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Abstract. Let By denote the sentence
(Va, (V)< @ (x, a, 3) = @D (V5 <@y) <2v(x, a, )

where @ is [T, n>1.

We give a recursion-theoretic characterization of those I, formulas v that By is provable
in ITy4 (V).

As a corollary we infer that IZ,,,(N) does not prove BZ.

The independence of BX, from the theory of true IT, . ; sentences — IT, . (N) —
was first proved by Parsons in [P] by a combination of a proof-theoretic and re-
cursion-theoretic argument. There is also a model-theoretic proof possible. Paris
and Kirby in [PK] prove that BY, is independent from I¥,_, in a model theoretic
way. One can modify their argument so as to show the unprovability of BZ, in
Hn+ 1(N )

Note that IT,..,(N) is a stronger theory than IX,_;.

We give another proof of the independence of BY, from IT,,.,(¥). It is similar
to Parsons’s proof, but in addition to the independence result, it gives a full charac-
terization of formulas  such that the corresponding instance of BZ, is provable
in IT,.1(N). To formulate our characterization theorem we need two definitions
of recursion~theoretic character.

Dprmvimion 1. A relation R(a, x) S Nx N is called almost a _ function if there
is 2 number L & N such that for every a, the set {x: R(a, x)} has at most L elements.

DerrNiTION 2. A. relation R(a, x) uniformizes R(a, x) if for every a

3x) R(a, x) = @Ax) (R(a, x) & R(a, %)) .
Our main theorem is the following:
THEOREM 1. IT, . (N) F B where W is IT,_, iff the II, relation R((t, @), x):
V) W(x,a, ) &x<t
is uniformizable in N by a X, almost function.
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Proof. First we prove the theorem in the “<=” direction, which is casicr. Let i
always denote a IT,_, formula.
LeMMA 1. Assume that there is a £, formula ¢(t, a) such that
I, s(N) F (Vt, (VO @N (%, 2, y) < 0(t, a)).
Then II,,.,(N) + By
Proof. By the assumption, By is equivalent in II,..((N) to
V1, (e (t, @) = @) (Yx) @) <V (%, 4, 7)) -

The above sentence is IT,,, and true, hence it is provable in IT,,,(N). Thus
II,..(N)+By. & v
LEMMA 2. Assume that R(a, x) is I, and is uniformizable by a X, almost function.

Then the formula ¢(a): @Ax)R(a, x) is provably I, ..y in 11, ((N), i.e. there is a IT, ., ‘

Sormula ¢(a) such that IT,. (N) b (Va)(cp (@ < 6(d)).
Proof. Let R(a, x) be a %, almost function uniformizing R. Let L be given
by Definition 1 for R. We have

i i
(Yo){@xX)R(a, x) < ‘\1(/1 [Ax, ... x,)(j/lz(llxj # X, & J=/X\1 R(a, x)) &

i i i
& (Vxy ... xi)(( M x;# x & M R(d, x])) = W R(a, xj))]} .
Jik=1 j=1 J=1

Then the “ =" part of the above equivalence is a IT,,; sentence and, being true,
it is provable in II, . ((N). The “<=” part is provable in logic.

Moreover, the right hand side of the equivalence is a II,.,, formula (in fact it
is a boolean combination of %, formulas). ’ :

Thus ¢(a) is equivalent in IT,,,(N) to the II,,,; formula

L i i i
W I xs ) (M % # % & M Ria, %)) & (Vxg o x)(( M %) # % &
i=1 =1 =1 Jk=t

; i
& /x\lR(a, %)) = W R(a, x))]. W
= J=1

Proof of the “<«=” part of the theorem. Assume that the relation
R({t,ay, x): (V) 1W(x,a, ) & x< ¢ is uniformizable by a Z, almost function.
Then by Lemma 2 the formula (3x)(Yy)( W (x, a, y) & x<1t) is provably IT,..,
in IT,,,(N). Thus, there is a X,,, formula ¢(¢,d) such that II,,.s(N) proves

(Vt, a)((vx)$t(ay)l//(x: a, y)¢"¢ (ta tl)) ’

Now, by Lemma 1, II,.. (V) F By.

Proof of the “=” part of the theorem. ConSIder the following
definition.
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DrrINITION 3. Let (%) be a formula of the form:

(Yz) @wy) ... (Vz,) Awe) 9'(x, 2, Wy, ..., Z, W)

where ¢ is open.

Since we allow irrelevant quantifiers, an arbitrary formula can be wntten in
this form.

Fix an enumeration of Z-polynomials. Let Ke N.

A finite set M is a K~closure of = (... #,,» W.1.1. @ if there are sets Hy, ..., Hg
such that

() H=Hyu..0H, HsH.,;

(2) II() = {I(): ey tm};

(3) if i< K, ris a polynomial of / variables whose number is less than i and
X e H,is of length 1 and r(%) 2 0 then r(X) € H;, (by X e H; we mean that every
term of X belongs to H));

(4) there are partial functions w/(z ... z;) from H*'to Hforj=0,..,k—~1
such that

(a) if there are fo, .., ;< K such that iy <i; .. <i; and z, € Hy, ..., zje Hy;
then the sentence

(VZJ+ vd Wia1) v (V) Awy)

@'(F, 295 Wo(20), 21 Wi (20, 21) .. 2j, WilZo +ov Z9)s Zpaets Wyt e Zis Wy)
is true.

Remark 1. For every Ke N there is a number L(K) € N such that a minimal
K-closure of any . w.r.t. ¢ has at most L(K) elements.

Moreover there is a formula 08 (F, #) of L(K)+m variables stating the follow-
ing: hy, ..., hrxy-4 are consecutive, in a certain canonical ordering, elements of
a minimal K-closure of ¥ w.r.t. ¢.

We show how to build 6%, on a concrete example. Assume that ¢ (x) is of the
form

(Vz)@we) (Vz,) @'(x, 20, Wo, 21)

Let ry, ry be polynomials of one variable whose numbers are 0,1 respectively.
We have:

LO) =1, 050t bo): by = ¢,

L) =3, 08yt hos By b)) ho = 1 &by = ro(t) &
& (Vz)o'(t, hos by, 21), .

LQ2) =10, 080y, ko .. ho): ho = t & by = ro(2) & (Vz) 0'(¢, hos B2y 20)
& hy = rolhy) & hy = ro(hs) & hs = ry(ho) & hg = ry(hy) & -
& hy = ri(hy) & (Yz1) 0'(t, by, hs, 21) & (V20)9'(1; B2y Bos 7).

Note that, if ¢ is a IT,,, formula then 0%, is Z, (eveni I, -1)-
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Remark 2. We have for any X
PA™ F (V1)@ () = @F) 032, 7)) .
The next lemma is a version of Herbrand’s theorem.
LemMA 3. Let ¢ be a formula. The following are equivalent:
(1) PA™ F (VDo (D);
(2) there is a number Ke N such that
PA™ F (V3, )10 @3, ).

Proof (due to Z. Ratajczyk). Assume (1). Add to the language the constants:
oy evey By Coy €15 oo and let & = (dj ... 4y, 8k = Co e Crqmy-1)- Suppose that (2)
does not hold. Then for every K the theory .

Tx: PA™+{08,(@, &), 0208)(@, &,), ..., 0@, 80}
is consistent.
Then the theory I"= (J T is consistent, by compactness, Let M be a model
K
of T'and let M’ = M be the submodel of M whose universe consists of interpretations
of the constants:
tO: eeey tma hOs hl: oo

Cramv. M’ PA™ & T1o(F) where T = (1, ... ty
Assume that T1p(F) is (Vz,) @wy) ... (Vz)@w)o'(E, 2, Wg ... zW,). We have
M’ I PA~ since it is closed under polynomials in M. Moreover, for any z,, .., z, € M,

there are elements wo(z,), Wi(2g, 2,), s Wi(Zo .. 2) interpreting appropriate elements
of the K-closures: Aj... hrxy~1. Then

M'IF (0'(2, Zos Wo(2o), 21, Wy(zo, 21) oo Zps W20 e Zk)) .

Thus the claim is proved and hence a contradiction. The implication @) =(1)is
easy. M

Now we are able to prove the =" part of the theorem.

Assume that IT,,,(N) proves By. Especially, there is a %, formula o(z, a)
such that

s s(N) b (Ya, (YD) <@V (x, 2, ) = 0 (1, @) .

Lot ¢4, ..., ¢, be a finite fragment of IT,+.4(¥) which proves the above equivalence.
Let ¢(a, t) be the formula

(01 & ... & 9) = (V)@MW (x, a,3) = 6 (1, 6)) .

Then PA™ +(Va, 1) ¢(a, ).
By Lemma 3 there is a Ke N such that

PA™ b (Vt,a, )08, a, B)
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Here, "¢ is the formula

?1 & ... & 0 & (V%)@Y (¥, @, ¥) & V6 (2, a) .

This formula is IT,.;, hence the formulas 0;}}") are %,. We can assume that
0;}‘{’)0, a, i) define graphs of partial functions of #, @ — otherwise take %, formulas
defining graphs of partial functions of #, a and uniformizing 0;}%.

Consider the follo\‘)ving relation. R({t, a, x) in NxN:

K~1
\X/o ARt a, )& (x = hovix =hy Vv .. vX = hrgy-1))-
fom
Then R is a %, almost function (to satisfy Definition 1 one can take L = ¥ L()).
i<k
Cram. R uniformizes R where R({t, a), x) is the relation defined in N by

VyW(x,a, ) &x<e.

Proof of the claim. Assume @Ax)R({¢, a), %) for a pair {¢,a) e N. Then
@@x)(x <t & (Vy) W (x, a,y)). We have “lo(t, @) since

o(t,a) = (V)@Y (x, a,)

in N. Let i <X be maximal such that @R)07f, (¢, a, ). Suchan i exists since
@R)O8y(t, @, k) and (VE)T10.0%(t, a, k). Take i such that 6%(, a, k).

If for every h; <t there was a y such that y (n,, a,_.y) then, since @y, ..., ¢, are
true and ~1o(¢, @) Is true, we would be able to extend % to an (f+ 1)th closure of ¢,
a w.r.t. 71¢ contradicting the choice of i. Hence

L-1

j\x{) (h.lS t& (vy)-“//(hj’ a, y)) .

The claim has thus been proved and part “=>" of the theorem follows. I
COROLLARY, IT,,4(N) does not prove BE,.
Proof. We shall show that T, (V) does not prove the following form of BZ,:

(VO((Y) @)Y (x, £, ) = F2) (V¥ @) <a ¥ (3, 1, 7))

where ¥ runs over II,., formulas,

The corollary follows from the following remark:

Remark 5, There is a IT, relation R(¢, x) in N x N such that the relation R'(t, x)
defined as R(¢, x) & x < ¢ is not uniformizable by a Z, almost function.

Proof of the remark Let S(s, #, X) SNx Nx N be a universal Z, relaiion.
Let R(z, x) be ~18(t, ¢, x). Then R'(2, x): R(t, %) & x <t is not uniformizable by
any X, almost function.

Suppose the converse, Let R(z, x) be a %, almost function and uniformize R’.
Let L be the bound on the number of x's satisfying R with a given . Let s be such
that s> L and '

Vx, DR, %) = S(s, 1, X))
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Let us show that (3x) R'(s, x). Indeed if (Vx)7TR'(s, x) then (Vx) ¢, R(s, x)
hence (Vx)<; S(s, 5, x) and hence (Vx)<, R(s, x). But this contradicts the choice of L

Thus (Ax).R'(s, x). Hence, by uniformization Ex)(R'(s, x) & R(s, x)).

But R'(s, x) < x <5 & 718(s, 5, x) = "1R(s, x). Contradiction. Since R is I,
it is as required. M

Proof of the corollary. Let y be a II,_, formula such that

R(t, x) <= (V)W (x, 1, )
where R is taken from the remark. If

V(YD) @)Y (, 1, ) = @2) (V@) oV (%, 1, )

was provable in IT, ., (V) then, from the proof of Theorem 1 it follows that R(t, x)
would be uniformizable by a X, almost function and it is not the case. |
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