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Interpolation of real method spaces
via some ideals of operators

by

MIECZYSLAW MASTYLO (Poznad) and
MARIO MILMAN (Boca Raton, FL)

Abstract. Cerfain operator ideals are used to study interpolation of operators be-
tween spaces generated by the real method. Using orbital equivalence a new reiteration
formula is proved for certain real interpolation spaces generated by ordered pairs of Banach
lattices of the form (X, Leo(w)). As an application we extend Ovchinnikov’s interpolation
theorem from the context of classical Lions-Peetre spaces to a larger class of real interpo-
lation spaces. A description of certain abstract J-method spaces is also presented.

0. Introduction. The Riesz-Thorin-Marcinkiewicz interpolation the-
orems are important tools in classical and modern analysis. Recall that
the Riesz-Thorin theorem states that if a linear operator T is bounded
from Ly, into Lg, for j = 0,1 then T is bounded from Ly into L,, where
1/p=(1-6)/po+6/p; and 1/¢ = (1~ 6}/qo+ 6/qo and 0 < 6 < L. It
is natural to ask if under the same assuraptions we can improve the con-
clusion: for example we ask if it is possible to find a smaller range space
Y such that T is bounded from L, into ¥. It was known for a long time
that if go < po or 1 < py the result is not sharp. Finally in [13] Ovchin-
nikov obtained a sharp version of the Riesz—Thorin—Marcinkiewicz theorem:
under the same assumptions of the classical Riesz-Thorin—-Marcinkiewicz
theorem we can conclude that 7" maps continuously L, into the Lorentz
space Ly, with 1/r = (1 — 0)max{1/q0,1/po} + #max{1l/q1,1/p1}. The
proof of this remarkable result is based on the application of a factorization
theorem of Bennett [1], which states that the inclusion map £, — £, is a
(p, 1)-summing operator, to prove a new interpolation theorem for opera-
tors acting on weighted sequence £,-spaces modelled on the set Z of integers.
A simple application of the reiteration theorem aliows Ovchinnikov to prove
his general interpolation theorem for Lions-Peetre scales.

1991 Mathematics Subject Classification; Primary 46M35.
Research of M. Mastylo supported by KBN Grant 2 PO3A 050 09.
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The fact that in the majority of applications of interpolation theory to
classical analysis we have p; < ¢;, j = 0, 1, probably explains why the result
remained unnoticed for so long. Of course the factorization theorems lying
at the heart of the result already point to importance of studying operators
that are not “improving”. Moreover, another area of possible applications is
the theory of weighted norm inequalities for classical operators. We hope to
return to this last point and its connections with the theory of commutator
estimates elsewhere.

The main purpose of this paper is to extend Ovchinnikov’s theorem
from the context of classical Lions—Peetre spaces to more general spaces
generated by abstract real method spaces. This extension is not completely
straightforward and demands the introduction of appropriate tools which
could be of interest in their own right.

Let us outline briefly the content of the paper. In Section 1 we define
new operator ideals, which include the ideals of (¢, p)-summing operators,
in order to prove certain basic interpolation results. The main result of this
section is Theorem 1.4. It is of interest that the conditions on the spaces are
expressed in terms of multiplicators of Banach sequence lattices, modelled
on Z.

Section 2 contains the main result of the paper. In order to prove it we
need among other things a new reiteration formula for certain real method
spaces generated by any ordered pair (X, L (w)) of Banach lattices. The re-
sults obtained are then applied to prove our generalization of Ovchinnikov's
theorem.

In the last section the new ideals of operators are applied to give a
description of abstract J~method spaces.

In the paper we use freely the standard definitions and notation of in-
terpolation theory as can be found in (2], [3] and [13].

Acknowledgements, This research was carried out while the first
named author was visiting Florida Atlantic University during the Fall of
1997. He is grateful to this institution for its hospitality and support.

1. Summability and basic interpolation results. We start by re-
calling that a quasi-normed space is a vector space X whose topology is
given by a quasi-norm z — | z|| satisfying

(1) |lz|f > 0 for z #£ 0,
(i) lazll = o] - ||z|| for a € R, z € X,
(iit) there is C > 0 such that ||z +y| < C(|lz] + ||v|) for =,y € X.

If | - || is a quasi-norm on X defining a complete metrizable topology, then
X is called a guasi-Banach space.
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Let (£2, u) be a measure space with u complete o-finite, and let L ()
denote, as usual, the space of all equivalence classes of measurable functions
on {2 with the topology of convergence in measure on p-finite sets.

If a quasi-normed subspace E of L°(u) is such that there exists 1, € L (1)
with « > 0 a.e. and

(i) [l < Iyl whenever |z| < [y| a.e.,

then we say that F is a quasi-normed lattice on ({2, ). If in addition the
it ball By = {z : l|zz < 1} is closed in L°(y), so that E has the
Fatou property, then E is a quasi-Banach space which is called a mazimal
quasi-Banach lattice.

A quasi-normed lattice modelled on the set 7 of integers is called a
quasi-normed sequence lattice on Z.

If X is a quasi-Banach lattice and w € L° with w > 0 a.e., we define the
weighted space X(w) by [lz] x(w) := |l2w| x.

Let £ be a quasi-Banach sequence lattice on Z and let X be a Banach
space. The vector sequence = = {£,}%2 ___ in X is strongly E-summable if
the corresponding scalar sequence {|z,| x } is in E. We denote by BE(X) the
set of all such sequences in X. This is a quasi-Banach space under pointwise
operations, and a natural quasi-norm given by

1zl sy == H{lznllx}H 2
The vector sequence {z, } in X is weakly E-summable if the scalar sequences
{z*{zn)} are in E for every z* in the dual X* of X. Note that if E has
order continuous norm (i.e., &, | 0 implies ||z, — 0} then for any weakly
E-summable sequence {z,} in X the associated finite rank operators wuy, :
X* — E given by ug(z*) = Ef;_k z*(zn)en for 2* € X*, where {e,} is
the standard unit vector basis in o, satisfy

i [ (e®) - {27 (za ) HiE = 0
ot
for every z* € X*. Consequently, by the Banach-Steinhaus theorem, the
linear map v : X* — F defined by u(z*) 1= {a*(z,)} for &* € X* is
bounded, and thus

lull s~z = wr,x ({zn}) = sup{|{z" (z:) & : [l2*]|x- < 1} < co.

In what follows the quasi-normed space of all weakly E-summable sequences
{zn} of a Banach space X such that wg x({z,}) < co will be denoted by
Ev(X}.

Let E and F be two quasi-Banach sequence iattices on Z, let X and ¥V
be Banach spaces, and let T: X — Y be a linear operator. We shall say
that T is (F, E)-summing if the induced operator T' defined on E*(X) by

Tla,} = {Tz,}  for {z,} € E¥(X)
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is bounded from E™(X) into F(Y). In this case we write mp g(T) :=
||T||EM(X)_,F(Y). We denote by Tr g(X,Y) the space of all (F, E)-summing
operators with the quasi-norm 7 5.

Note that by taking {z,} = {£z} with ||z||x = 1 and {£,.} € B, it follows
that ITrg(X,Y) # {0} only in the case F — F.

In what follows, we always assume that E = F. Under some additional
assumptions on F and F, IIpg is a quasi-Banach operator ideal in the
sense of Pietsch; we refer to [14] for the basic definitions and more detailed
information.

PropPoOSITION 1.1. Let E, F' be Banach sequence laitices on Z such that
the norm of the inclusion map F — E equals 1 and let |le, ||z = |lenllr =1
for some n € Z. Then Iy g,7Fg| is a Banach operator ideal in the sense
of Pietsch.

Proof. Let X and ¥ be Banach gpaces. By the continuous inclusion
Oeg(X,Y) — L(X,Y), it follows easily that ITr g(X,Y") is a Banach space
under the norm 7y . Here as usual £(X, Y} denotes the Banach. space of all
bounded linear operators from X into Y, equipped with its natural norm.
Clearly the rank one operators are in IIp 5. Moreover it is not hard to check
that, under the assumptions above, for the rank one operator T' = z* @ ¢y &
L(X,Y) with 2* € X* and y € Y, we have

mr,e(T) = {|2%||x|lylly-

It is also readily seen that if T € IIp g{X,Y), and Xy, ¥y are Banach
spaces, then UTV € g g(Xp, Yp) and

TeE({UTV) < |Ullres(MIV]
for any U € L(Y, Xp) and V € L(Xp, X). =

We now show some elementary properties of this ideal. Note that for
E={,and F ={; withl £ p < g < o0, Ipg is the well known ideal of
(g, p)-sumiming operators.

Recall that if X and Y are quasi-normed lattices on a measure space
(12, i), the space M(X,Y) of mulitplicators from X into Y is the space of
all measurable functions z € L%(u) such that the associated multiplication
operator X 3 y ~ zy is bounded from X into Y. The space M (X,Y) is
equipped with the quasi-norm

lltrecx vy = sup{llzyily : llyllx < 1}-

Note that if X is'a Banach lattice then M (X, L'} is the usual Kéthe dual
space X' of X,
Before proceeding we will need a technical lemma.
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LEMMA 1.2. Let X and Y be Banach spaces and let E be o Banach se-
quence lattice on Z. Buery (F,{,)-summing operator T : X — ¥ i
(.ZVI(E, F), E’)—summz’ng with WM(E,F),E'(T) S TE e (T)

Proof. Since {y — F, we easily see that £’ < M(E, F) for any Banach
sequence lattice E. Let z = {z,} € (E')“(X). Then ¢z := {{,z,} € (X}
for every £ = {£,} € E. This yields, by the assumption that T : X — ¥V is
(F, &s)-summing, {£n]|Tan]y) € F ond

[nkTanly Yo < Cop | 7 feut (o] ol < 1)

N=—0c0

< Clléllz sup{|[{z* (zn) iz : 2*] x+ < 1}

with g = 7x.6 (T). In consequence, {Tz,} € M(F, E)(X) and the induced
map T : (B')*(X) — M(B, F)(Y) is bounded with ||T]| < C. u

'.I‘hroughout the paper a pair & = (¥, d,) of quasi-Banach sequence
lattices on Z is calle_ﬂc}_ a parameter of the J-method if &y NP1 C #1. The
J-method space Jz(X) = Ty, (X) consists of all z € X + X; which can
be represented in the form

[=e]

(1) z = Z tn (convergence in Xo + X;)

n=-co

Witlll U= {up} € Po(Xo) NP1(X3). Similarly to the case of Banach sequence
lattices ¥y, @1, we easily show that Jz(X) is a quasi-Banach space under
the quasi-norm

||$||j§{)?) = infmax{ﬂuﬂ%(xo), ||u”§51(X1)}3

where the infirum is taken over all representations (1) (cf. [3], [91). If E =
(Ep, Er) is a pair of quasi-Banach sequence lattices on Z so that (@, Fy) =
(Bo(1/0(27), Br1(27/0(2™))) is a parameter of the J-method for a quasi-
concave function ¢: Ry — Ry (ie., o(s) < max{l, s/t}o(t) for all s, > 0),

then the space Jz(X) (resp., Jao.s,(X)) is denoted by T, 5(X) (resp.,

JQ:EU:EI (X)) and jg,E(f) (resp., T8, 85,4 (X—)): whenever Q(t) = tes 0<
# < 1. Note that if £ is a Banach sequence lattice on Z and Fy = B, = E,
then Jo, 5,5 (X) is the classical abstract J-space which is denoted by Jg(X)
(see [5], [9]).

The following interpolation result is an immediate consequence of the
definition of the J-method spaces.

PR.OPOSITION 1.3. Suppose Ej;, Fy for j = 0,1 are quasi-Banach sequence
lattices on Z. If T : X — Y s an operator such that T : X; — Y; is
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(F;, B;)-summing for § = 0,1, then T is bounded from Jg(X) into J5(Y)
and
“THJE(}?)—yJF(?) < max{mr,, 5 (1), 7,2 (T)}.
Proof. Let z € Jg(X) with H:cHJE[_,?) < 1. Then there exists u =
{un} € Eo(Xo) N E1(X1) such that

o0
T = Z un,  (convergence in X+ X1)

n=—00

and |[ullg;x,y) €1, =10,1. Since T": X Y,

o0
Te = Z Tun (convergence in ¥p + ¥3).

Obviously E;{X;) <+ EY(X;), 1 =0,1. Thus, as T : X; — Y¥; is (F}, By)-
summing, we have
H{Tun Him vy € Ciwey,x; (un) < Cillullg, xy < G,
where C; == p, g, (T), j = 0,1. We conclude that Tz € J5(Y) and
- — < .
”T“JE(X)—r_‘]'F(Y) < max{C%,Ci}. =

In what follows for a given Banach lattice X the largest ideal congisting
of all elements with order continuous norm will be denoted by X,. Clearly

X, ={re X :|e| >z, |0 implies ||lz,] -» 0}.
THEOREM 1.4. Let & = (Dq,P1) be a parameter of the J-method and

—_ = e}
let E, F be pairs of Banach sequence lattices on Z so that M (E;, Fy) <

M(E,®;) for j = 0,1 and some quasi-Banach sequence lattice B — (Ey +
Ei)a- If Y is a Banach pair and T : E — Y is an operator such that
T: By — Y} is (Fy, £1)-summing for j = 0,1, then T is bounded from E into
Jz(Y) and
[Tl 5 gy 7y < Cmax{mry o, (T)s 7wy e {T)}-
Proof. The unit vectors e, form an unconditional basis in (Ey + Ey)a.

Since E — (B + Ey)q, for any £ = {£,} € E we have

[»]
&= Z Enen  (convergence in Fy + Fy).

n=—ca

Thus, from T: E — 7, it follows that

&0
e = Z é.Ten,  (convergence in Yp + Y7).

n=—00
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By Lemma 1.2 we see that T': B; — Y] is (M (E;, Fj), B})-summing, and
consequently also (M (E,$;), E})-summing since M (Ej, Fy) — M(E,$,),
i =0,1. It is clear that the sequence {e,} is F’-summing in each Banach
sequence lattice ' on Z and wp p({en}) < 1. Combining the above, we
conclude that for u, = £,Te, and j =0,1,

[H{un}le, v < HIITenllv; Haeme i€l 5 < Crpy e (D],
where €' is a constant depending on the embedding of M(E;, F;) in
M(E, @g) Since Un & K)ﬁYg and Tf = Zao::—-oo Up (convergence in YO+}G)’
we have T¢ € J3(Y) with norm at most Cmax{mr,¢,(T),7p, 0, (1)} =

In what follows a quasi-concave function ¢ is said to be of ciass P+~
if the dilatation indices of p defined by @, = lim,_(in 50(8)/Int), B, =
lim; oo (Ins,(£)/Int) are non-trivial, ie., 0 < o, < B, < 1. Here s,(t) =
SUpPy,~p £(2w) /o{u) for ¢ > 0.

PROPOSITION 1.5. Suppose that E;, F;, Gy for j = 0,1 are Banach se-
quence lattices on Z. Suppose further that &, 7 = 0,1, and E are quasi-
Banach sequence lattices on Z satisfying the following conditions:

(i) &1 = By, &y = Fy, $j = £y, and E — Lo,

(i) M(Ey, Fy) — M(E, ;)

(ili) the inclusion map Fy «— G; is an (Fy,41)-summing operator.

If a T maps (Eo, B1(27")) into (Fy, F1(27™)), then T' is bounded from
E(1/0(2")) into (Go, G1(27")), 5 for any o € P+~

Proof. Since E — £, and B(1/p(2™)) < £y +£,(27") for any p € P+,
it follows that E(1/9(2")) < (Ep+E1(27™)),, because & — E; for j =0, 1.
Now observe that M (X (u),Y (v)) = M(X,Y (v/v)) with equality of norms
for any weights u,v. Hence

M(Ey, Fo) — M(E(1/2(2™),80(1/0(2™)))

and
M{E:(27"), Fi) — M(E(1/e(2")), 21(2" /2(2")))-
Since the inclusion map F (277) < G1(27") has an obvious factorization
RE™ SRS e By
with To{€,} = {£.27"}, Th{&.} = {27¢,} and i{€,} = {£,}, we conclude

that T': E;(279) — G4(279") is (¥}, £1)-summing, j = 0, 1. Thus Theorem
1.4 allows us to conclude.

2. Interpolation between real method spaces. In this section we
present applications of the previous general results. Recall that if ¥ is a
parameter of the K-method, i.e., B is an interpolation space with respect
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t0 (£oo: £oe(27™)), then the K-space Xg = (X0, X1)g consists of all ¢ ¢
Xo+ X, with {K(2",2; X)} € E. It is well known that Xg equipped with
the norm

leff = [{K (2" z; X)} e
is an exact interpolation space with respect to X.

Throughout the paper a mapping F from the category of compatible
pairs of Banach spaces into the category of quasi-Banach spaces is said to
be an interpolation functor (or an interpolation method) if, for any Banach
pair X, F(X) is a quasi-Banach space intermediate with respect to X (ie.,
XoNX; — F(X) = Xo+ X1),and T : F(X) — F(Y) for all Banach pairs
X, Yandevery T: X =7,

Let E = (BEy, Ey) be a pair of parameters of the K-method. An interpo-
lation functor JF is said to be stable on X with respect to E if the following
resteration formula holds:

(2) F()_{an XEl) = X_F(EmEl)'

It is well knowr_nw that if Ey and E, are parameters of the real method then the
Banach pair (Xg,, Xg,) is a partial retract of (Eq, F1) and the reiteration
formula above holds for any interpolation functor and any Banach pair X
(cf. [13], [3])-

Recall (cf. [13]) that a sequence Banach lattice & is said to be a parameter
of the real method if foo N €oo(277) — S a1 +£(27") and T : @ — &
for any operator T : £; — £o, where £, 1= (£,,£,(27™)) for 1 < p < oo0.
It is easily seen that & is a parameter of the real method if and only if the
Calderén operator P defined by

(P& = Z min{l, 2" "},
k=—o0
is bounded in @. For example, if F is any translation invariant Banach lattice
on Z (ie., [{&-x}lz = |[{&}]|g), then & = B(1/0(2™)) is a parameter of
the real method for any ¢ € P+, This follows readily from

|{P&n} e = H{ }of | sl 2o, < Clele

for all § = {€n} € &, where C(g) = S oo min{1,25}/p(2%) < .

In the sequel we will need the definition of a partial retract. Recall that
if X = (X0, X1) and ¥ = (Yp,Y1) are Banach pairs then the elements
z & Xg+ X, and y € Yy -+ ¥7 are said to be orbitally equwalent with
respect to the pairs X and Y if there exist linear operators T : X =Y and
8§:Y — X such that Tz = y and Sy = z. A pair X is called a partial
retract of Y if every z € Xq+ X is orbitally equivalent to some y € Yy +Y:.
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Following the ideas of the proof of Theorem 7.3.1 in [13] (in the case when
both Fo and Fy are parameters of the real method) and [6], we will prove
that for certain Banach pairs X the reiteration formmla (2) holds without
the assumption that both £y and E); are parameters of the real method.
This provides new examples of real method spaces for which the general
“commutativity” formula is valid (cf. [3], 4.7.3).

PROPOSITION 2.1. Let X = (X0, X1) be an ordered pair of Banach lat-
tices on o measure space ({2, p) with X; = Loo(w) for j = 0 or j = 1.
Then:

(i) For any real parameter By_; and E; = £, (279" with corresponding
J=0or 1l for which X; = L. (v) the Banach pair (Xg,, Xg,) is a partial
retract of the pair (Eq, El)

(i) Any interpolation functor F is stable on X with respect to the poir
E defined as in (i).

Proofl Fix 0z € XED-i-Xl Since X is an ordered pair, z € X5+ X7,
‘Thus, by the fundamental lemma (see [2], Lemma 3.3.2, p. 35)

T = Z Un  (convergence in Xg + Xi)
== — 00
and
J(2% un; X) € OK{2", 2; X),

with a universal constant €' < 4. Since X is a pair of Banach lattices, the
terms u, can be chosen to have disjoint supports (see [6]), with possibly a
new universal constant also denoted by C. This implies that the cperator S
defined by

Entin
S& = —
¢ HZ#O K27, u,; X)
for £ = {£n} € £ + £1(27™) maps the pair £; into X, and S(a.) = z, where
ap = {K (2", 2; X)}.

Without loss of generality we can assume that X; = Le(w). Then by
the disjointness of the supports of u,, we have
N

P L. 2t ‘
b=—N I{(Qn:un;X) X, m7X)

for any £ = {¢,} € Ey = £,0(27 ™) and N € N. Hence by the Fatou property
of X1, we get

< Cl¢l &,
X1

< 5 s
- ¢l _NSken HK(2”,

1T¢lx: < Clél e

Thus T' is & bounded operator from Fy into X;. Now we show that z is
orbitally equivalent to a;. By the Hahn-Banach theorem there exists an
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operator S : X — £o (cf. the proof of Theorem 7.1.1 in [13]) such that
Sz = {K(2",z; X))} ___

Since Ey is a parameter of the real method, we have by interpolation S :
(X, X1) — (B0, £eo(27™)). We also have T : (Eo, E1) — (Xg,, X1). Since
8T(z) = 5(as) = 2 and Xp, = X, by the Fatou property, the proof of (i)
is finished. L

The reiteration formula follows from the fact that if @ € F(Xg,, Xg,),
then the orbitally equivalent element ap = {K(2",2; X)}2 . belongs to
F(Eg, By), ie., z € )T:r(E)- On the other hand, if a, = {K(2",2;X)} €

F{X) then the orbitally equivalent element z belongs to F(Xg,, Xz,). =

As noted before, & = F(1/p(2™)) is a real parameter for any translation
invariant Banach lattice £ and any p € P*~. In what follows for such & the
K-space Xg will be denoted by X, &.

ProrosiTiON 2.2. Let By, Ei be translation inveriont Banach lottices
on Z and let ¢o, 1 € PT™ be such that for some ¢ > 1, {{wo/1)(¢™)} =
{27"}. Then for any Banach pair X the pair (Xp, 5y, Xpy,5,) i o partial
retract of the pair (Ep, E1(27™)).

Proof. Recall from [8] that a real sequence {{} is called uniformly
sparse for a quasi-concave function g if for any A, B > 0 the number of k’s
for which A < o(tx) < B or A < o(#)/tx < B is finite and has a bound
depending only on B/A.

We first observe that the sequence {g*}32 __ is uniformly sparse for any
@ € P*T~. To see this note that since ¢ € P+~ for any £ > 0 there exists
C(g) > 0 such that

sp(t) < Cle) max{t™e ==, tPeTe),
This implies that for all s,¢ > @, we have
3) Cle}/min{s™ ¢, 8%} < oo(st) /o ().

Let U= {k€Z: A< p(q") < B} Since ¢ € Pt~ there exist n € Z and
m € N such that

0(g") A< (") and ("™ < B < p(g™t™).
Hence by quasi-concavity of ¢ we have
©(d"™) /p(¢") < 4B/A.
Take £ > 0 such that ¢, — £ > 0. Combining the above, we cbtain,
' g™ %) < 4C(£)B/A.
Consequently, from card(U) < m + 1, we obtain
card(U) < log,(4C(e)B/4) + 1.
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Since f, < 1, we can show similarly that card{k € Z: A < p(g*)/g* < B}
has a bound depending only on B/A.

Now assume that g and ¢ both satisfy the conditions of the proposi-
tion. Since the sequence {q*} is uniformly sparse for both wo and y, the
functors

Fi(X) ={z € Xo+ X : {K(q",z; X)/0;(¢")} € By}
do not depend on ¢ (see [12], Section 7.6), and for any translation invariant
Banach lattice E on Z and any € P+, the operator
o
(8= Y min{l,¢" "},
k=—o00

is bounded in E(1/p(g")). Therefore by the proof of Theorem 7.3.1 in 112],
(Fo(X), F1({X)) is a partial retract of (Ey(1/00{g™)), Ey(1/p1(g™))). Clearly
this last pair is isometrically isomorphic to (By, B1 ((vo/p1)(g™))). Thus if
{lo/e)(g)} = {27}, we are done. =

COROLLARY 2.3. Let Eq, Ey be translation inveriant Banach lattices
on Z and let ¢ be a quasi-concave function. Then for any 0 < f; < 1,
3= 0,1, with 6o # 01 and any Banach pair X the pair (X, 5, X gy, )
with ;(t) = t%o(t) for t > 0 s a partial retract of (B, E1(27™)).

Proof. We may assume that 6y < 6. Clearly both ¢y and ¢; belong
to P+ Since {(o/w1)(q™)} = {277} for ¢ = 2Y/8—% Proposition 2.2
applies. m

We are now finally able to state our main result of this section.

THEOREM 2.4. Let E;, F; be translation invariant Banach lattices on
Z, and let the guasi-Banach sequence lattices @; be such that $; — L
and M(E;, Fy) < M(E,&;), j = 0,1. Assume that T s an operator such
that T : (Xau,Eme,El) — (Yﬁl}-,FD!Y.Gl,Fl) with 0 <a; <1, 0 < B; <1,
ag # a1 and By # B1. Furthermore suppose that the Banach sequence lattices
Go and Gy on Z are such that the inclusion maps Fj < G are (Fy,61)-
summing and (Fy, Fy (2”‘“))9,&; = (GO,G1(2‘”))9’5 forO0< 8 < 1. Then T
is bounded from X, p into Yp, where o = {1— Qoo +0a;,0<8 <1 and

= (Fo(Z—n’ﬂ“),Flfznnﬁl))aaa.

Proof. By the reiteration theorem, we have
(4) (?ﬁn,Foa?Bl,Fl)g,i = ?Fﬂ

. where F' := (F0(2””ﬂ°),F1(2—”ﬁl))9,5 and

(5) (Ko, 5o Koz, 5:)8,5 = X(Eo(2-m0), 81 (2751 o,z
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Since E; are translation invariant Banach lattices, we have £; — E; — fy
and thus

B(2770) < B (277) o £ (2779)
forany 0 <8 < 1. Forany ¢ <8; <1, 7=0,1, we have the well known

formula
oD

K(t & 40(277%), (27 )) = > min{27"%, 1271 }(g ).

k=—o0
This readily implies that if 8; # 8,, then the following continuous inclusion
holds with A = (1 — 8)6g + 661:
B(27™) e (£1(2779), £, (27))s k-
On the other hand, by the well known equivalence
K(t, & £00(2770 £, (27701)) < sglémin{i}““ﬁ",ﬂ_”el},
n

we obtain
(£oo(277%), e (27™))g, 5 — B(277).
Combining the above, we find that for A = (1 - 6)8; + 66,
(Eo(27"%), By (27"))s, = B(27™).
Therefore, by (2), we obtain

(Xao,an Xa1,E1)9,E = Xa,E,
where o = (1 — e + favy. .

Now let T': (Xog,5y) Xon 1) = (Yap,5, Yy, ;) and let © € X, g. By
Proposition 2.2, (Xa,, 0, Xa,,5, ) is a partial retract of (Ey, B1(27™)). Thus
there exists £; € By + E1(27™) orbitally equivalent to x such that &, = Az
for some operator A : {Xoy 5y, Xay,5:) — (B, BE1(27™)). From the above,
we have

¢z € (Bo, B1(27™))o,p = B(2779).

Let &, be an element in Fy -+ F; (27™) orbitally equivalent to y = Tz. By

the orbital equivalence, there are operators

B: (EO:E1(2_H)) - (f&mEo:Xm&l,EJ
and

C: (?ﬁD;Fni?ﬁhFl) - (F07F1(2_n))
such that B(£:) = = and C(y) = ¢&,. By assumption the inclusion maps
Fj = Gy are (F}, £1)-summing, thus by Proposition 1.5, the operator U =
CTB maps continuously E(2~ ™) into (Gp, G1{277))y 5 Since U(&,) = &,
and (FD,F]_ (2_’”))9,5 = (GD,G1(2_R))G’E,, we have

fy & (F(), Fl(z““))eﬁ.
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But £, is orbitally equivalent to y = Tz in (Yg,,m,, ¥s,,7, ), thus there exists
Vo (FOaFl(zﬁn)) - (Yﬁa,FD’Yﬁ1,F1) such that V(fy) = y. Hence by (2)1 we
have :
V. (FO’FI(Q_H))E,E — ?F

with F = (Fp(27"0), F1(2‘”'81))9,(3. Combining, we conclude that y =
Tz = V(&) € Y. Consequently, by the closed graph theorem, 7" is bounded
from Xo,m into ¥Yp. =

Let us now indicate how Ovchinnikov’s result follows from ours (see [13]).

THEOREM 2.5. Let X and ¥ be any Banach pairs and let

I (fuumm famm) - (?ﬁu,qm?ﬁLQl):

0<ay; <1, 0<f <1, ap# a1, fo#pf1ondl <p <oo,1<g < oo,
i=0,1. Then T is bounded from X, , into Vg, where oo = {1 — o +0a,
B=(0—-8)8+86,0<p<oco and 1/g=1/p+ (1-8)(1/q — 1/po)+ +
6(1/g1 ~ 1/p1) 1, where 1. := max{0,z} for z € R.

Proof. Let B = £y, and Fj = {£,, for j = 0,1. By Hélder’s inequality
we have

M(Ej>Fj) - M(gpjvfw) = £T'j
with equality of norms, where 1/r; = (1/g; — 1/p;)4 for 7 = 0,1. Now if we
take B = £p and &; = £y, with 1/t; = 1/p+1/r;, we have 1/r; = 1/t;—1/p,
7=0,1. Hence
M(B, &) = M (4, &) = &,

with equality of norms. This shows that M (E;, F;) = M(E,&;) with equal-
ity of norms, j = 0,1. By Beunett's result (see [1]), the inclusion map
£y — Iy is (p,1)-summing for any 1 < p < oo. Now Theorem 2.4 with
Gy = foo and Gy = £ shows that the operator T' is bounded from KXo
inte ¥Yp, where

F o= (£, (2770), £, (277))y 5
From Theorem 5 of [15] (see also [13]) it follows that for any Banach pair
(Ag, A;) and 0 < pg,py € o0, 0 < # < 1, we have

T8, 25y (A0s A1) = (Ao, A1)g p,
where 1/p = (1 —8)/po +6/p;. It is well known (see [2], Theorem 5.6.1) that
for all 0 < » < 0o,

(qu{anﬁo)reql(2—':1,61))617‘ = (em(2_nﬁo):£m(2mnﬁl))ﬁ,r = e’r(‘?—-nﬁ)’

where § = (1 — 8)8; + 83, Since 1/q = (1~ 0)/to + 8/t1, we conclude that

F = £,(27"#), Thus T is bounded from X, ,, into Y ,. w

REMARK. Note that from the proof of Theorem 2.4, it follows that the
statement of the theorem is true for Banach pairs {X., 5, Xa, 5, ) and
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(Yoo, Yo, ) with 0 <y < 1,0 < B €1, a0 # o, B # 5y satis-
fying the following conditions:

(1) (Xao, B+ Xan,B: ) 18 2 partial retract of (Bg, By (27™)),
(i) (Yo, 7o ¥ 5,5, ) 15 a partial retract of (Fp, F1(27™)).

THEOREM 2.6. Let X = (X, X1) and Y = (Yy, Y1) be ordered pairs of
Banach lattices with X; = Loo{u) fori = 0ori =1 and vy, = Lo(v)
fork=0ork=1LatO0<o<l,a;=0,1<p <00, pro; =0
Jori =0 ori =1 where i is such that X; = Loo(u) and let 0 < B < 1,
Bi—j = 0,1 < g; €00, qu; = oo where § is such that Yj = Le(v). If
T (Xogpor Xenpr) = (Yaoaor Yor,qr ), then T is bounded from X, , into
Y5,4, where o = (1 — o + oy, 8 = (1 =88+ 681, 0 < p < oo, and
1/g=1/p+ (1 - 0)(1/q0 — 1/pa)+ +8(1/g = 1/p1).

Proof. From Sparr’s vesult [16], we know that (€,(27™%),£.) and
(€p, £0{27™)) are relative Calderdn pairs for any 0 < 5 < Land 1 < p < co.
This implies that these pairs are orbitally equivalent. Combining Proposi-
tion 2.1, the remark above and the proof of Theorem 2.5, we obtain the
required result. w

8. Special J-method spaces. The description of abstract Jimethod
spaces is in general a difficult problem. We recall that if & = (&g, ;) is a
pair of Banach sequence lattices on Z which is a parameter for the J-method,
then by Theorem 4.2.33 of [3],

Jg(X) = Tr(X)
for any Banach pair X, where E = Tz (£, £0(27™)).

We now show that under certain conditions on & we can identify the
space J3(£1,£1(27™)). In what follows we work with Calderén~Lozanovskil
spaces. Recall that if X = (Xp, X}) is a pair of Banach lattices on (2, 1)
and U denotes the set of all concave and positive functions 1 : [0,00) x
[0, 00) —+ [0,00) such that ${0,0) = 0, then the Calderdén-Lozanovskis space
$(X) = ¥(Xo, X1) consists of all z € LO(y) such that |z = Mp(|zol, |z1|)
a.e. for some z; € Xy, j = 0,1, The space ¥(X) is a Banach lattice equipped
with the norm

|z | = inf {max{|lzo| x,, [l21]lx,} « || = ¥(|o], |1 ), 20 € Xo, 21 € X1}
(see {10]). In the case of the power function 9 (s, 2) = s>~ with 0 < 6 < 1,

15(X) is the well known Calderén space X3~ °X? (see [4]).
The subset. of functions in U for which 4(s,1) — 0 and %(1,£) — 0
as § — 0 and £ — 0 is denoted by L. If 3 € Uy and ¥* € Uy where

P*{s,t) = 1/4(1/s,1/t) for s,t > 0, then 1 is called non-degenerate.
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THEOREM 3.1. Let E; C £y for § = 0,1 be Banach sequence lattices
on Z and let ¥ € U be a non-degenerate function. There ezists o sequence
{tn}nez of positive numbers such that for any pair (Xo, X1) of Banach lat-
tices and any operator T : (Xg, X1) — (Yo,Y1) such that T : X; =Y is
(E;,£.)-summing for 7 = 0,1, the operator T s bounded Jrom 4$(Xp, X1)
wnto jE(YD,}fl), where Sp[) = Eo(l/g(t2n+1)), @1 = Ej_ (t2n+1/9(t2n+1)) and
e=4¢(1,-).

Proof Let g > 1 be fixed and let ¢; = 1. Since 10 is non-degenerate, it
follows by Proposition 3.3.5 of [3] that there exists a sequence {te}io _ ., of
positive numbers such that Q(tz]c)/tgk = qg(t2k+1)/1§2k+1, Q(tzk) = qg(tg;c_l)
forany k € Z and {o(f2n+1)} € b1-+£1(1/tanq1). Since B; v £y for j = 0, 1,
we get

€0 = Eg(0(tant1)) + B (0(tens1) /tani).
Therefore, by Kéthe duality, $yNdy < ¢;. Thus & = (@y, D1} is a parameter
of the J-method.

Assume that Xy and X are Banach lattices defined on (2, 0). Let 0 <
@ €1(X) and 2/l ¢y < 1. Then & = 4)(zg, z;) for some 0 < z; € X; such
that ||z;]|x, < 1,7 =0, 1. Since ¢ € Uy, the support of z is contained in the
intersection of the supports of zq and 1. Hence without loss of generality
we may suppose that x, zg, z; are not zerc on 2.

Define for any & € Z the measurable set

Ap ={w € 2ty < m1(w)/2o(w) < tagsa)
and put
Ye =TXAp, Uk = ToXAy: Ve = T1XA,-

Clearly {Ay}rez is a sequence of pairwise disjoint subsets with union 2,
ve € XoN Xy and 307 v = z. We now show that

o0
T = Z yr  (convergence in X -+ X7).
oo

In fact for any n € Z, we have

i tok
Uk < QQ(tm:--}-]‘)uk and Ye < Mﬂ?lXAk < qg( 2 +1)’Uk-
tZk tzk-l—l

This implies that for any n € 7, we have the estimates

—-n —-n
Y&
0< ye < o(t- == < qh(1,f.-2n41) 0
k.——ZNOOU Q( 25"L*|"1)I‘:=Zoo Q(t2k+l) ( - ) 3

t ! cQ
0< 3 wsg _‘-_’%;_2_7%:'-11_) > tavsrmkeltantr) < Y(tanta, 1er,
L k=n
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Since ¢ is non-degenerate, 17(t,,1) — 0 and $(1,£_,) — 0 because ¢, — 0
and t_,, — 0 as n — oco. Therefore,

o= 8 s 3wl o] 55l

k=—n-1
< (1, tmont1) + qib{taner, 1) — 0.
Further, for any N € N, by the previous discussion we have

0< Y 2 < ¥ w < gao,
P o(tort1)

|kieN
bokt1Yk
0 Y lmeer) <7 > vk < ga.
klen |kjeN

Since in a Banach lattice every order bounded disjoint sequence is weakly £1-
summable, it follows from the estimates above that the sequences
{ye/e(tor+1)} and {topr1y/0(tor+1)} are weakly £1-summable.

Suppose that T: X — Y and T : X; — Y is (B}, £;)-summing, j == 0,1.
Then

o0
Tz = Z Ty, (convergence in Yj + Y3)
N=- 00

and

T ynllve/ e(t2nt2) 2, < 7o ey (T} sup

< arg, e (T),

(=]
> el

noe Qltna) [ x,

o

Z Yn

[H{t2nsa I Tynllvi /0(tons1)}} | By < Tmg e, (T) sup En
e o(tan41) X

ep=t1

< gm0 (T).
This yields 7'z € J3(Y) and ||T$||j$(?) < gmax{mg, o (1), 7x, o, (T)}. =
COROLLARY 3.2. Suppose that E; for 5 =0,1 are Banach sequence lat-

tices on Z such that the inclusion maps E; < Ly, are (B;, £1)-summing.
Then for any positive sequences wy and wy on @ and 0 < 0 < 1,

Eo(wo) " Br{w:)® — T, 5(€oo{wo), Loo(w1)).

Proof. It is easily seen that if 0 < 6 < 1 and (s, ¢) = s'=9¢° for 5,¢ > 0,
then the proof of Theorem 3.1 works for the sequence {#;} = {2%}. In fact
since By — Lo 18 (Ej, £1)-summing, so is Bj(wy) — foo(w;), for j =0,1. w

ProrosITION 3.3. Suppose that E; for j =0,1 are mazimal translation
invariant Banach lottices on 7 such that the inclusion maops E;, — Lo, are

icm

Interpolation of reel method spaces 33

(B, t1)-summing. Then for any Banach pair X and 0 < § < 1,

Jo,84,8, (X) Tg1-¢ 5y (a-ny0 (X).

Proof. Observe that the method of proof of the duality result of Dmit-
riev 7] yields that for the J-method spaces (cf. [9], Theorem 2.16), we have

jg’ﬁ(€11£1(2mn)) = jQ,E” E’l’(('eoo)’n ‘eoo(zn)’) = jS,Eé,E;(‘eoo: JEoo(gn))l"

]

From Corollary 3.2 we have
1-6
Ey B2 = To.m 5 (oo, £oo(2M)).

Combining this with Lozanovskil’s result (see [10]) for the Kéthe dual of
Calderén-Lozanovskil spaces, we get

Ty 581, 62(27™) = B0 (277)P.

Now the result follows since for any parameter & of the J-method we have
the formula

T5(X) = T3, ()
for any Banach pair X (see (3], Theorem 4.2.33). w

THEOREM 3.4. Suppose that E; are mazimal translation invariant Ba-
nach lattices on Z for j = 0,1 such thot the inclusion maps E; — £,
and B} — Ly are (Bj, {1)-summing and (B}, £41)-summing respectively. If
Ey 'R (27™Y is o parameter of the real method for some 0 < 8 < 1, then
for any Banach pair X,

j@,Eo,El (X) = AX-E;—S‘E1 (2-m)8-

Proof. Suppose that Eé_eEl(g_"”)g i8 a real parameter of the real

method. Then for any Banach pair X, we have
j(EU)I—GEl (2-n)f (f) == XE{}_GEl (2=n18"
Combining this with Proposition 3.3, we get
jgﬁg(fl,fl(zﬁn)) — (Elael(z—n))ES“BEl(g—n)ﬁ = E(})-ﬁgEl(E_n)g'
By Corollary 3.2, we have B °E,(27")% — Ty 5€x,£e0(277)). We con-
clude that
T3, 5(1,81(27™)) = T 5lleo, £eo(27™)) = B} OB (27™)°.
Since Jz = 7T 7-(8,)» @1 application of the minimality of the J-method func-
L4

tor with respect to the pair (£;,£;(27™)) and the maximality of the K-
method functor with respect to (£oo, £oo(277)) (see [3], [12]) completes the
proof. m
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The following known result (see {2], Theorem 3.12.1) is an imunediate
consequence of Theorem 3.4, Bennett’s result [1] on {g, 1)-summability of
the inclusion map £; — £, 1 < ¢ < oo, and the easily verified relation

(gpo)l&ggpl (2mn)0 = ﬂp(z—ng):

where 1/p = (1—8)/po+8/p for 0 <@ <land 1 <p; <00, j=0,1 (see
[4])-

COROLLARY 3.5. Let 1 < p; < oo for j =0, 1 and let 1/p=(1-6)/py+
8/p1 for 0 < 8 < 1. Then for any Banach pair X,

Tt 10, (X) = X .

We remark that in [11] a generalization of Bennett’s result on (r,1)-
summability of the inclusion map ¢, — £,, 1 < p < ¢ < oo, is proven.
From these results it follows that there are reflexive Orlicz sequence spaces
£, generated by convex functions not equivalent to power functions such
that the inclusion map £, — lo is (€p,£1)-summing and £,, — fo is
(€., 41)-summing, where ¢, is Young's complementary function to .
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