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Induced stationary process and structure
of locally square integrable periodically correlated processes

by

ANDRZEJ MAKAGON (Hampton, Va., and Wroctaw)

Abstract. A one-to-one correspondence between locally square integrable periodically
correlated (PC) processes and a certain class of infinite-dimensional stationary processes
is obtained. The correspondence complements and clarifies Gladyshev's known result [3]
describing the correlation function of a continuous periodically correlated process. In con-
trast to Gladyshev’s paper, the procedure for explicit reconstruction of one process from
the other is provided. A representation of a PC process as a unitary deformation of a
periodic function is derived and is related to the correspondence mentioned above. Some
consequences of this representation are discussed.

1. Introduction. Periodically correlated processes were introduced by
Gladyshev in [3] and were defined as continuous functions z : R — 7, from
the set of real numbers B into a complex separable Hilbert space H, for
which there exists a number 7' > 0 {called the period) such that

(1) (x(t),z(s)) = (z(t +T),z(s +T)) foralls,teR

In the paper we will call such processes Continuous Periodically Correlated
and abbreviate them CPC. If z(t) is a CPC process then the mapping V' :
z(t) — z(t + T, t € R, extends linearly to a unitary operator V, called the
T-shift operator, from the space M, = span{z(t) : t € R} onto itself. If now
Wt is any continuous unitary representation of R in some K 2 M, such that
WT =V on M, then the function p(t} = W~*z(t) is a continuous periodic
function in K and o(t) = Wip(t). This gives the following theorem, which
we will refer to as the Structure Theorem for CPC Processes (see also [8]).

THeoREM 1.1 (Structure Theorem for CPC Processes). Let T' > 0. A
Function x : R — M is @ CPC process with period T iff there are o Hilbert
space K 2 H, o unitary representation Wt of R in K, and a T-periodic

109] Mathematies Subject Clagsification: 60G12, 60G26, 43A65. . o
Key worda and phrases: periodically correlated process, stationary process, imprin-
tivity theorem.
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continuous function p 1 R — K such that
(2) z(t) = Wp(t)

If pln) =T S{ e~2mint/T (1) dt, n € Z, denotes the Fourier transform
of a periodic function p, then neglecting the meaning of convergence for the
moment, the representation (2) yields that

(3) .'I:(i) — Z eZMk:t/TWk(t)

k
where WE(t) = Wp(k), k € Z, is a sequence of jointly stationary (in )
processes.

In other words, the Structure Theorem associates an infinite-dimensional
stationary process with each CPC process. The weakness of this construction
is that the triple (K, W* p(t)) in the representation (2), and hence the pro-
cess W*(t) in (3), is highly non-unique. Additionally, the natural choice for
W* suggested by Gladyshev in [2], W = Sgﬁ e“tT By (ds), where Fy is the
spectral resolution of V', always leads to a deterministic infinite-dimensional
stationary process and hence fails to reflect prediction properties of z(t). Be-
cause of possible future applications in prediction, there is a need for more
concrete representation of the form (2).

Another way to assign an infinite-dimensional stationary process to a
PC process is via its correlation function. This was done for CPC processes
by Gladyshev in {3] and is described in the following theorem, which we will
call the Correspondence Theorem. Recall that the correlation function of a
process x(t) is a function of two variables defined by K(s,t) = (z(s),z(%)},
and the correlation function of an infinite-dimensional stationary process
(X*(t)) is an infinite matrix-valued function of one variable whose (k, 7)th
entry (k is a row and 7 is a column index) is K®7(¢) = (X*(z), X7(0)).

THEOREM 1.2 (Correspondence Theorem for CPC Processes). Let K (s,t)

be o continuous function of two variables such that K (s,t) = K{(s+T,t+T)
Jor every s,t ¢ R. Let

Jor every t € R.

1T

ai(t) = T S e T Kt 4 u, u) du.
0

Then the function K is the correlation function of @ CPC process iff the
infinste motriz-valued function

K () = K™ )k ,jez = [ar—s(t)e™ 2T e
is the correlation function of an infinite-dimensional stationary process.

In [5] the Correspondence Theorem was extended to a certain class of
discontinuous PC processes. The Correspondence Theorem assigns a unique
(in the sense of correlation function) infinite-dimensional stationary process,
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say (X*(t)), to a CPC process z(t). The original proof of the theorem, as
well as the proof given in [5], employed direct computation to show that
K{s,t) is positive definite iff K(t) is positive definite in a proper sense, and
required some regularity conditions to be imposed on K to assure Cesaro
summability. The proof did not provide an explicit construction of X*{t)
from z(t) or vice versa, and hence common approximation properties of these
processes were not recoverable from Gladyshev’s proof. An explicit one way
construction of (X*(£)) from (%) was then described in [11]; however, a way
to recover x(t) from (X*(t)) remained unknown. In consequence the question
whether each infinite-dimensional stationary process with correlation matrix

LK (8)]5 xez = [an—; (D) 2™/ Ty sz

corresponds to some PC process in the sense described in Theorem 1.2 re-
mained open, and will he answered in this paper. Note that Gladyshev’s
Correspondence Theorem gives an affirmative answer only under the addi-
tional assumption that a;(t)’s are the Fourier coefficients of K (t + -,-) for
some continuous function K of two variables. Without this assumption it is
not even clear whether the sequence {a,(t)} is square summable for each .

Although the Structure and Correspendence Theorems form foundations
of the theory of PC processes, their mutual relationship was not clear. One
of the main goals of the paper is also to link these two theorems.

We deal with functions defined almost everywhere w.r.t. Lebesgue mea-~
sure (abbr. a.e.). A function f defined a.e. on R is called T-periodic a.e. if
f(u) = f(u+T) du-a.c. In this paper we define a periodically correlated
process as follows.

DEFINITION 1.1. A periodically correlated (PC') process with period T" > 0
is a function z : R — H, where H is a complex Hilbert space, which is
Bochner square integrable over each compact interval and such that for
every t € R,

{4) (2t +u),z(u)) = (z(t+ T +u),z(T + u))

In other words, a locally square integrable function z : R — # is a PC
process with period T' > 0 iff for every ¢ € R the function K (t 4 u,u) =
(z(t 4+ ), z{u)) is T-periodic a.e. in u.

In Section 2 the Correspondence Theorem for the class of PC processes
defined above is established and a constructive procedure to recover a PC
process from an associated infinite-dimensional process is provided. Tl}is
is the main result of the paper and most of the subsequent results are its
consequences.

In Section 3 the Structure Theorem for PC processes is proved with
the help of the Correspondence Theorem. Note that since a PC process
is defined only almost everywhere (Definition 1.1), the T-shift operator v

du-a.e.
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cannot be defined via the extension of the mapping V : z() — =(t + 1),
t € R, as in the CPC case, and a more delicate approach is necessary. The
main result of Section 3 is, however, an explicit representation of z(t) in
the form x(t) = W*p(t) constructed on the base of the Correspondence
Theorem. As a consequence, an explicit representation of any PC process
x{t) in the form (3), with W*(¢) sharing the regularity properties of =(t), is
produced. Finally, an unexpected link between the Correspondence Theorem
and Mackey’s Imprimitivity Theorem from Abstract Harmonic Analysis is
noted.

Discontinuous PC processes have already been studied in [5] and [11]
(bourded PC processes) and in [8] (L3[0, T)-PC processes). A bounded PG
process is a PC process which is norm bounded. An L;[0, T)-PC process is
a PC process that-has a version for which the mapping V : z(¢) — a{t+T1)
extends to a unitary operator. In Section 3 we prove that every PC process
is an L[0, T)-PC process. An overview of the theory of PC processes on the
line and on the set of integers can be found for example in [10].

The letters R, C, Z and N will stand for the sets of real numbers, complex
numbers, integers and positive integers, respectively. The symbols H and
K will be reserved for complex Hilbert spaces. L*(I; ") will denote the
Hilbert space of H-valued functions on an interval J which are Bochner
square integrable w.r.t. the Lebesgue measure over I.

Because of probabilistic background a Bochner measurable function g -
R — H will be called a stochastic process or simply a process. A process z(t)
is said to be locally square integrable if 7 lz@)|? di < oo for each bounded
interval . If a process z(#) is locally square integrable and S C R is open

then M. (S) will stand for the space essentially spanned by the values of
z(t), t € S, that is,

(5) M(S) = ﬁ@aﬁ{ {o()z(t)dt: ¢ & BO(S)},
R

where Bg(S) is the set of all bounded complex measurable functions which
are 0 outside some compact X C §. For simplicity My(R) = M,. The
function K, (s,t) = (z(s),z(t)) is called the correlation Junction of z(t).
‘Two processes &(t) and y(#) are unitarily equivalent if there is a unitary
operator & : M, — M, such that y(¢) = @z(t) dt-a.e.

LeMMa 1.1. Two locally integrable processes z(t) and y(t) are unitarily
equivalent iff K (s,t) = K (s,t) ds x dt-a.e.

Proof. Assume first that K, (s, ) = Ky(s,t) ds x dt-a.e. For each ¢ €
By(R) define x(¢) = [* @(t)x(t) dt and similarly for y(¢). Then

(2(6),2(8)) = (4(8), y(@)), ¢, € Bo(R).
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and hence the mapping dx(¢) = y(¢), ¢ € By(R}, defines an isometry from
M, onto M,. Since
| o) (y(t) — Bz(t)) dt = y(8) — Bz(¢) =0
—00
for all ¢ € By(R), it follows that y(t) = $z(t) dt-a.e. The inverse implication
ig trivial, =

A stationary process is a continuous bounded process such that Kﬂ,(s, t)
= Ky(s—t,0) for all 5,¢ € R. If 2(t) is stationary then its correlation f?mct:%on
is a function of one variable defined by K.(t) = (2(¢),2(0)). An infinite-
dimensional stationary (abbr. IDS) process (X*(t)), k € Z, is a sequence
of stationary processes such that for every k,i € Z, the crosscorre%ation
function (X*(t), X7(s)) depends only on ¢ — s. The correlation func’clox} of
an IDS process (X*(t)), k € Z, is an infinite matrix function whose (k, j)th
entry is I{_’,“{’j (t) = (X®(¢), X9(0)). Since a stationary prl?cess is continuous,
the space generated by the values of an IDS process (X"(¢)) can be defined
without use of By(S), namely Mx(S) = span{X"(t) itef ke Z}'. If
(X*(t)) is an IDS process then there is a continuous unitary representation
Ut of R in My, called the shift group of the process {X ’“(t))% sugh that
Xk(t) = UX"(0) for every k € Z and £ € R (simply define U*(X™(s)) =
X*{5+1)). Two IDS processes (X*(t)) and (Y*(t)) are urilclta,rﬂy eqL}cwalent
if there is a unitary operator & : Mx — My such that Y*(t) = X" (¢) for
every t € R and k € Z; the latter holds iff K% (z) = K§7(t) for every t € R
and k,§ € Z

2. Correspondence Theorem. Recall that a periodically correlated
(PC) process with period T > 0 is a locally square integrable process z :
R — H such that for every ¢t € R,

(6) (@t +w)o(u)) = (@t + T + ), o(T +u))

No assumption on continuity or existence of the T-shift operator V is im-
posed.

We split the Correspondence Theorem into two parts. The first part was
proved by Makagon, Miamee and Salehi [11] for bounded PC processes and
the proof carries over to the general case without any changes. For the future

use we sketch the proof.

THEOREM 2.1 (Correspondence Theorem, Pa.1jt 1). Let z(t) be a PC
process with period T, K, be the correlation function of z(t) and let

du-a.e.

1 o
0 (t) = 7 K e~ T Kt + u,u) du.
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Then the infinite matriz function K (£) = [K*9(8)]; pez whose (k, §)th entry

is given by

(7) Kk,j (t) = Gg—j (t)e—Z'm‘kt/T

is the correlation function of an infinite-dimensional stationary process.
Proof. We construct an IDS process with correlation function X (t). For

every k € Z and t € R let X*(t) be the element of L*{[0,7"); M,,) defined

by

© XE(E)() = a{t + Je P THITIT,

that is, X*(£)(-) is the part of the trajectory z(t + -)e 2m#(E+)/T that i

seen through the window [0, 7). Since z is locally square integrable and

the translation group in L*(R; H) is continuous, each X*(t) is a continuous

function of £. Moreover, since K, (t-+u, s+ u) is periodic a.e. in u, we obtain

T

_ 1 . g
(X5(2), X7(s)) = 7 | e 2Rl T 2mialetl/ T e, (4 s+ ) du
o
1 s+T
— _f X e—2wik(t—s+w)/T62'rrijw/TKm(t — s+, _w) duw
T
= e"gﬂk("'s)/T% S e 2 iE-DWIT R (4 — 5w, w) dw
0

= e”QWk(t_S)/Tak_j (t —s).

Hence (X*(¢)) is an IDS process and K% (t) = e=2%i%4/Tg, _.(4). w

The L*([0, T'); M, )-valued process {X*(t)) defined by (8) will be referred
to as induced by the PC process z(t). Note that My = L2([0,T); M)
Indeed, if f & L2([0,T); M) is such that

17 o
(5, X5 0) = 2 [ 77 (Fw), 2(t + ) du = 0
0
for every k € Z and t € R, then f(u) L M, du-a.e., and hence f = 0
a.e. Also observe that from the Fubini theorem and Lemma 1.1 it follows
that two PC processes are unitarily equivalent if and ounly if the processes
induced by them are unitarily equivalent.

The roots of definition (8) can be traced back to Hurd [6] and Gardner
and Franks [1]. In the discrete case, the definition of the multidimensional
stationary sequence induced by a PC sequence was announced in the survey
paper [10] and studied in [12] and [13]. Originally, the induced stationary

sequence was defined in [12] for an arbitrary periodically distributed sequence
with possibly infinite second moments.
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Now we turn to the more difficult part of the Correspondence Theorem;
namely, to showing that each IDS process (Y*(t)) whose correlation is of the
form K®3(t) = e~ 2™t/ Tq, .(t) is unitarily equivalent to an IDS process
induced by some PC process z(t). No assumption about the sequence a;(z)
is made, even regarding the square summability of the series 3 |a; (£)]2.

The idea of the proof is to construct a process z{tf) by means of the
process (Y*(t)). Note that even if Y*(t) = X*(t) is induced from x(t) by
formula (8), a straightforward recovery of z(t) from (X*(t)) is a rather
complex matter. If z : Z — H is a PC sequence with period T € N, then z(n)
induces a T-dimensional stationary process X*(n)(-) = e~ 2™#*(n+)/Tg(n+.)
with values in @:‘:.:01 M, and one can take z(n) = X%(n)(0). This method
does not work in the case of PC processes indexed by R because X" (t)(u}
is an element of L2([0,T); Mz) and so it is defined du-a.e. while z(¢) lives
on a single point u € [0,T), and hence the function X*{¢)(0) may not be
defined at all. The trick is to define a PC process in the subspace of constant
functions in L2([0,T); M) rather than in M itself. The last remark will be
clarified in Theorem 3.2 in the next section.

TuEOREM 2.2 (Correspondence Theorem, Part 2). If
(9) K.’c,j (‘1;) — e——zmkt/Takwj(t)
is the correlation matriz function of an IDS process, then there is a PC

process z(t} such thal

T
S e TR (t 4 u,u) du
0

a;(t) =

R3] =

foreveryj € Z andt € R.
Proof. Let Y5(t) € K, k € Z, be an IDS process such that
10)  (YF(E), ¥i(e)) = KR (t— ) = e Tyt ),

and let U* be the shift group of (Y*(t)). Define the operator § in My as
the linear extension of the mapping

(1n) 8§ YR(E) — 2 TYET(),
Then from (10) it follows that

5 o Ve (1 ? = X, ezwik”(t”ﬁt")/Tka*kq (tp - tq)
P (p) P
» » g

- | Lar
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and hence 5™, n € Z, is a unitary representation of Z in My. Since
SnUtyk(s) — Snyk(s + t) — ezfr'i(t+s)n/Tyk~!~n(S + t)
— e2witn/TUt(e2mgn/Tyk+n(S)) — eQwitn/TUtsnyk(s))

the groups 8™, n € Z, and U?, t € R, satisfy the commutation relation

(12) SnUt — err'itn/TUtSn‘
Define
1 T
(13) Bn) = {Y"(s-T)ds, nel
0

Since Y™ (t) = e~ 2™t/ T gn7ty0(D), we have

T
- 1 ;
(14) p(n)=S" (ff S e~ wine/Trrs—Ty0 () ds).
0
Therefore §i(n) = 5 f(n) are isometric images of the Fourier coefficients of

the L*([0,7); My) function f(-) = U~TY9(0), and hence

(15) 2 AP =Y 1F )P < co.

Lgt p(t) = 3, B(k)e* /T Because of (15), p is a well defined element of
L*(l0, T) My ). Fix a version of p and extend it periodically to R. For every
t € R define 2(t) = U'p(t). Then z(t +T) = UTx(t), t € R, and

Ko{t +u,u) = (2(t + u), 2(u)) = (U'p(t + u),plu)), wueR,
is periodic in u and so z(¢) is PC.
To complete the proof we need to show that
1 ?e—2m‘ku/TK
TD d(t+uu)du=ag(t), teR keZ

To do this observe first that from (14) and (12) it follows that

T
Pk —n) = §Fn (% S g 2milh—n)s/Trrs=Ty 0 () ds)
0

T
e Ok 1 —2miks s—T a—n
= & (T(S)e k/TU TS YO(O)dS>
£ Sk(UWTS—nYo(O))/\(k)l
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Using the Parseval ldentity twice and the property (12) we obtain

T
_1_ S e—?'}riku/TKm(t +u, ’LL) du
T 5 .
= (p(t + ), U*p()e**/T) yapo )

Z(EZW%Jt/T"‘ : U p(j __k))

_ Z eZlet/T(UtSJ (U'—TYO(O))"‘ (5), 87 (U'_TS_’“YO(D))A (7))

J
= (S7UNU

I

_ZUt

7

Uy (OpMG), S UTTTS TR ()M ()

UmTYR(0))M(5), (U S~FY(0)M (5)
T
V(wer=Ty0(0), U574y (0)) ds
0
Y (YO(2), Y *(0)) = ax(t).

Since an infinite matrix-valued function with continuous entries K3k (¢)
is the correlation matrix function of an IDS process iff it is a positive defi-
nite matriz function in the sense that for every positive integer n, complex
numbers ¢, ..., Cn, real mumbers t1,...,t, and integers ki,..., kn,

n 1)
(16) SON KRt~ ) 2 0

=1 g=1

’-31‘—‘

= (U*Y°(0), 5k Y°(0) =

(see e.g. [4]), both theorems can be formulated in the language of positive
definite functions.

3. Structure Theorem. In the proof of Theorem 2.2 we have already
shown that every PC process is of the form z(t) = W'p(t), where p is a
measurable periodic function and W* a continuous representation of R (in
a space possibly bigger than My).

THEOREM 3.1 (Structure Theorem for PC Processes). For o locally square
integrable process x(t) the following three conditions are equivalent:

(1) z(t) 4s PC with period T,

(ii) there is a Hilbert space K 2 M, a continuous unitary representation
Wt of R in K and o K-valued, T-periodic a.e., process p such that z(t) =
Wip(t) dt-a.e.,

(iil) there s a unitary operator V in M, such thatm(t-f—T) = Vz(t) di-a.e.
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Moreover, the group Wt above can be chosen to be unitarily egquivalent to
the shift group of the IDS process induced by z(t).

Proof. The implication (i)=>(ii) follows from Theorems 2.1 and 2.2.
More precisely, for a given PC process z(¢) with correlation Ky, in the proof
of Theorem 2.2 we constructed a PC process y of the form y(t) = Utp(t) di-
a.¢. such that U* is unitarily equivalent to the shift group of the IDS process
induced by z(¢), and for every t € R and j € Z,

lT T

i: S e—?mju/TKy(t +u,u) du = ap{t) = 7 S e—2mau/TKm(t + u, u) du.
0 0

The Fubini Theorem and Lemma 1.1 imply that the processes «(t) and y(t)
are unitarily equivalent. This also takes care of the moreover part.

(ii)=>(ifi). If (ii) holds true then 2(t+T) = W+ p(t+1) = W (Wip(t))
= W7Tz(t) dt-a.e. This shows that W7 maps M, onto itself and it is enough
to define V = W7 restricted to M,.

(iii)=>(i). Finally, if we assume that (iii) holds true, then the standard
Gladyshev argument works. Nainely, if we let W* be a continuous represen-
tation of R in K such that W7 =V on M, and define p(t) = W tx(t), then
pE+T) =WtV lg(t + T) = Wtz(t) = p(t) dt-a.e. m

The Structure Theorem was first proved by Gladyshev [2] for CPC se-
quences and his proof (see the proof of (iii)=>(i) above) works provided the
T-shift operator can be defined ([8], Propositions 1 and 9, [10], p. 160). In
fact it also works in our case since from the fact that z(t) and z(t + T') have
the same correlation function ds x dt-a.e., and from Lemma 1.1, it imme-
diately follows that z{t + T') = Vz(t) dt-a.e. for some unitary V. We have
used the Correspondence Theorem to derive the Structure Theorem instead,
because that way explains the relationship between the two theorems and
produces a specific realization of the triple (K, W?, p(t}). The details of this
realization are spelled out in the next theorem. The symbol 14 below stands
for the indicator function of a set A.

THEOREM 3.2. Let 2(t) be o PC process with period T. Let Ut be the
shift group of the IDS process X*(t) € L2([0,T); My) induced by z(t), and
let p: R — L*([0,T); My) be the T-periodic function defined for 0 <t < T
by

(17) p(t){u) = Liog(w)e(t — T) + Lemy(ua(t), we(0,T),

and then estended periodically to R. Let zo(t) = U'p(t), t € R. Then, except

fort in a set of measure zero, the function zo(t)(u) is constant du-a.e. and
this constant is equal to z(t).

icm

Periodically correlated processes 81

In other words, z(t) can be written as 2(t) = U'p(t), where p is periodic
and given by (17) and U® is the shift group of the IDS induced by =(t).

Proof. Theorem 2.1 yields that the correlation of (X*(t)) satisfies
KR (8) = ap-j(t)e T where a;(t) = 71 SE}P e 2™/ T K (¢ 4 u,w) du.
We now reexamine the construction given in the proof of Theorem 2.2 using
the process (X*(t}) in place of (Y*(£)}. Recall thas

XE) (u) = ot +we ™ CET e 0,T).
First observe that by definition (11), SX*(t) = e?™®/TX*+1(1), and hence
S is multiplication by e=2*%/T in L2([0, T); M,). From (14) we see that
T
(18) Bin)(u) = = | e 2/ Ty(s + o — T)ds.
0

We now show that p(n) is the nth Fourier coefficient of the function (17),
that is, the p from (17) is equal to the p from the proof of Theorem 2.2.
Indeed, from

17 _omi
? S e—Z?rmf,/Tp(t)(u) dqt
0
1T o
= ? S e—zﬂ'mt/T (1[0,1] (u)m(t - T) + 1(t,Tj (u):c(t}) dt
U]
1 T —2wint/T Tt l1§ —2wiﬂt/T$(t) dt
= ‘-T-' S (&4 m(t bt ) + T Oe 3

by substituting ¢ = w+T in the first integral, relabeling t = w in the second
integral, and combining the integrals we obtain
T
_}_ S (,--2m'nt/T ( - S ~2m.nw/T )dw
' T
0 -T
17
o= S ¢m2minletu)/Tols 4y — T ds = B(n)(u).

Let zo(t) = U'p(t), t € R. From the proof of Theorem 2.2 we conciude that
zo(t) is an L2([0,T); My)-valued PC process unitarily equivalent to x(t).
We will show that except for £ in a set of measure zero, the fun.ctmn
o(t)(u) is constant du-a.e. and this constant is equal to z(¢). To see this we
need to describe the action of the group U*. For every t € R and k € Z, let
b1k be the function with values in M, defined on R by the formula

(19) b (u) = eIk} Tpi 4 o),  ueR,
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and let M be the set of all linear combinations of the functions ek, tER,
k € Z. We emphasize that M consists of functions defined on the whole line.
If we equip M with the norm ||¢|3,, = (1/T) Xg [(#(w)]|? du and complete it
(we keep the same symbal for the completion) then M becomes a Hilbert
space isometric to L2([0,T); M) through the mapping $¢ = lio,r) (the
restriction of ¢ to [0,7)). From (8) it follows that the shift group I/* of
(X*(t)) is the translation group in M transported to LA([0,T); M) through
P, that is, U* = TG, where (T*@)(-) = ¢t + ), p € M.

Note that every v € R can be uniquely written as v = [u] + mT, where
[u] is the remainder of the division of w by T, 0 < [u] < T. If a sequence
D2 0t k) — ¥ in L2([0,T); M,) and ¢y x’s are of the form (19), then
2 _p OGnft, k, converges in M to the function ¢ = &~ 14, which is given
by ¢(u) = Hm3>, andy, 1mrk, (W) du-ae. In particular (6~ 1p(t))(u) =
p(t+mT)([u]) if mT < < (m+ 1)T. This and definition (17) imply that
for each fixed ¢, $71p(t) is a step function in ¥ and

(20) @ p(E)w)=a®t) Ht<u<t+T
From U* = #T*$~" and (20) we conclude that (T*@~'p(#))(u) = z(t) for
u € {0,7), and hence Utp(t)(u) = 2(¢) on [0, T). n
Any representation of the form z(t) = W'p(t) yields a representation
:c(t) — Z eBwikt/ka(t)
2

where W*(t) = W'H(k), k € Z, is an IDS process, and so does the represen-
tation established in Theorem 3.2.

Recall that a process z(t) is called regular if (e M. ((—00,£)) = {0}
THEOREM 3.3. Let z(t) be a PC process and let
1

0
T 5 6_2"ik(t+s_i_')/Tﬂ:(t+s+-) ds.

(21) Who() =

Then (W*(1)) is an L3((0,T); M,)-valued IDS process and
(22) a{t) =) P TR (1) (),
k

where the series converges in L2([— M, M]; L*([0, T); My)) for every M >0,
thaot 4s,

) M T  n
(23) U 32 ety - o) 20
-MO0 k=—n .

MOTEO’UE':’J“, if (X*(t)) denotes the IDS process induced by z(t), then x(t) s
reguler iff (W*(t)) is regular iff (X*(t)) is regular.
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Proof. Consider the representation z(t) = U'p(t), where U* and p{t)
are defined in Theorem 3.2. Since the Fourier coefficients p(n) of p(t) are
given by (18), after replacing v —T by u in (18), we obtain W*(t) = U*H(k).
Hence (W¥(t)) is IDS and has the same shift group as the process (X*k()
induced by .

Since Y, e/ T5(k) converges in L*([~M, M]; L2([0, T); M,)) for ev-
ery M > 0, so does the series

ch"i’“"’/’PW’“(t)(-) - W*(Zem’“‘/Tﬁ(k)(-))-
- k

From Theorem 3.2 it follows that the sum of the latter is Wip(t)(-) = z{t)
dt-a.e. This proves (23).

To prove the moreover part note first that since we have W*(t) =
T XF(t +5) ds,
(24) My ((=00,t)) € Mx((-00,8)}), i€R,
and therefore the regularity of X*(t) implies the regularity of W¥*(t). Also
it is not difficult to see that (cf. [11], Prop. 3.5)

(25)  Mx((—o0,t})

= {f e L*([0,T); My) : f(u) € My((—co,t +u)) du-a.e.}.
Thus the regularity of x(t) implies the regularity of (X*(¢)). Therefore it
remains to prove that the regularity of (W*(£)) implies the regularity of z(t).
Recall that for a fixed #, z(¢) is interpreted here as a constant function in
L2([0, T); M) which equals z(t) a.e. Since on compact sets L* convergence
implies L' convergence, from (22) we have

w(d) =Y | TEITHOWHE) dt € M ((~o0.)
k 00

for every ¢ & Bp{(~oco,t)). Therefore My ((—o0,t)) € Mw ({—oc0,t)) and so
if (Wh(t)) is regular then so is z(t). =

We conclude the paper with three remarks concerning Theorems 3.2 and
2.1,

REMARK L. The facts that p(t) is given by (17) and that Usp(2)(-) = z(t)
a.e. can also be seen from an easy, but less rigorous, argument described
below. Note that

T ar_
Z g2minze/T % S e“zmm/Tm(r +s—T)ds LM z(r—T + [21),
n 0
where [2] is the remainder of division of z by T. This is because the integral

above is the nth Fourier coeflicient of the Lﬁ([O, T); M) fanction s(r=T+)
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and z = kT + [2]. Extracting a subsequence of partial sums that converges
a.e. we see that for a.e. u € [0, T),

T
() (u) = E g2rint/T | S e_zmn(”“)/T:L"(S +u—T)ds

T
0
1 T
_ Z eZrin(t—u)/T - S e“zﬂim/Tm(S +u—T)ds

= afft —u] +u - T) = {;’g)“T)

fo0<u<t<T,
fo<t<u< T
Similarly

Upe) () = Y ermineir . L

T
o i P PR PR
0

T
—2mrinu 1 —2min
=§ e ? ”/T-MT—‘e 2 S/T:E(t—l—qus—T)d.s
n 0

=:n([—u}+t+u—T)=x(—u+T+t+u—T):w(t).

REMARK 2. The existence of the T-shift operator V' for any PC process
:n:(t})c allo.ws us to describe the action of the shift group U* of the process
(X*(t)) in a more direct way. Namely for every f € L*([0,T); M),

(26) W) ) = VIEITffut4),  welo,T),
where for any real s € R, ¢(s) denotes the quotient and [s] denotes the

remainder of division of s by T' (i.e. s = ()T + [s] with
.e. q(s) € Z and
sl € [0,7)), X

REMAR‘K 3. Forml'lla (26) and the commutation relation (12) indicate
.that there is a close link between Theorems 2.1 and 2.2 and the theory of
induced representations (see for example [9])- In fact, although completely
differently worded, the Correspondence Theorem is equivalent to the so-
calleg}Mackey Imprimitivity Theorem for the case G = R and K = {nT:
S .

. Mackey’s Imprimitivity Theorem characterizes representations of groups

induced from representations of their closed subgroups. Let 7" > 0 be fixed.

g‘hm}{ K= {nT in g Z} is a closed subgroup of R. Any representation D¥,
€ K, 2of K in a Hilbert, space N induces a representation I/t of B in the

space L*([0,T7); H) by the formula

(27) (U F)lu) = DHEFD [y 4 4))

where for every s € R, 5 = k(s) + [s] with k(s) € K and 5] € R/K = [0,T)

()Illpa 2 Wllh 2(; . SL].C a Iepr SE1 a.thIl o] R
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To see the connections with Mackey’s Imprimitivity Theorem suppose
that U, £ € R, and S*, X € [0,T) = {27ik/T : k € Z}, are continuous
representations of R and of the dual of R/K = [0,T) in a Hilbert space K,
respectively. Assume also that K = span{U*'S*z :t € R, A € [ﬁ)} for
some z & K and that for every £ € R and A € [0,7),

(28) St = eMytSH,

Mackey’s Imprimitivity Theorem for the pair (R, K) states that the condi-
tion (28) is necessary and sufficient for U* to be unitarily equivalent to a
representation induced from a representation of K.

This conclusion can be easily derived from Theorem 2.2. Define Y (s) =
U°S* =z, where A, = 27n/T, and observe that

(Y*(t), YV (5)) = (U'5*42, U 8% 2) = e 3mhlb=sl/T (i35 Ghi—p),
Hence the correlation of (Y*(t)) is of the form (9). By Theorem 2.2 the
process (Y™ (¢)) is unitarily equivalent to an IDS induced by some PC process

z(t), and hence from (26) we conclude that U? is unitarily equivalent to a
representation induced from K.
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Compact endomorphisms of H%(D)
by

JOLRL F. FEINSTEIN {Nottingham)
and HERBERT KAMOWITZ (Bostorn, Mass.)

Abstract. Compact composition operators on H* (@), where @ s a region in the
complex plane, and the spectra of these aperators were described by D. Swanton {Com-
paet composition operators on B(D), Proc. Amer. Math. Soc. 56 (1976), 152-1586). In
this short note we characterize all compact endomorphisms, not necessarily those induced
by composition operators, on H®(D), where D is the unit disc, and determine their
spectra.

Let D be the open unit disc and, as usual, let H%°(D) be the algebra of
bounded analytic functions on D with ||f{| = sup,¢p |F(2)]. With pointwise
addition and multiplication, H°° (D) is a well known uniform algebra. In this
note we characterize the compact endomorphisms of H*(D) and determine
their spectra.

We show that although not every endomorphism T of (D) has the
form T'(f){z) = f(#(z)) for some analytic ¢ mapping D into itself, if T' is
compact, there is an analytic function ¢ : D — D assoctated with 7. In the
case where T is compact, the derivative of 9 at its fixed point determines
the spectrum of 7. :

The structure of the maximal ideal space My is well known. Evaluation
at 2 point z € DD gives rise to an element in Mpges in the natural way.
The remainder of My consists of singleton Gleason parts and Gleason
parts which are analylic discs. An analytic dise, P{m), containing a point
m € Mpyee 15 a subset of My~ for which therg exists a continuous hijection
Ly 2 D — P(m) such that Ly, (0) = m and f(Lm(z)) is analytic on D for
each f € > (D). Moreover, the map Ly, has the form

Ly (2) = w*.
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