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On the class of all spaces of weight not greater than , whose
Cartesian product with every Lindelof space is Lindelof

by

K. Alster (Warszawa)

Abstract, Assuming Contmuum Hypothesis, we characterize the class of all spaces whose
Cartesian product with every Lindeldfl space is Lindeldf and whose weight is not greater than y.
Using that characterization we prove that if X belongs to the class thus defined then X isa Lindelsf

space.

Let us denote by 2 the class of all spaces whose Cartesian product with every
Lindel8f space is Lindeldf. E. Michael conjectured that if X belongs to % then X®
is Lindeldf. The same question was raised by T. C. Przymusifiski, who also asked
for a characterization of % (see [T], Problem 5, page 822).

In this note, assuming Continuum Hypothesis, abbreviated (CH), we charac-
terize all elements of % whose weight is not greater than. w,. Using that characteri-
zation we prove that if X belongs to the class % then X® is Lindeldf.

We adopt the topological terminology from [E]. In the sequel I = [0, 1],"w, w,
stand for the unit interval, the first infinite ordinal number and the first uncountable
ordinal number, respectively, We shall identify a given ordinal number « with the
set of all ordinals less than & The symbol Lim will stand for the set of all countable
limit ordinal numbers. For every o < @;, %, will denote the standard basis in I*and p,
the projection from I“* onto I% If X is a topological space then #"(X) and 4(X)
stand for the set of all compact subsets of X and the set of all G,-subsets of X, respec-
We shall say that X satisfies (x) if for every f: #'(X) ~ 9(X) such that K </ (K)
for every K of #°(X) there is a countable set &' (X) satisfying

U{fes): Se &} = X.

The aim of this note is to prove

THEOREM | (CH). If the weight of X is not greater than w, then the following con-
ditions are equivalent:

(&) X belon;gs to &,

(b) X satisfies (»).

As an easy corollary to Theorem 1 we obtain
5 — Fundamenta Mathematicae 129, 2
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TreoreM 2 (CH). If X belongs to 2 and the weight of X is not greater than o,
then X® is Lindeléf. : )

The proof of Theorem 2 is an immediate consequence of Theorem | and the
following

Lemma 1. If X savisfies (%) then X* is Lindeldf.

Proof. Suppose not. Then there is an open cover % of X which docs not have
a countable subcover. In order to finish the proof of the lemma it is enough to define
a sequence (K,)y=o of compact subsets of X such that for CVery G w, every finite
sequence (G));xo of Gy-subsets of X satisfying X, < ¢, and any countable subfumily %/
of % we have

m
(iPoG,x XxXx INUu) # 6,

n
Indeed, since K .—_":POK,, Is a compact subset of X, there exists m ¢ w, 4 sequence

(Hy)iLo of open subsets of X such that K, < H, and a finite subfamily ¥ of % which
m

covers i_F; H;x Xx Xx.. The last fact contradiets the property of (K)).,. We
define the sequence (X7~ by induction. Since X satisfics (%), there exists K, € 2#°(X)
such that, for every countable subfamily %' of % and every Ky« Gy e@(X),
Gox Xx Xx . NU% is not empty. If K, .., K, arc defined then there is
K11 € A (X) such that for every sequence (GYldd of Gysubsets of X satisfying
K;= G, and every countable %' of % we have

1

(t!’OGixXx Xx IN(U% =&,

If K, 1 does not exijt then using (*) we would find a sequence (GDwo of Gysubsets
L3
o"f X such that . fo K,c‘ P0 G; and a countable subfamily %' of % covering
= i=
‘EOGIXX X Xx..., contradicting the property of (K)o

Now let us pass to

Proofof Theorem 1. Let us assume that X satifies (%), We shall prove that X
be]ongs. to Z. In the proof of this implication (CH) is not needed. Let ¥ be an arbi-
trary' Lindeldf space and % an open cover of ¥'x X, Since ¥ is o Lindeldl space, we
can find for every compact set & Jin X a Ggsubset £(K) of X with K< f(K) and
acountable family #(K) <% such that ¥x JSK)e Ju k). By (mj there is
a cogntable set & < A'(X) such that |J {£(S): Se &} = X, From the last equa-
tion 11)t follows that % = U{#(8): Se5) is a countable subvover of U.

. ,x:('mf of (a — b). Sua'fe the weight of X is not greaier than wy, we may assume

at 15 a subspace of 7. Let us suppose that the implication does not hold. This
means that X belongs to % and there exists Jo A (X) - 9(X) such that for every
Ke ' (X) and every countable subfamily & of %'(X) we have K< f(K) and the
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family {/(8): Se &} does not cover X, Without loss of generality we can assume
that for every Ke 4 '(X) there is a<w, such that f(K) = r; (r(K)), where
ty = gl X. From (CH) and the form of f it follows that [{ f(K): Ke o (X)) < o;
so let us put

{f(K): Ke &' (X)} = {G,: a<w,}.

In the sequel we shall need the following

Lumma 2 (CH). If Z is a metric element of £ then Z is o-compact.

It seems to me that Lemma 2 is well known, For the proof see [A], Proposition 1.

Since X ¢ 2 and 2 is closed with respect to continuous images and by Lemma 2
we infer that for every e < oy p(X) = U {F,,: ne w}, where F,, is a compact sub-
set of I

In order to finish the proof of the implication it is enough to define 4 = I°'\X
of cardinality @y and to endow Y = XU 4 with a topology such that

(1) X is a set of isolated points,

(2) cvery @€ A has a eountable base of neighbourhoods in Y,

(3) 4 is a Lindeldf subspace of 7,

(4) 4 is not a Gy-subsct of ¥,

(5) {(x,x): xe X} is a closed subset of X'x Y.

Indeed, from (2), (3) and (CH) it follows that there is a family {H,: H, is open
in ¥ and o<} such that for every open A« H in Y there is ¢ <o, with
H,= H. By (4 we infer that there is P = {x,: a <.} =X such that x, # x;
if @ B and x,e {H;: A<a}n X

Observe that ¥’ = P U 4 is a Lindelsf space. To prove this it is enough to see
that if 4= H and H is open in ¥’ than Y'\H is countable. Since {(x, x): x € P}
is a discrete uncountable and closed subset of Xx Y’, we infer that the product
X'x Y’ is not a Lindelsf space, contradicting the assumption that X belongs to Z.

Now let us pass to the construction of 4 and Y.

We shall need more of notation. If « < < w, and z € I then let zla be the re-
striction of z to « and

D, = [D< I there are ne w, B <a,n e o, for

i<n,UeB, and D = ) {p; Fpn) 0 P2 (U): i<}
Set for o e Lim
C, = {ce I'\p,(X): for every f<ua c|fepy(X)\{cel*: there
are B and ' less than o and Ke o' (X) such that
SFK) = Gy =1y rp(K) and clf’ €rplGp)} -
If C, is not empty and ce C, then a(c) € I** is defined by
c(d). ifA<a,
4@ = {Of ‘ otherwise .
Put 4, = {a(c): ce C,} and 4 = |) {4,: C, # @ and « e Lim}.
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In the sequel we shall use

Lemma 3. A = {aweLim: C, 5 &} is unbounded.

In the proof of Lemma 3 we shall need the notion of a big set. We say that
D= X is a big set if, for every a <my, D\U {G;: <o} is not empty. Obscrve
that X is a big sct by assumption and if D = (J {D,: n< o} is a big set then there
isan ne w such that D, is a big set. The last observation will be called the countable
union argument.

We shall also need

LrmMa 4. If D is a big set then there is an ordinal y(D) < o 1 such that, for every
YD) <a<oy, o <wg and any compact subset K of

2 X); DN(rg "(K) U U {Gy: B <a'})
is not empty. ‘

Proof of Lemma 4. Suppose not. Then there are an unbounded sct 4’ e oy,
a compact subset K, of p,(X) and an ordinal B) <w,, for aed’, such that

® \ Derd(K) v U {Gp: B < f(e)}
or equivaleilﬂy
© DN(U Gyt < @) = 1y (K, .

Since D is a big set, the family # = {ra W&+ weA'} has the countable intersection
property. Put K = () {F"*": Fe #}. Then K is a compact subset of X, To prove
this it is enough to observe that for cvery y e K and « < @, there is x ¢ X such that
»le = x|« and to apply the Lindelsf property of X. Since X is o compact subset
of X, so there are ay, &y, u, less than @y such that f(K) = G, = T Fe(K) and for
eYery o3 <o .

®)  r(N{relK): o <o and o ed'} <

Pao N (R K™ o < and o ey < p () = FaolK) |
and consequently

9) N {ra(K,): o <o and o edYarglr (K) = Gy, -

From (7) and (9) it follows that DNV U {Gy: ' < fi(a’) and o' <al e G,y o
D= U{Gy: p<p(a)and o < o} U G,,, contradictng the assumption that D is
a big set. '

Proof of Lemma 3, Let 4, be an arbitrary countable ordinal number, We
shall show that there exists Ao <2 such that C, is not empty. Since X is a big sct,
there exists k,ew such that "o (Frore) is & big set. Put HFo = {ri (Frea)}s
Ay = (1 (Fiue)) + A0 + @ and Fi={DcX: Dis abig set and there is D' e 7%
such that D = r; {(F,,.) n D'}. Since 95, is a countable family, Fao (Fiaro) 15 & big
set contained in U 9, and by the countable union argument we infer that there
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is wset D' e Loy, such that D = g ' (Fy0) n D is a big set and we conclude that E

Js not empty. 1f a countable family ,#, of big sets and 4, <w, are defined, we put

it = sup{p(D): De g} +h+w

and

HFurr = DX D is a big-set and there is D'e D,,,,
sueh that D = 1 W) a D'}

Arguing in the same way as in the case of @ we show that £, is not empty. Put
Awosup A, newh, We shall prove that ¢y is not empty. Let us put, ‘Foi' new,
{Gp: f1ed, and there is p'<4, and KeA'(X) such that Gy = rp'rp(K)}

= {7, te ) = 2, Put Dy = g (Eye) and s = 0. Let us assume that s,, k, € o
t g

and D, e g, are defined in such 4 way (hat
(10) Dy 15,0 (Fy 1)
and

(1) DI A (Uit ot <nt U (U B t<nl) =@ for 0<n.
Since &= J{Z, rit<nt 1} urf (U {F t<n+1}) isa closed. ‘subset of X
determined by its projection onto 4, it means that x € E if and only if x|1e r,(E);
Als a limit ordinal number, D, is a big set, y(D,) € Ay,,, < 4; thus, by the countable
union argument, there is an 5, <84, and Ve A, such that

’ ~1

P (PPe) A E== @ and  Dyyy= Dy 0y, (V)

; ok LN
is a big sct. bt

Applying the countable union argument to Dj,., we can find k&, , € o such tha

Dll‘|‘1 = Dl/l‘bl n r;v:‘,.i(Fl k )

k1 A1
is a big sct. It is casy to see that D, € #,,,, and the conditions (‘10) and (11) ar
satisfied for n--1. Put

By (10) we infer that
(12) K, c P,x(P;.:,(f},“lcu)) for new.

Sinec K, | <= K, and K, is a compact subset of /%, we infer that K= ) }1;[\,,: n Cr:: a:i
is not empty. From lim 4, = 4, (12) and (11) it follows that K< €. Hence C; 15
a0
nol empty and we conclude that 41 is unbounded, ‘ e
Now we are in position to define the topology of Y. If pe X ﬂxe(lil ; 1;;:21& ;)«:i
in Y. Let us assume that o €4 and a € 4,. Then the base at 4, denoted by > ¥

consists of all sets containing the point a of the form
B=N{p Fpa) nUn Y i<k},

where ke w, sup{f,r i<k} = o <o and U= pg'(V) for Ve Z,.
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Since there s i, such that f§;, = o', we infer that B p;l(ﬁ;,,,,,o) and conclude,

applying «'ly ¢ p(X) for y<a’ and &' € A4,, that
B ({4 Ao}y =0,
From the last equation it follows that the topology is well defined. It is casy to see
that ¥ is a regular first countable space and that ¢5) holds. By Lemma 3 and (CH)
the cardinality of 4 is equal to ;. If «e 4 and Be #(a, Y), we put
0(B) = inf{a: there is B e %, and B' = B},

Observe that
(13) ifaed, aed, and Be #(a, ¥) then 0(B) <.

In order to finish the proof of Theorem 1 it is enough to show that (3) and (4)
hold,

Proof of (3). Let o be an open (in ¥) family which covers 4. Without loss of
generality we can assume that # < U {#(a, Y):ae A}. Then # = |J {#,: a € Lim},
where #, = {Hea#': 0(H)<a}. Observe that

(14) H#, is countable and () {o#y: f <o} o, for ae Lim .

We claim that
(15)  ifa<i led acd,, BeH(a, ¥) and a<O(B) then A, N B = &
Indeed, B = {pg' (Fpu) nUN Y: i<k}, where kew, sup{f,i<k}
= <Zland U = pp'(V), where ¥ € #. There is an i, such that fi, = B'. Hence
B< g {(Fp,,). By definition, a<0(B)< . Since pp(X) e Uy py <)) s
empty, we have Bn (U {4,: y<p'}) = O = Bn 4,.
From (13), (14) and (15) it follows that
U{dp: B<ate (U NU U (o, a<A})) .
In order to show that # contains a countable subfamily which covers 4, it is
cnough to prove
LEMMA 5. There is 0, such that X\\) #;, < | {Gy: p<éy).

Indeed, assume that Lemma $§ holds. Then for every f< 8, there exist tp < Wy
and a compact set Kj in X such that r,;'r, (K,) = G,. Put

(16) for every acd

& = max{sup{uy: f<d,},6,}

and let &’ < dand ae 4. Since alo, ¢ 1o, (Gy) for every <8, (see the definition of ¢
and 4;), we conclude that

(17 ald" g re( U {Gy: f< p.

From (17), 4|6’ €ry(X) and Lemma 5 it follows that a|é'e 2s((U oF5) n X).
Since (py 'ps( U #,)) N ¥ = ) #5,, we infer that a e U #5,. From (16) and (14)
it follows that #, covers 4. :

icm
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Proof of Lemwma 5. Suppose that Lemma 5 does not hold. Then, for every
§<wy, XNU s U {6y p<d}) is not empty. In the sequel we shall need the
notation of @ #'-big sct. We say that DaX is a #-big set if for every o < o,

DNCU G feal wl) o, is not empty .

Note that X is a #-big set by assumption and if D = {J {D,: new} isa s#-big
set then there is un # ¢ w such that D, is a #-big set. The last observation will be
called, as in the case of big sets, the countable union argument.

In the sequel we shall need

LiMMA 6. If D is a S -big set then there is vu(D) < wy such that for every
(D) <a<wy, o <oy, and any compact subset K of p(X),

DNy {(K) w (U e 0 U {Gy: B<a’}) is not empty.

We omit the proof of Lemma 6 because it involves exactly the same reasoning
as the proof of Lemma 4.

In order to prove Lemma 5 it is enough to show

LEMMA 7. There exists X' & Lim such that Cj, = Cy\p (U #y) is not empty.

Indeed, if Lemma 7 holds and ¢ & Cj, then a(c) ¢ |J #,,, because a(c)| ' = ¢| X',
From (16), for o = A’ and (14) it follows that a(c) ¢ U (#\#;,), contrary to the
assumption that & covers 4.

Proof of Lemma 7. The proof of Lemma 7 is very similar to the proof of
Lemma 3.

If He=N{pp'Fpa) " UNY: i<k} H,, where sup{f;: i<k} =o' <o,
kew, U=p;}V)and Ve, then there is a family 7 = {T,,: n € o} of compact
subsets in I* such that ¥ = (J {7,: new}. Put

S(H) = { N {pp, " Fpm) " P2 (T) Y i<k}: new}

and &, = |J {&(H): He #,}. Since #, is countable, we ¢onclude that &, is coun-
table. Put 13 = o. Since X is an #-big set, there exists kg such that 75 (Fox,) i
an #-big sct. Put 4 = y(r™(Fpy,))+ . Similarly to the definition of £, and 4,
in the proof of Lemma 3, we define ,#, and 4. It is just enough to replace the
words big sets by #-big sets and use Lemma 6 instead of Lemma 4 Put
A = sup{A;: new}. The proof of the fact that Cj is not empty is similar to
proving that Cy is not empty. It suffices to replace A by 4’ and Z, by
%y = {Z,; m<w}={Gp:f <4 and there are Ke #(X) and f' <A such that
Gy = rg'rp(K)} v &1, and to replace 4, by 4. .

Proof of (4). Since 4 is a Lindeldf space, for every open U in Y containing A
there is a set W such that Ac W< U and W is determined by some o <wy. It is
easy to sce that the same holds if U is a Gy-subsets of Y. Since for every %<y
there are o< ﬂ <w;, aed and xe X such that 4|f = x}ﬁ,_ we conclude that A4 is
not a Gs-subset of Y.
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THEOREM 3 (CH). If the weight of X is not greater than w,, X ¢ 2 and every
compact subset of X is a Gyset then X is a-compact.

Proof. By Theorem 1, X satisfies (¥). Put f(K) = K for every Ke a#/( X),
Then it follows from (%) that X is ¢-compaet,

TueoreM 4 (CH). If the weight of X is not greater than wq, X & % and X does
not contain uncountable compact subsets then X with the topology induced by Gy sub-
sets, with respect to the original topology, is a Lindelif space (sce [N], for a related
result).

and x, € G is a Ggsubset of X for n< m then there is a Gypsubset 4 of X such that
FeHc | {G,: new}

Remark 1. Theorem 3 may be improved a little bit, namely the following state-
ment is true if the weight of X is not greater than wy, X ¢ % and cevery compact
subset of X is of the Gy-type then X is o-compact if and only if every metric clement
of & is g-compact. Hint: Put C, = {¢ & I"™\p(X): for every <o ¢/fie Py(X)},
define big-sets as non-o-compact sels and £ = {x,: a < w,} & X such that for every «
there is a,e 4 satisfying ], = x|,

Remark 2. It follows from Theorem 4 that X from [A] does not¢ belong to
& as an uncouniable space without uncountable compact subsets in which cvery
point is of the Gy-type.

Let me finish this note with the following

QuesTion. Assume that (CH) holds and X is such that every closed subset
of X of weight not greater than w, satisfies (x). Does X nccessarily sutisfy (1)?

Remark 3. Positive answer to this question would yield a positive answer to
Michael’s conjecture.
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Correction to: Adding a random or a Cohen real:
topological consequences
and the effect on Martin’s axiom

by

Judy Roitman (Lawrence, Kan.)

This paper appeared in Fundamenta Mathematicae 103 (1979), 47-60 Pp.
and Shelah has recently written to me that there is a serious problem with Theorem 5.3,
p. 57. This states that if MAy,;..q holds in a model M then it still holds in M [x]
where x is a Cohen or random real over M; and if MAy oyerca holds in a model M
then it still holds in M [x] where x is a Cohen real over M. The statement about
MA 5. jinkes is false: Todordevié noticed that when x is Cohen the statement com-
flicts with a result of Shelah’s that appears in his paper on taking the inaccessible
away from Solovay’s proof that all sets are Lebesgue measurable (Israel Journal of
Mathematics 48 (1984) 1~47 pp.). Shelah then noticed that his result can be modified
to show that the statement about MAy,j;xeq is false when x is random. The problems
with the proof of this false theorem are, in the Cohen case, that the auxilliary partial
order O* relies on maximal finite antichains being able to decide nearly everything,
when, in fact. they seldom do; in the random case O* was not carefully defined and,
in fact, fails to be transitive.

On the other hand, the second part of Theorem 5.3 — if MA; cenweres holds in M
then it holds in M [x] where x is Cohen over M — is true. Perhaps the easiest proof
was noticed several years ago by Baumgartner and Tall, and is sketched here.

Reall that MAy.ceptoreq 15 equivalent to the statement P(C): for every centered
family # on w of size less than C there is some infinite 4 = o with 4 = B mod finite
for all Be 4.

So assume # = {B,: i€ I} is a Cohen forcing name for a centered family on o
of size less than €, We may assume that & is forced to be closed under finite inter-
sections. Let Q be the set of all triples (s, f, B,> where s is a finite Cohen condition,
¢is a finite subset of w, and 7 I. The order on Qis: {s, 2, By < (', t, B iff s s,
tet,and s | if nez—1 then ne B, Q is easily seen to be Z-centered and if G is
Q-generic for the obvious dense sets and x is Cohen over Mthen 4 = |J {r:Asex 3B,
with (s, 7, B,> € G} is the required set.
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