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The Lévy continuity theorem
for nuclear groups

Ly
W. BANASZCZYK (Réds)

Abstract. Lot (¢ he an abelian topological group. The Lévy continuity theorem says
that if ¢ is an LCA group, then it has the following property (PL): a sequence of Radon
probability measures on & is weakly convergent to a Radon probability measure p if and
only if the corresponding sequence of Fourier transforms is pointwise convergent to the
Fourler transform of p. Boulicaut [Bo] proved that every nuclear locally convex space
G has the property (PL). In this paper we prove that the property (PL) is inherited by
nuclear groups, a variely of abelian topological groups containing LCA groups and nuclear
locally convex spaces, introduced in [B1].

1. Introduction. Let G be an LCA group and I the dual group. The
Bochner theorem may be formulated in the following way:

(@)  Buery continuous positive-definite function on G is the inverse Fourier
transform of a (unique) finite positive Radon measure on I'.

This theorem can be extended to inverse limits and countable direct Hm-
its of LCA groups. It was also extended to some other classes of abelian topo-
logical groups: nuclear locally convex spaces (the Minlos theorem), Hausdorff
quotient groups of such spaces (Yang [Y]), locally convex spaces over p-adic
fields (Mudrecki [M]). Trying to give a common generalization of the corre-
sponding results, the author introduced in [B1] the so-called nuclear groups,
a varicty of abelian topological groups containing LCA groups and nuclear
locally convex spaces (the definition and basic properties of nuclear groups
are given in Section b below), It was proved in [B1, (12,1)] that every nuclear
group (¢ satisfios an aualogue of (). _

The Lévy continuity theorem may be formulated in the following way:

T —————p

1891 Mathemabics Subject Clussification: 43A06, 60B10, 60B15.

Key words and phrases: Lévy continuity theorem, convergence of probability measures,
nuclear groups.
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184 W, Banaszcayk

(8) A family of Radon probability measures on I is tight if and only if the
corresponding family of inverse Fourier transforms is eguicontinuous

on G,

{(v) A sequence (pn)3%, of Radon probability measures on G is weakly
convergent to o Radon probability measure i if and ondy if the cor-
responding sequence of Fourier transforms is pointwise convergent to
the Fourier transform of u.

An analogue of (8) for nuclear groups was obtained in B1, (12.5)]. Bouli-
caut [Bo] proved that every nuclear locally convex space G satisfies (). The
aim of the present paper is to complete the picture by proving that every nu-
clear group G satisfies (y) (Theorem 5.3 below). The main idea of the proof
is similar to that of [Bo], with vector spaces replaced by their subgroups and
quotient groups. Another proof of Theorem 5.3 will be given in [BT)].

The author is deeply indebted to V. Tarieladze for suggesting the prob-
lem and for many discussions.

2, Notation, terminology and preliminary lemmas. Let G be an
abelian topological group (which we abbreviate to a.t. group). Following
Hejcman [H], we say that a subset X of G is bounded if, for each neighbonr-
hood I of zero in @, one can find a positive integer n and a finite subset F
of G such that

XCcF+U+ "4 U
For instance, every precompact subset is bounded. If G is locally compact,
then X is bounded if and only if it is precompact. If G is a locally convex
space, then X is bounded if and only if it is bounded in the usual sense, i.e.
absorbed by every neighbourhood of zero.

By a character of ¢ we mean a homomorphism of G into the multiplica-
tive group of complex numbers with modulus 1. The value of a character x
at a point g € G will be denoted by x(g) or {g,x). The group of all con-
tinuous characters of G is denoted by G/, It is is usually endowed with the
compact-open topology, but we shall also consider other topologies on oM.

Let & be a family of subsets of G which satisfies the following conditions:

(i) if X € &, then - X € &;
({ifXcGadY CX,thenY € &;
(iil) if X,Y € &, then X UY € &;

(iv) if X,Y € &, then X +Y € &;

(v) all finite subsets belong to &

(such a family is sometimes called a boundedness on G), Typical examples
are the families of finite, compact, precompact or bounded subsets. It is a
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standard fact that there exists a unique group topology on G for which the
family of sets of the form

{xeG":[1-x(g)<eforeachge X} (e>0, X €6)

is a base at zero {only (iii) is needed here). We call it the topology of uniform
convergence on elements of & and denote by . Condition (v) implies that
7 is Hausdorff, Condition (iv) implies easily that the family of sets of the
form

{x€¢@":Rex(g)=0foreachgec X} (Xe6)
is also a base at zero for . The topology of uniform convergence on finite,
compact or bounded subsets of G is called the topology of pointwise, compact
or bounded convergence, respectively; the corresponding character groups
will be denoted by Gf, G2 and Gf). If G is Hansdorff, then the topology
of compact convergence ceincides with the compact-open topology on GA.
Note that the identity mappings G} — G2 — G/ are continuous.

Let H be another a.t: group and + : G — H an algebraic homomorphism.
We say that o is bounded if the image of every bounded subset of (7 is a
bounded subsct of H. We say that 9 is bounding if every bounded subset of H
i the image of some bounded subset of G. If ¥ : G — H is continuous, then
it is bounded, which implies that the dual homomorphism " : H — G0
given by 1" (x) = x ¢ ¥ is continuous.

Now, let H he a closed subgroup of G and ¢ : G — G/H the canonical
homomorphism. It is not hard to see that if G has some bounded neighbour-
hood of zero, then ¢ is bounding. Such a situation occurs if, for instance, G
is a normed gpace or an LCA group.

LemMma 2.1. Let G, H be a.t. groups and let ng - G x H — G and
wg G X H — H be the canonical projections.

(a) A subset X of G x H is bounded if and only if ng(X) and mg(X)
are bounded subsets of G and H, respectively.

(b) The group (G x H){ s canonically topologically isomorphic to
G x H.

Proof. Part (a) is a direct consequence of the definitions. It is a standard
fact that the formmla

{g )y o (s k) = {gyx) - (hyw)  (9€ G, heH, x€ G ne H)
defines an algebraic isomorphism o : G x H™ — (G x H), and (a) implies
that o is a homeomorphism hetween GL x HY and (G x H){. »

By M(G) we denote the family of finite positive Radon measures on G,
and P(GQ) ¢ M(G) is the family of Radon probability measures. By the
weak topology on M(G) we mean the topology induced by all functions of
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the form
MG 3 pe | Flg)dp
G

where f is a bounded continuous complex-valued function on G. If a net
{tte) in M(Q) is weakly convergent to p € M(G), then we write p, = u.
A family & € M(G) is said to be #ight if to each £ > 0 there corresponds a
compact subset X of G such that 4(G\ X) < ¢ foreach u & S.

By the Fourier transform of a measure g € M(G) we mean the p.d.
(positive-definite) function Fy : G* — € given by

Fulx) = | x(g)du(g) (x &),
a
Since p is a Radon measure, Fu is continuous in the compact-open topology
on G".

Let (o) be a net of p.d. functions on G*. If it is pointwise convergent
to some function ¢, then we write @ — @. If (o) is a net in M(G) with
o ~r b € M(G), then, by definition, F i, - Fu. The converse, in general,
is not true, even if nets are replaced by usual sequences.

Let = be a group topology on G” such that the functions x — x(g},
g € G, are continuous, and let v € M(GZ2). By the inverse Fouricr transform
of v we mean the p.d. function F~'v : G — C given by

Flulg)= | x(@dv(x) (9€G)
GA

Let E be a topological vector space {all vector spaces occurring are as-
sumed to be real). We may treat E as an (additive) abelian topological
group. By E* we denote the dual space of all continuous linear functionals
on K, and EY is the space E* endowed with the topology of uniform con-
vergence on bounded sets. If £ is a normed space, then E is just the dual
space with the norm topology.

(g)eC

LEMMA 2.2. Let B be a topological vector space. Then the formula
(x,a(f)) = exp{2mif(z)} (z€E, feEY)
defines a topological isomorphism o : Ef — BEf}.

Proof It is a standard fact that ¢ is an algebraic isomorphism (sce e.g.
[HR, (23.32)]), and it is easy to see that & and o™* are both continuous. m

Let X, Y be symmetric convex subsets of a vector space E. Suppose that
X is absorbed by Y, i.e. that X C tY for some ¢ > 0 (we write X < Y. The
Kolmogorov diameters of X with respect to Y are given by

(X, Y) =infinf{¢>0: X CHY + M} (k=12,...)
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where the first infimum is taken over all linear subspaces M of E with
dim M < k.

Let p be a seminerm on E. We set

By={ze& E:p(z) <1}
We say that p is a pre-Hilbert seminorm if
(e +9)* -+ ple —y)* = 2p(2)* + 2p(y)*  (wm,y € B,

Let B be a Hilbert space. By By we denote the closed unit ball of E.

Let 7' he another Hilbert space and 7' : B —+ F a bounded linear operator.

Then the fovmnla p(x) = |[Te|, » € E, defines a pre-Hilbert seminorm p on
F. Tho operator numbers of T' are given by

(lk,(ff“) W (1/,,(.'1"(313),.8;?) = dk(BE,BP) (k = 1,2, .. )
We say that T' is «-approzimable, 0 < o < oo, if S pe ; di(T) < co.

Lemma 2.3. Let p, q be pre-Hilbert seminorms on a vector space F, with
B, < By, such that 3 pe.y di(By, Bp)* < co. Let Q be an arbitrary subgroup
of B andlet v be a Borel p'robabzlzfy measure on Qp such that Re F v (z) >
1 —¢ for each @ € QN By, where e > 0. Define

Ze={xeQ" Rex(z) >0 foreachzcQn 2B}
Then

o0
v(QM\Z) <25+ Y dy(By, By)*.
LESN
This is a direct consequence of [B3, Lemma, 3.4]. For details of the proof
see [A, Cor. 22.8].
Lemma 2.4, Let p, g be pre-Hilbert seminorms on a vector space E, with
By, < By, such that 3 po. du(Bp, By) < o0, Let Q be a subgroup of E and
X @ character of (@ such that Rex(x) > 0 for each @ € @ N By. Then there
exists o bounded linear functional f on E such that exp{2nif(z}} = x(z)
Jor each z € @, wnd

]
Il <4 du(By, By)-
et
This is a consequence of (B2, Thm. 3.1(1)]. ¥
[A, Lemma 19.13(ii)].

For details of the proof see

3. The property (PL). Let G be an at. group. Following [Bo|, we say
that @ has the property (PL) if (v) is satisfed, ie. if Fry, - Fp implies
that u, — p, for any 4 € P(G) and any sequence (4, )%, in P(G).

LemMma 8.1, Let G be an o4 group with the property (PL) and let H be
an arbitrary subgroup of G. Then H also has the property (PL).



188 W. Banaszonyk

Proof. Let p € P(H) and let ()52, be a sequence in P(H) such that
Fln 5 Fu. Let v+ H — (& be the identity embedding and let po= )
and il = v{p4y), n=1,2,... Then Fu' = Fpo " and Ful, = Fp, 0™ for
every n, so that Fu!, 5 Fy'. Since ¢ has the property (PL), it follows that
pi, = !, which means that p, — 4 (see Lemma 2.1 of [Bo]), m

Let 7 : &G — H be a continuons homomorphism of a.t. groups. Consider
the following two conditions:

(*)  if p e P(G)and if ()L is a sequence in P(G) such that Fp, 5
F s then w(py) = w(p);

(#x) i S C P(G)is a family of measures such that the family {Fu} e is
equicontinuous on Gy, then {7 (1)} ,es is a tight family of meagures
on H.

If () is satisfied, then we say that the homomorphism n has the property
(PL). Tf (%) is satisfied, then we say that = is tightening.

LemMMa 3.2 Let (I, <) be o directed set and let G be the limit of an
inverse system {G;, 75,1} of a.t. groups and continuous horomorphising.
Suppose that to each i € I there corresponds some § > i such that the
homomorphism m;; : Gy — Gy has the property (PL). Then the group G has
the property (PL).

Proof Let m : G — Gy, 4 & I, be the canonical homomorphisms. Let
€ P(G) and let (1, )52 ; be a sequence in P(G) such that Fu, = Fu. Fix
an arbitrary ¢ € I and choose j > ¢ such that mij + Gy — G has the property
(PL). We have Fr;(1) = Fuon) and Frj{pn) = Fpin o mft for every n,
which means that Fr;(un) = Fr;(p). Therefore iy (i) > wigi (i),
Le. mi(pn) — m;(u). Since i € I was arbitrary, it follows that 1, < u (see
Lemma 2.3 of [Bo]). w

LeEMMA .3.3. Let ¢ be a p.d. function on a (not necessarily abelian)
group G, with ¢(0) = 1. Let € € (0,1) and let gi,q0 € G be such that
Rew(g) 21—, i=1,2. Then Rew(gy - go) > 1 — 4 + 2% = 1 - 4e.

This follows easily from elementary properties of p.d. funetions.
"The next proposition may be treated as an analogue of the equicontinuity
principle for p.d. functions.

PROPOSITION 3.4. Let G be a (not necessarily abelian) Cech-complete
group (or even o Baire group) and let (n)py be a pointwise convergent
sequence of p.d. functions on G such that the Hmit function is continuous.
Then the sequence (i) is equicontinuous.
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Proof. Denote the limit function by ¢. We may assume that (0) =
wa{0) = 1. Fix £ & (0, 1} and consider the closed subsets

Ky = ﬂ e Regn(g) 21—} (m=1,2,..).

LT

Since oy, Ly, it follows that

[y
Vis{ge G :Roply) 2 1-e/2} C U X,
=zl
We have It V' # 0 because ¢ is continuous. Now, a standard category
argument shows that there is an index m such that U = Int X, 5 0. Then
U U is a neighbourbood of zero in ¢ and, by the previous lemma, we have
Rewp{g) > 1 —4deforevery ge U~V and n>m. =

An at. group & is said to be dually separated if G separates the points
of G. If K is a subgroup of a topological vector space E, then it follows
easily from Lemuna 2.2 that B/ K is a dually separated group if and only if
K is weakly closed o B (ef. [BL, {2.5)]).

LeEMMA 3.5, Let G be a dually separated group and let py, po € P(Q). If
Fug == Fpg, then pig = .

This is a standard fact. See e.g. Theorem 2.2 of Chapter IV in [VTCh].

LemMma 3.6, Let G be o duslly separated group. Let p € P(G) and let
(fia) be a net in P(G) such thai Fpy ~ Fu. If the family {pao) is tight,
then fhe ~ fb.

Proof. Suppose the contrary, i.e. that j, -5 . Then there is a finer net
{143) for which g is not a weak cluster point. Being tight, the family {Hat
is weakly relatively compact in P{G) (see e.g. Theorem 3.6 of Chapter I'in
[VICL]). So, there is a net (1)) Guer than (up) which converges to some
p' e P{G). We have i'" s p, otherwise u would be a cluster point of (p).
Then the net (Fp,) is pointwise convergent to Fyu and Fpi's hence Fpu =
Ful', By Lemna 3.5, we obtaln o= g, which is a contradiction. =

Limma 3.7, Let o ¢ G~ H be a confinuous homomorphism of a.t.
growups, Suppose that G is duelly separated and GfY is Cech-complete. If =
is tightening, then it has the property (PL).

Proof Let p & P(G) and Jet (pn)i2, be a sequence in P(G) with
Fun B Fpu. By Leroma 3.4, {Fn 3., is an equicontinuous family of fune-
tions on Gy (the fanction Fp is continuous on G and hence on GY). If =
is tightening, then {m{4,)}5%, is a tight family of measures on H. We have
Fr(u) = Fuon® and Frluy) = Fln o ©" for every n, which implies that
Fr{un) S Fr{p). Hence, by Lemma 3.6, 7 (g ) — w(p). w
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LEMMA 3.8. Let G, D, H be a.t. groups with 1) discrete. Identify G usth

homomorphism such that the restriction g @ G ~+ I is tightening, Then o
is also tightening.

Proof. Let § ¢ P(G x D) be a family of measures such that {Fp) s
is an equicontimuous family of functions on (G x D). Tor each d ¢ D,
let Gy = G x {d} be the corresponding cosel modulo G Tor ¢ § and
d € D, let pg € M(@) be the measure given by pa(A) — n(A 0 Gy) for
Borel subsets 4 C G (i.e. pg Is the restriction of g Lo Gyl Then we may
write pt == 350 jta for 4 € 8. To prove thal the faraily {m(i0)} e s is tight,
it is enough to show the [ollowing two assertions:

(I) To each ¢ > 0 there corvesponds a finite subsel [ ¢ £) such that
(@ x I) > 1 —¢foreach g € S.
(II)  For each d € D, the family {m(ua)},cs is tight.

Let ¢g : G x D — G and ¢p : G x D — 1) he the canonical projections.
Consider the dual homormorphisms 1 : Gf) =+ (G x D)) and gy « D —
(G x D)p. We have Fepg(p) = Fropd and Fipp(pe) = Fpogf, for p & 8.
Therefore {Fopa(i)}ues and {Frhp{p) s are equicontinuous tamilies of
functions on Gf and D{, respectively. The Lévy thoorem for diserete groups
implies that {1n(u)}tues ¢ a tight family of measures on D) = D)}, which
is equivalent to (I).

Let o : G — H be the restriction of 7 to ¢. Sinee {Fype () }pes is

equicontinuous and o is tightening, it follows that
(I}  the family {o1e(u)}es is tight.
To prove (Il), fix d € D and let 7 : H — H be the shilt A s b+ w(d).
A direct verification shows that w{ug) = Towe () for g & &, Therefore
it is enough to show that the family {ovie(1ia) }ues is tight. This, however,
follows immediately from (XIT}, becanse jiy < g and thus oo (ea) < oher(p)
forpes w

4. Subgroups and quotients of Hilbert spaces. Lot /i be a (real)
Hilbext space. The scalar product of vectors i,y € 44 is denoted by (i, y) or
Just by zy. It follows from Lemma 2.2 that the formula

(¥, ¢(@)) = exp{2miny} (o,p ¢ B)
defines a topological isomorphism ¢ @ B - Ef Next, let K be a closed
additive subgroup of E. Define
(1) C={zek:(n,y)eZforoachyec K}
It is clear that Q'is a weally closed subgronp of k. Lot o : /2 - Ji/K be
the canonical mapping. If 2 € @, then ¢ (%) is a continuous character of B
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trivial on K it induces a continuous character £(z) of E/K by the formula

(), () = exp{2mizy} (z € Q, ye E).
It is clear that the mapping £ : @ — (E/K)" thus defined is an algebraic
isomorphism. In fact, £ : Q@ — (E/K){ is a topological isomorphism (¢ is
continuous because ¢ is bounding; £ is continuous because 9 is bounded).
I * . . «w n
Lot ¢ Q =+ B be the identity embedding. The composition B -5 BN 55 Q)
is a continmons homomorphisin trivial on K, therefore it induces a continu-
ons howomorphism 7 : /K = Qf given by

(@, n(p(y))) = exp{2mizy} (v €Q, y< B).
Observe that 5 is injective if and only if K is weakly closed in E. If u €
P(E/K), then v == n(u) € P(Q}) and F~lv(z) = Fu(é(z)) for each z € Q,
which can he verified directly. In what follows, by the canonical homomor-
phisms @ — (E/K)" and B/K ~ Q" we mean the homomorphisms £ and
n deflned above.

Now, suppose we are given two Hilbert spaces Fy, B, with weakly closed
subgroups Ky, Ky, respectively, and a bounded linear operator T : Fy — Ej
with T'(K1) & Ky, Let 4 : By — E;/K;, 1 = 1,2, be the canonical map-
pings. Theo the formula myf; = YT defines a continuouns hemomorphism
w: Iy JKy — Fe /Ky, as shown in the following diagram:

El__T_>EQ

(2) im lw

E1/I{1 ~L9.E2/K2
We say that the homomorphism 7 is induced by T
Under these assumptions, the following is true:
Lemma 4.1, (a) Let gy € P(By/Kq) and let pg = n(p1) € P(Ea/Ky).
Let £ and r be some fived positive numbers and let A = 16r~1e~1/2Bp,.
Suppose that

(3) S a1 < 1,
kel
(4) ReFu(éy(x)) =21 —g for each 2 € Q1 NrBg,.

Then pa{tpa(A)) 2 1 — 3e.
(b) If the operater T is 2/3-approzimabdle, then w is tightening.
ReEMARK. Condition (3) may be replaced by > pey di{T) < ¢ where ¢ is
some nniversal constant. Similarly, 2/3-approximable operators in (b) may
be replaced by l-approximable. The proofs of these assertions need certain
additional preparations and will be given elsewhere.
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Proof. (a) For i = 1,2, define
Q; = {x € By : (z,y) € L for cach y € K;}
and let & : Q; — (E/K;)" and 1 : By/K; — 22 be the corresponding
canonical homomorphisms. Let T : By — £y be the adjoint operator given
by
(z,T*y) = (Tz,y) (w & F, y& k).

Then T*(Q2) C Q1 and we obtain the following commmbative diagrams of
continuous homomorphisms:

O T ay 0, By Ky T I ) Ky
lﬁz liz mi l'm

A A ('IW\QQPA . A

(Baf K2l " (B1/ K1)} {Qufy = (Qa)])

Consider the measure vy = m2{ps) € P((@2)1). We have
(5) F-lug=Fupoby=Fuiom oly=Fu ol o™,
Let p be the continuous pre-Hilbert seminorm on [y given by
ple) =r M| (2 € Ha).
Then
du(Br,, Bp) = v (T (k=1,2,...).
A standard argument based on the polar decomposition of T shows that

there exists another continuous pre-Hilbert seminorm g on Ky with Bg, <
B, < B, and such that

d}.;(Bq,Bp) = El/‘zdk(T*)l/.‘i’
di(Br,, By) = r~ e V2du(T*)% (b =1,2,...).
Since dg(T™) = di(T), from (3) we obtain

(e
(6) Y du(By, By)? S e,

foum,

o
(7) > dn(Br,y, By) S vl 2,

k=l
If z € Q2 N By, then Tz € @y NrBy,. Hence, by (5) and (4), we have
(8) ReF  up(z) > 1—¢  for each & € Qy N By
Set:

Z={x€Q) Rex(z) >0 foreachz € Q2N 1B, }.
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Applying Lemma 2.3, (8) and (6}, we obtain
9) v2(@5\ 2) < 3e.

Now, take an arbitrary y¥ € Z. By Lemma 2.4, there exists a bounded
linear functional f on Ky such that

(10 exp{2mif(z)} = x(z) for each z € Qs,
[»)

(11) £l €4 du(Be,, 1By).
Jeem L

Let y € f8y be given by f{z) = (x,y) for x € Ey. By (11) and (7), we have

[= 4]
loll = [1£1 < 163 di(Br,, By) < 16r~%e™*/2,
Fy=x 1
Thus ¥ € A. Condition (10) means that ne¢s(y) = x. Since x € Z was
arbitrary, it follows that 2 C nayie (A). Hence

v2(2) = ma{ua)(Z) = pialng 1(2)) C palng " (n22(4))) = a2 (1h2(4))
because 1)z is injective (K was assumed to be weakly closed in Ey). In view
of {9), this completes the proof of (a).

(b} Let & © P(Ey/Ky) be a family of measures such that {Fu}ues
is an equicontinuous family of functions on (Ey/Ki)]. Suppose that
Sohe 1 de(T)** < oco. Using the polar decomposition of T' etc., we can
find a Bilbert space Ky and bounded linear operators 7' : E; — E; and
T" : By — By with T = T"T" such that 3 e, dp(T')?/3 < 1 and T" is
compact. Let K} be the weak closure of T/(K}) in Ej. It is not hard to see
that T"(K1) < Ky. We obtain the canonical commutative diagram

mt 2‘7’1‘
By —= £y By

l‘!ﬂ’ 0 lﬂﬁé jﬂﬁz

By /Ky~ By [ Ky~ By [

where w''ar’ == 7,

Take an arbitary £ > 0. Since & : Q1 — (Bi/K1)j, is a topological
isomorphism, {F o &1 bues 15 an equicontinuous family of functions on Q.
So, there is some r > 0 such that ReFu{fi(z)) > 1 — e for every z €
QuNrBr, and u € S, Let A = 16r~ e~ /2Bg, and let X = ¥ (T(4)).
Then X is a compact subset of Es/Ky. Now, take any p € 8. By (a), we
have 7' (1) (15 (A4)) = 1 — 3¢. Hence

©() () D () (a(T"(A)) = 7" (' (w)) (" (%2 (A))
s ! () (=) " (5 (A)) 2 7 () (e (A)) 2 1 - 3. m
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By an BKD-group we mean a group of the form (¥ JEK) x D where Dis a
discrete abelian group and K is a weakly closed subgroup of a Hilbert space
E. We shall identify E/K with the corresponding subgroup of (E/K) x D,

LEMMA 4.2. Let G = (E/K) x D be an EKD-group. Then the group G}
is Cech-complete.

Proof. By Lemma 2.1(b}, the group G} is topologically isomorphic to
(B/K)p x Dp. Let @ be defined as in (1). Since the canonical mapping
£:Q — (E/K )4 is a topological isomorphisin, the group (137K is Coche
complete. Heunce G{ is Cech-complete hecause D{) i compact. m

Let G1 = (Ei/K))} x Dy and Gy = (E2/K3) x Dy be BXKD-groups and
let 7 : Gy — G be a continuous homomorphism with {1 ) C Jy/K,.
We say that m is a-approzimable, 0 < « < co, if the restriction my, /5,
F1/Ky — Ea/Kj is induced by an a-approximable operator T' : By — Fy
(see diagram (2)).

LEMMA 4.3. Every 2/3-approzimable homomorphism of JWKD-groups has
the property (PL).

Proof Let m: (E1/K1} x Dy — (Fy/Ka) x Dy be a 2/3-approximable
homomorphism of EKD-groups. Then the restriction o Fy /Ky ~ Ey /K,y
of w to By /K, is induced by a 2/3-approximable operator T : Fy — Ey.
Lemma 4.1(b) says that o is tightening. Hence # is tightening according to
Lemma 3.8. It is now encugh to apply Lemmas 3.7 and 4.2. =

5. Nuclear groups. Nuclear groups were defined in [B1, (7.1)] (an
equivalent definition is given by Lemma 5.1 below). They form a clags of
a.t. groups with the following properties:

(1)  every LCA group is nuclear;

(2)  a topological vector space G is nuclear if and ouly if ¢f is a muclear
locally convex space:

(3)  every subgroup of a nuclear group iy nuclear;

(4)  every Hausdorff quotient group of a nuclear group s uuclear;

(5)  the product of an arbitrary family of nuclear groups is nuclear;

(6) the direct sum of a countable family of nuclear growps is nuclear.

"The proofs of these assertions are given in [BL, Sect. 7]. Moreover, if G is a
Cech-complete nuclear group, then the group G2 is nuclear [A, (20.36)]
Let F' be a vector space and 7 a topology on J such that F, is an
additive topological group. We say that F, is a locally conver vector group
if it is separated and has a base at zero consisting of symunetric convex sets.
A locally convex vector group F' is called a nuclear vector group if to each
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gymetric convex neighbourhood U of zero in F' there corresponds another
symmetric convex neighbourhood ¥V with di(V,U) < k71 for every k.

LEMMA 5.1, An a.t. group G s nuclear if and only if it is topologically
isomorphic to a group of the form H/K, where H is o subgroup of o nuclear
pector group I and K is a closed subgroup of H.

This follows from [BY, (9.4) and (9.6)].

LeMMA 5.2, Let K be o closed subgroup of a nuclear wector group F.
Then the quotient group F/K s topolegically isomorphic to a dense sub-
group of the limit of an inverse system {G;, w5, 1} of EKD-groups with the
following property: to cach i € I there corresponds some § > i such that the
homomaorphism i : Gy — Gy s 1/2-approzimable.

This is a reformulation of Theorem 3.4 of Galindo [G}. The number 1/2
may be replaced here by an arbitrary a € (0, 00).

TaEorREM 5.3. Every nuclear group has the property (PL).

Proof. Let G be a nuclear group. By Lemma 5.1, there exist a nuclear
vector group F and a closed subgroup K of F' such that @ is topologically
isomorphic to a subgroup of F/K. By Lemma 3.1, we may assume that
G = F/K. That }/K has the property (PL)} follows from Lemmas 5.2, 3.1,
32and4.3 =
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