T - T be the unique piecewise

linear mapping such that £(0) = g, F(4) = B,f(B) = C, f@) - g f(f) =0,

c\ ¢ ./3cC c c\
(€)= C, f(f’.) = f(-g——> = 0, f(i) = 4, and f(—g—) = 0, and such that f
is linear on [0, 4], [0, BJ4], [B/4, B/2], [B/2, B], [0, C[8], [C[8, C/4], [C/4,3C]8],
[3C/8, CJ2], and [C[2, C]. Figure 1 depicts this mapping by showing the domain
simple triod embedded in a “thickened” simple triod, following the pattern given
by f. The diagram might be thought of as a “graph” of the function f.

A
%
8/2 cr2
] c(2 c
B &____t C/8 3C/8 5.2 5 c
Fig. 1

For each positive integer », let 7, = T and f, = f. Let X be the inverse limit
of the inverse sequence {7}, f;}. An embedding of X in the plane is indicated in the
left half of Fig. 2.
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Denote the unit interval [0, 1] by 1. Define g: I — I to be the mapping such
that g(0) = 0, g(1/8) = /2, g(3/8) = 1/2, g(1/2) = 1, g(1) = 0, and such that g
is linear on each of [0, 1/8], [1/8, 3/8], [3/8, 1/2], [1/2, 1]. The graph of g is shown
in Fig. 3. For each positive integer n, let ¥, = I and g, = g. Let ¥ be the inverse
limit of the inverse sequence {Y,, g,}. The continuum Y is homeomorphic to the
Brouwer-Janiszewski-Knaster Continuum [6, p. 204], shown in the right half
of Fig. 2.

The continiurm ¥

The continuum X
Fig. 2
Define h: T — I as the mapping such that A([C, C/2]) = 0, h([O, 4]) = 1/2,
h([B/2, B]) = 1, and such that h is linear on [C/2, O], and [0, B/2]. The graph
of & restricted to [C, O]u[O, B] is also shown in Fig. 3.

I 1

T AT

Graph of g Oroph of h restricted to (C,0101d 8]

Fig. 3

LemMa 1, The mupping h maps T onto I, and hf = gh. Thus, p: X ~' Y defined
by 1(xy, X, 0) = (A(x1), h(Xy), ) is @ mapping of X onto Y.

Proof. Since each of f, g, and # is piccewise linear, it suffices to check that
hf(x) = gh(x) at cach of the points x in{4, C, C/2, 3C/8, C/4, C/8, B, B[2,B/4, O}.
We leave this to the reader,
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TueorREM 1. The mapping p is monotone, and the only nondegenerate point
inverse under u is the arc

1~%0,0,0,...) = {(z,1,¢,..): te[C[2, CI}.

Proof. That x~%(0,0,0,...) is the set indicated above follows from the facts
that h~1(0) = [C/2, C] and frestricted to [Cf2, C] is the identity. This setis clearly
homeomorphic to an arc and is thus connected.

Suppose that y = (¥, ¥2 V3 ...) is a point of ¥ and that 2~Y(p) is non-
degenerate. Let w = (W, Wy, Ws, ...) and x = (X1, X5, X3, ...) be points of R e))
such that w # x. Then there is a positive integer n such that w, # x,.

Suppose that i>n. Then Wi, # ¥4, Recall, from the definition of g, that
E(Wies) = B(X;42) = yi4q. Since £ is a homeomorphism on (B/2, O)U(O Cl2),
both w;., and x,., belong to [B,Bf2]u[C)2, ClU[O, 4]. Now f4lo, 4]
= f([B[2, B)] = f(IC]2, C])= [C]2, C], hence w;and x; are bothin [C)2, C], regard-
less of which of the intervals w;,, and x;,, arein. If j<i, w; = w; and x; = x;
since f restricted to [C/2, C] is the identity. Thus w, and x, are in [C/2, C], and w;=
wo and x; = x, for all j. Therefore w and x both belong to ©~40,0,0,..).

3. Atriodicity of X. A continuum M is a triod provided there is a subcontinuum
K of M such that M\K has at least three components. A continuum is asriodic
if it contains no triod.

THEOREM 2. Every proper subcontinuum of X is an arc, and thus X is atriodic.

Proof. Suppose that H is a proper subcontinuum of X. There exists a positive
integer n such that if i > n then O is not in 7(H). If not, for infinitely many integers
J, O belongs to nj(fi}. Then every projection of H contains C/2 since f(0) = Bj2
and f(B/2) = C/2 which is a fixed point for f. Therefore, for infinitely many integers j,
[0, C/2]< m;(H). However, £3([0, C/2]) = T, which implies that every projection
of His all of T. This contradicts the assumption that H is a proper subcontinuum.

Note that there is a positive integer k such that 4 is not in n;(H) if i>k. If
not there are infinitely many projections of H containing 4, but £( f (A)) = Cand C
is fixed by f'so all projections of H contain C. Thus infinitely many of the projections
of H contain both 4 and C so infinitely many projections contain O, which we have
just shown to be impossible.

Since f1(Bf2) = {0}, for i>n—1, BJ2 is not in m(H). Thus for i>n+k,
flm;(H) is a homeomorphism of an arc, so H is an arc.

Thus every proper subcontinuum of X is an arc, and by [3, Theorem 3], X
is atriodic.

4. The continuum X has positive span. In the definition and theorems that follow
we employ the following notation, similar to that used in [4] and [5]. The symbols
{t, u) and <, u)" will be used only to denote subcontinua of Tx T such that the first
projection is the subarc't of T and the second projection is the subarc u of T. If p and ¢
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are points of T'the unique arc in T which is irreducible from p to ¢ will be denoted
by pg unless O is a point of the arc and is not an endpoint of it, in which case it
will be denoted by pOg.

DEFINITION. A subcontinuum of T'x T is said to have property L provided that
(a) it is the union of twenty subcontinua
> <A0 0%,
2

(03 05): (05 03). 0% 40). (o
(05 403)- (0009 (o5, o). (o ). (.2
<0§, §c>, <%c, 0§>‘, <0§, §c>, <§c, o§>, <AO§, §c>,

(So. 405). (40%.05), (£, 102),

B
<A05, OB> and <0B,A0~g—> ;

(b)) <t upTt = Cu, 1ty for each {f,u) in the list above;
(c) there exist cight points x,, X5, X, X4, 24, 25, 23 and z4 such that

., . BB B C B C
cl) xy is in — — and is i =, 0= -
(c.1) xy n o and (*1, 0) is in <02 , O 2> and <02 ,AO§>,

o

L C
(c.2) x; is in 40 — and (x,, O) is in AOE, 0§ and AOE OE’
32 8" 72 8’ "2/’

. . 3B
(c.3) x5 is in _§B and (x,, 0) is in <OB, 0~§> and <3—8§B, 0§>,

.., Cl3¢ C B C C
cd) x § . — 9 - 18 11 — — — —
(cd) x, is in YeETS and (x4, O) is in <4 C, 02>, <4 C,0 2> and

C C
<Z C, 40 —8—> 5
. B .
(¢.5) z, is in OL{ and (zl, ;) is in <0§, 0§> and < E, g >

2
L C N
(c.6) z, is in AO»é- and (z;, 2) is in <AO C, ¢ > and <A0-§ 9>

o)

., 3CC
(©7) z; is in ) and (z3, 4) is in <0»§— AOC> and <0 A0 — >, and

. . B
(c.8) z, is in 'OZ and (zy, 4) is in/(_(){? A0 §> and <OB, AO§>; and

2 — Fundamenta Mathematicae 181,17
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B C\ , B C C .
() 05’ 0-5 is a subset of both A0—2~-, 0—?: and ( OB, OE while

B
27EJB, 0E is a subset of { OB, A0~ ).
8 2 2

LemmMa 2. If Z is a subcontinuum of T'x T with property L then there is a sub-
continuum Z' of Tx T with property L such that fxf(Z") = Z.

Proof. If (¢, u) is a subcontinwum of Z and v and w are arcs in T" such that
f|vis a homeomorphism throwing » onto ¢ and | w is a homeomorphism throwing w
onto u then L(<t,u),v,w) denotes the continuum (f|v)™*x(f|w)™'(t, D),
called the lift of {z, u)> with respect to » and w, and having the property that its
first and second projections are » and w respectively.

The construction of the twenty continua whose union is Z’ may be read from
the following table. The first colummn contains the name, {z, ', of the subcontinuum
of Z' under construction: {t, )’ is the union of the subcontinua L, listed as
corresponding to it in the second column. Each L, is the lift of {v, w} with respect
to r and 5, where (v, w) is the subcontinuum of Z shown in the third column, and r
and s are shown in the fourth and fifth columns. The construction is identical in
nature to that of [4].

If {t, u)' is one of the ten liftings constructed below let <u, £}’ denote ({¢, u)")™*
and let Z’ be the union of these twenty sets.

B\ 3C.
To see that Z' is connected, note that << f [04~> (M)f‘g‘) is common to

B C13C\"t ° BB\™! C
Ly and L,, (Z,<fi4——§2——) (xz)) isin L, and Ly, and ((f[12> (ZS)’Z) is

B c\!
in Ly and L,. Then note that (:1’ (f! AO —?:5) (xa)) is in Ls and Lg (since x5 is

3B - . C .
in " B, (f |40 §) (x3) is in 40 55) . The only observation necessary to see that
the third of the ten sets constructed below is connected is to note that L is a subset

B c\' B !
of L; and this also shows that <05, 0_2> is a subset of <A0§-, 0(2:> . Further
. . (B [/, C\! .
note that Lg and L, both contain the point 2, ‘ jIO-é-» (z,) ]. The point
3B \7! B B\ C
(( f l~—8—B> (x4), Z) belongs to Lo and Lyy. The point ((f | 02) (zy), 2)

. B -t
belongs to L, and L,, while L;; and L,, both contain (Z’ (f [:/[g C) (x4)) .

-1 3 ™\~ 1
Both L, ; and Ly 4 contain the point(( flo g) (%)rgg) while <g , ( Il %g g) (23))
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Continoum ref Lift wrt & wrt

B C 3cC

0=, 0= 0= ==

Ly < 2 2> 4 8 2
L o Aoc ok c13¢c

<0B 09>' 2 2’ 8 4 4 32
2° 72 . 0 10 BB c13C
3 2’ 8 42 4 32

c B BB c

= - —= o

L <02’ 40 2> 42 4

c BB C

0~ —= A0=

B c\' Ls < 2’ OB> 42 8
0, 402 o

B 3B

0=, = 0= A0=
Le < 2’ SB> 4 32

L 08, 0 A0 ¢

7 ) 4 8 2
B C B c1c
0= = 0= - =

B C\! L < 2’A08> 4 4 32
<AO" OE> oS 4o BB cisc
Ls PARrY 42 4 32

c B BB c

= - —= o=

La <02’A0 2> 42 4

c B 3B c

Zc, 0= =B o-

Ls <4 02> 8 8

c B BB c

e 0~ e fo

= <02’A 2> 42 4
c\’ c c BB c13C
<OB’ OE> Ly <05’ A0§> 73 ey
L 02 40€ of c13C

2 277 g 4 432

L 0% o€ oF lefe

! 2’ 72 4 8 2

2%
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Continvum ref Lift wrt & wrt
c B 38 B
L <—c, 0—> =B o=
3B B\’ 4 2 8 4
=B, 0=
<8 2> 5 CC Oc BBB BB
10 47 7 8 42
02 10F W c13c
= P 4 43
B C B 3¢ C
oy | ™ <05’05> % T2
0=, =c
< 24 > L 08 Cc o2 e
1 2 4 4 16
¢ c BB 7C
; - = == —c
L1z <02’ 4C> 42 16
L 02, 40¢ 0 cie
13 2’ 8 - 4 32
I 108 o o 1CC
14 2a P 4 3 2
c c \’ c c C13C 3CC
= = 402, 0= i e
<02’ 4C> L1s < g 2> ) 8 2
c C c13ic 7C
L 40=, ¢ el e
1 < 8’ 4 > 432 16
Cc c 3¢ C 7€
L =, =¢C i T
v <02 4 > 8 2 16
B C c 7C
L 00—, -C —C
18 < 5 4> 08 Te
c c\ o YoRo
40=, =C L 0B, 0= bt i
< 8’ 4 > 1 < 2> 40 8 2
B c c C13C
L 0=, 40= o= £e
- 2 < 2 8> g 432
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Continuum ref Lift wrt & wrt
C
Lys <013, 0= 40€ ¢
2 8 8 2
c\’ B C Ccl13C
A0, 0= L 0=, 40= 0~ ==
< 8 2> 3 < 2 8 4 32
B
Lo <OB, AOE> A0 0-—
C C 3B BB
L ~c, 0= =B ==
10 <4 2> 8 42
C B 3 B
Z, Zc, 0% P 03
B\’ 4 2 8 4
OB, AOE
C BB B
L 00—, OB —— AO—
2 < 2 > 42 4
B 3B B B
L 0=, B 0= A0 =
2 < 2’ 8 > 4 16
C13Cc\!t C 3C 7C \71
isin L4 and L15,<<f| 2—32—> (z2), 5) isinLys and ng, and (?, (f[ —1—6~C)

(x4)), is in L;; and Ly;. Note that L;z and L;, both contain the point

c\™! c\™t 3C .
((f[ 0 E{) (z1), qu) while ((f] O§> (x1), ~é—> is in Lyg and L,,. Note that L,

c\™t ¢ .
and L,, both contain the point ( flo E) (z4), Z) Finally, Lo and L, both contain

16
Because each of these liftings constructed projects onto its corresponding arcs
there exist points yi, ¥, Y3, Ya» ¥s» ¥, and y, such that

B (o) B 3B B B
(yl,—2—> is in <0~?:-, 05>, (yz,g> is in <?B,0—2—>, (y3,§«> is in
() B B\ . . C B C\ ., . B C
<A0'8‘: 03>’ (}’4, 5) 15 1 <ZC: O':_Z‘>a (y.“n '2“) 15 m <OE: 0‘2‘>: (J’a, B)

C B 3B
is in <OE’ 0B> and (34, B) is in <0—2—, —§B>

B\™! B B\™? ..
the point (g, (fl 04—> (zl)) while (Z’ (f]AO ——) (x3)> is in L,y and L,,.
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-1 C -1 3.B -1
Let x’1=(f|]—:g> (70, x’z=(flA0—3-§) (). x'3=<fl-8—B> ),

—-1 B -1 C -1
Xy = (ﬂg%f) o), =(ffoz) ), z’z:(flAO—g—) (rs), 2 =

3ceN\t B\"?
( f |—§~2— (ys) and z4 = | f1 0»4- (»7). So far, we have shown that each of

the ten liftings listed above is connected. Observe that for the collection

B c\’ B c\’ Cc\’ B C_\’
- 2ok Z,0=),{0oB,0=), (0=,=C)}, the first
e ={(05.05) - {403, 05). (0n.05). (07 5e) | the

member listed is a subset of the second and third members and intersects the

3B B\’ B\'
fourth. Thus C¥ is connected. Let C, = {<—8—B, 05> , <0B, A0 —2—> } and note
c C \' c c\ c C \'
% 2 5 . . = —Z IC , =, -y, 0"—, - C
that C3 is connected. Let Cs {<02 ' C> <A0 i (0] 2> <A i) >}

and since the first member listed intersects each of the other two, C¥ is a con-

B c\’ B c\’ .
tintum. Observe that (xj, 0) is in <0§—, 05> and <0—2—, A0 §> while

B Cc\’ B\’ L, B C \’
(z4, A) is in <O—£, AO—8—> and <0B, AO —2> and (0, x}) is in <02,4 C>

c C_\' B C
and <0—2— , ZC> . These observations imply that C}fuCju Ciu <03’ A0—8->

. . . . - c B\’ c _C\’
1s a continuum, H. Since the point (x5, 0) is in{ 40 3 05 and AO-g , 05 s

Z'= HUH™?! is a continuum.

LemMmA 3. Suppose that for each integer n>1 f7 is the (n—1)-fold composite
of f with itself. Then if n is an integer, o(f7) = 1/4.

Proof. Let
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~_
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/N
Qo
X
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1\

e —
N———
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e
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0y
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B C B (C C
0 -, Y = — % { —_
< 2 4C> (02 X{ZDU({O}X 4C>’
CcC C C C
0 - _C = N " s
(0. ¢} = (0 Sxta)o(i01= Sc)
c C Cc (3C ()
- = = ZxdlZ s =
<A08’4C> (Ang{g})u(\A}x4C),
C C Cc (C C
AO—, O— ) =40 —x<-- 1.
< 0 2> 8 {2})”<{A}x°2)
B B 3
AO2 » OB ) = A0 x {B} |u({4} x OB)u {0} % 5 B).
B
Let H denote the union of thesc ten continua, and let Z, = HUH ™. Letting x, = 3

; . _B 3¢ B C .

X, =A, X3 = 5 Xy = g n= A, zy = 3 and z, = O, it is easyto check
that Z, has property L. Suppose that />1 is an integer and that Z, has been
constructed so that Z; has property L and that f{xf{(Z) = Z,. By Lemma 2
there is a subcontinuum Z;,, of T'x T with property L so that fxf(Z;.,) = Zi,
and thus f{*'xf{""(Z;.) = Z,. Thus, by induction, if > 1 there is a sub-
continuum Z, of T'x T such that f7 xf{(Z,) = Z,. Noting that if (p, q) is in Z,,
d(p, q) = 1/4, we have that o(f{) > 1/4.

THEOREM 3. The continuum X has positive span, and thus is not chainable.

Proof. Apply Lemma 2 and Theorem 4 of [4]. That the continuum is not
chainable follows from [7, p. 210]. i

5. Final remarks. To see that the continuum X gives negative answers to the
questions in the introduction we need only note that chainable continua have zero
span [7, p. 210] and apply Theorems 1, 2, and 3.

‘THEOREM 4. The continuum X has positive span, each proper subcontinuum of X
has zero span, and there is a monotone mapping of X onto a continuum with zero
span.

THEOREM 5. The atriodic continuum X is not chainable, and there is an upper
semi-continuous collection. G of continua filling up X such that each member of G
is chainable and X|G is chainable.
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Abstract, Concerning a function SkI originally introduced by Sklyarenko to study compactness
deficiency def, we establish a theorem that Skl X = defX for every separable metrizable space X.
This answers a problem of Sklyarenko affirmatively.

1. Introduction. All spaces considered in this paper are assumed to be separable
and metrizable. By a compactification of a space X, we mean a compact metrizable
space containing X as a dense subspace. For undefined notion see [3] and [5].

The compactness deficiency def X of a space X is the least integer z for which X
has a compactification oX with dim(eX—X) = n.

J. de Groot [4] proved that a space X has a compactification aX with
dim(eX—X)<0 if and only if X is rim-compact. Motivated by this result, to
study further def he introduced the small (resp. large) inductive compactness
degree cmp X (resp. CmpX) of a space X. In general, the inequality cmp X
< Cmp X < def X holds [5]. The well-known conjecture of de Groot that cmp X
= def X has been negatively solved by R. Pol [9]; the space X of Pol’s example
has cmp X = 1 and Cmp X = def X = 2. It is unknown whether there is a space
X with Cmp X <defX. !

Another condition to study def is due to E. Sklyarenko [10], [11], which is
denoted by Skl X < » as in Isbell’s book [6]; a space X has Sk1X < nif X has a base #
such that BdB,nBd.B;n..nBdB, is compact for any n+1 distinct members
of #. Sklyarenko proved that Sk1.X < defX” [10] and asked whether SklX = defX
for every space X [11]. Recently, J. M. Aarts, J. Bruijning and J. van Mill [2] proved
that Cmp X < Sk1.X. In this paper we give an affirmative answer to Sklyarenko’s
problem above. Namely, we shall establish-a theorem that Sk1X = def X for every
space . As an application it will be shown that a nmon-compact space X has
a compactification «X with dim(«X—X) = n if and only if Skl.X < n.

2. Preliminaries and lemmas. Let & be a collection of subséts of a space X,
We shall write [&]" for {71 7 is a subcollection of & with |7 =n}, N &

1 Added in proof. Recently the author has constructed such a space.


Artur




