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What is “local theory of Banach spaces”?

by

A L B R E C H T P I E T S C H ∗ (Jena)

Abstract. Banach space theory splits into several subtheories. On the one hand,
there are an isometric and an isomorphic part; on the other hand, we speak of global and
local aspects. While the concepts of isometry and isomorphy are clear, everybody seems
to have its own interpretation of what “local theory” means. In this essay we analyze
this situation and propose rigorous definitions, which are based on new concepts of local
representability of operators.

Preamble. Of course, the quality of a theorem does not depend on
the fact to which theory it belongs. Nevertheless, in order to systematize
our knowledge we need criteria that enable us to collect similar results in
theories.

1. Historical roots

1.1. Let us begin with some quotations.

Pe lczyński and Rosenthal [p–r], p. 263: Localization refers to obtaining

quantitative finite-dimensional formulations of infinite-dimensional results.

Tomczak-Jaegermann [TOM], p. 5: A property (of Banach spaces or

of operators acting between them) is called local if it can be defined by a

quantitative statement or inequality concerning a finite number of vectors

or finite-dimensional subspaces.

Lindenstrauss and Milman [l–m], p. 1151: The name ‘local theory’ is

applied to two somewhat different topics:

(a) The quantitative study of n-dimensional normed spaces as n → ∞.

(b) The relation of the structure of an infinite-dimensional space and its

finite-dimensional subspaces.
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1.2. In 1956, Grothendieck defined the following concept:

L’espace normé E a un type linéaire inférieur à celui d’un espace normé

F , si on peut trouver un M > 0 fixe tel que tout sous-espace de dimension

finie E1 de E soit isomorphe “à M près” à un sous-espace de dimension

finie F1 de F (Banach–Mazur distance d(E1, F1) ≤ 1 + M); et que E a un

type métrique inférieur à celui de F , si la condition précédente est satisfaite

pour tout M > 0.

In his theory of super-reflexivity, James used to speak of crudely finite

representability and of finite representability , respectively.

1.3. A decisive step was done when Dacunha-Castelle and Krivine intro-
duced the technique of ultraproducts in Banach space theory. It soon turned
out that X is finitely representable in Y if and only if X is isometric to a
subspace of some ultrapower Y U .

Ultraproducts of operators were studied by Pietsch. Next, Beauzamy
introduced two (possibly different) concepts of finite representability for
operators. A more appropriate approach is due to Heinrich.

1.4. Following Brunel and Sucheston, a property P is called a super-

property if it carries over from Y to all X finitely representable in Y . Equiv-
alently, this means that P is preserved under the formation of ultrapowers
and subspaces.

2. Notation

2.1. Let L stand for the class of all (real or complex) Banach spaces.
Denote the set of all (bounded linear) operators from X into Y by L(X,Y ),
and write L :=

⋃

L(X,Y ), where the union ranges over X,Y ∈ L.
2.2. An operator J ∈ L(X,Y ) is an injection if there exists a constant

c > 0 such that ‖Jx‖ ≥ c‖x‖ for all x ∈ X. In the case when ‖Jx‖ = ‖x‖,
we speak of a metric injection. For every (closed linear) subspace M of X,
the canonical embedding from M into X is denoted by J X

M .

2.3. An example of a metric injection is the map KX : X → X∗∗ that
assigns to every x ∈ X the functional x∗ 7→ 〈x, x∗〉. For T ∈ L(X,Y ), we
let T reg := KY T , where the superscript reg stands for regular .

2.4. Let I be an index set. We denote by l∞(I) the Banach space
of bounded scalar families (ξi) with the norm ‖(ξi) | l∞(I)‖ := supi∈I

|ξi|.
Note that l∞(I) has the metric extension property . This means that every
operator T ∈ L(M, l∞(I)) defined on a subspace M of X admits a norm-
preserving extension T ext ∈ L(X, l∞(I)).

If x ∈ X, then (〈x, x∗〉) can be viewed as an element of l∞(BX∗), where
BX∗ is the closed unit ball of X∗. In this way, we get the canonical injection
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J inj
X from X into X inj := l∞(BX∗). For T ∈ L(X,Y ), we let T inj := J inj

Y T ,
where the superscript inj stands for injective.

2.5. An operator Q from X onto Y is called a surjection. In the case
when the open unit ball of X is mapped onto the open unit ball of Y , we
speak of a metric surjection. For every (closed linear) subspace N of Y , the
quotient map from Y onto Y/N is denoted by QY

N .

2.6. Given Banach spaces Xi with i ∈ I, we denote by [l∞(I), Xi] the
Banach space of all bounded families (xi) such that xi ∈ Xi. Fix an ultra-
filter U on the index set I. The collection of all equivalence classes

(xi)
U := {(x◦

i ) ∈ [l∞(I), Xi] : U -lim
i

‖x◦
i − xi‖ = 0}

is a Banach space (Xi)
U under the norm ‖(xi)

U‖ := U -limi ‖xi‖.
Next, let Ti ∈ L(Xi, Yi) with i ∈ I be a bounded family of operators.

Then (Ti)
U : (xi)

U 7→ (Tixi)
U defines an operator from (Xi)

U into (Yi)
U

such that ‖(Ti)
U‖ = U -limi ‖Ti‖.

These new objects are referred to as ultraproducts.

2.7. If Xi = X, Yi = Y and Ti = T , then we speak of ultrapowers, de-
noted by XU , Y U and TU , respectively. In this case, there exists a canonical
map JU

X from X into XU , which sends x to (xi) with xi = x. Moreover,
we define QU

X : (xi)
U 7→ U -limi KXxi. The right-hand limit is taken with

respect to the weak∗ topology of X∗∗. These constructions yield the formula
T reg = KY T = QU

Y TUJU
X for T ∈ L(X,Y ). Unfortunately, the canonical

embedding KY cannot be avoided.

2.8. Throughout this essay, we let

T ∈ L(X,Y ), T0 ∈ L(X0, Y0), T1 ∈ L(X1, Y1), etc.

3. Subtheories. Imitating Felix Klein, we now describe an Erlanger

Programm for operators in Banach spaces.

3.1. Suppose we are given a preordering ≺ on L, the class of all opera-
tors. That is, T0 ≺ T1 and T1 ≺ T2 imply T0 ≺ T2, and we have T ≺ T . A
property is said to be ≺-stable if it is inherited from T1 to every T0 ≺ T1.
So every preordering ≺ leads to a subtheory that deals with the associated
stable properties.

Writing T0 ∼ T1 whenever T0 ≺ T1 and T1 ≺ T0 yields an equivalence
relation. Of course, we could also study the concept of ∼-stability.

3.2. Note that a preordering on L, the class of all Banach spaces, is
obtained by letting X0 ≺ X1 if IX0

≺ IX1
, where IX0

and IX1
denote

the identity maps of X0 ∈ L and X1 ∈ L, respectively. In this way, every
subtheory of operators contains a subtheory of spaces, as a special part.
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4. Global representability

4.1. An operator T0 ∈ L(X0, Y0) is globally representable in an operator
T1 ∈ L(X1, Y1) if there exist A1 ∈ L(X0, X1) and B1 ∈ L(Y1, Y0) such that
T0 = B1T1A1. That is,

X1 Y1

X0 Y0

T1 //

B1

��
A1

OO

T0

//

In this case, we write T0

glo
≺ T1. Of course,

glo
≺ is a preordering on L. The

corresponding stable properties are said to be global . Obviously, X0

glo
≺ X1

means that X0 is isomorphic to a complemented subspace of X1.

4.2. A property is called injective if it carries over from T inj ∈ L(X,Y inj)
to T ∈ L(X,Y ).

4.3. The preordering T0

injglo
≺ T1 is defined by T inj

0

glo
≺ T inj

1 . Note that

T0

glo
≺ T1 implies T0

injglo
≺ T1. A property turns out to be

injglo
≺ -stable if and

only if it is simultaneously injective and global , which justifies the symbol
injglo
≺ . Clearly, X0

injglo
≺ X1 means that X0 is isomorphic to a subspace of

X1.

4.4. So far, we have discussed isomorphic notions. Taking into account
isometric aspects, we could define a global preordering by assuming that the
operators A1 and B1 in T0 = B1T1A1 satisfy the condition ‖B1‖ · ‖A1‖ ≤ 1.
We may also require that, for any choice of ε > 0, there exists a factorization
such that ‖B1‖ · ‖A1‖ ≤ 1 + ε. Another possibility would be to assume that
A1 is an injection and that B1 is a surjection, metric or not.

5. Operators between finite-dimensional spaces

5.1. The symbol F stands for the collection of all finite-dimensional
Banach spaces. Note that, upon identifying isometric copies, F is a set.
Throughout, let E ∈ F and F ∈ F. The underlying (real or complex)
scalar field (sometimes viewed as a 1-dimensional Banach space) is denoted
by K.

5.2. With every operator T ∈ L(X,Y ) we associate the germs

L(T |E,F ) := {BTA ∈ L(E,F ) : ‖A : E → X‖ ≤ 1, ‖B : Y → F‖ ≤ 1}.
This definition is illustrated by the following diagram:
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X Y

E F

T //

B

��
A

OO

BTA
//

Roughly speaking, local properties of T can be formulated in terms of the
family {L(T |E,F ) : E,F ∈ F}. Working with the closed hulls L(T |E,F )
will turn out to be more elegant.

5.3. The sets L(T |E,F ) are bounded and circled, but may look like a
hedgehog. For example, L(Id : K → K |E,F ) consists of all S ∈ L(E,F )
with rank(S) ≤ 1 and ‖S‖ ≤ 1. In the case when T does not attain its
norm, L(T |K, K) is an open disc. On the other hand, L(T |E,F ) may also
be very nice as shown by L(Id : l2 → l2 |E,F ), which is the closed unit ball
of a norm.

5.4. Our first result is obvious.

Proposition. L(T |E,F ) = L(T reg |E,F ).

5.5. We now state one of the most important tools of local theory.

Principle of Local Reflexivity. Let M and N be finite-dimensional

subspaces of X∗∗ and X∗, respectively. Then for every ε > 0 there exists an

isomorphism Iε from M onto some subspace Mε of X such that ‖Iε‖ ≤ 1+ε,
‖I−1

ε ‖ ≤ 1 + ε and

〈x∗∗, x∗〉 = 〈Iεx
∗∗, x∗〉 for all x∗∗ ∈ M and x∗ ∈ N .

5.6. The correspondence S 7→ S∗ defines an isometry between L(E,F )
and L(F ∗, E∗). The image of a set L will be denoted by L∗.

Proposition.

L∗(T |E,F ) ⊆ L(T ∗ |F ∗, E∗) ⊆ (1 + ε)L∗(T |E,F ) for all ε > 0.

P r o o f. The left-hand inclusion is trivial.

By definition, every operator S∗ ∈ L(T ∗ |F ∗, E∗) can be decomposed in
the form S∗ = UT ∗V , where ‖V : F ∗ → Y ∗‖ ≤ 1 and ‖U : X∗ → E∗‖ ≤ 1.
Putting B := K−1

F V ∗KY , we get V = B∗. The principle of local reflexivity
provides us with an isomorphism Iε from U∗KE(E) onto some subspace Mε

of X such that ‖Iε‖ ≤ 1 + ε and

〈U∗KEe, T ∗V f∗〉 = 〈IεU
∗KEe, T ∗V f∗〉 for e ∈ E and f∗ ∈ F ∗.

Letting A := IεU
∗KE , we obtain ‖A : E → X‖ ≤ 1 + ε and

〈BTAe, f∗〉 = 〈IεU
∗KEe, T ∗V f∗〉 = 〈U∗KEe, T ∗V f∗〉 = 〈e, S∗f∗〉

for e ∈ E and f∗ ∈ F ∗. So S = BTA ∈ (1 + ε)L(T |E,F ).
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5.7. We now formulate a corollary of the preceding result.

Proposition.

L(T |E,F ) ⊆ L(T ∗∗ |E,F ) ⊆ (1 + ε)L(T |E,F ) for all ε > 0.

5.8. The next statement even holds for compact operators. However,
we will only need the finite-dimensional case.

Proposition. If T has finite rank , then L(T ∗ |F ∗, E∗) is closed.

P r o o f. The closed unit balls

{U : ‖U : X∗ → E∗‖ ≤ 1} and {V : ‖V : F ∗ → Y ∗‖ ≤ 1}
are compact in the weak∗ topologies induced by the seminorms

pe,x∗(U) := |〈e, Ux∗〉| and py,f∗(V ) := |〈y, V f∗〉|.
Moreover, the norm topology of L(F ∗, E∗) coincides with the weak∗ topology
obtained from pe,f∗(S∗) := |〈e, S∗f∗〉|. Since T can be written in the form

T =

N
∑

i=1

x∗
i ⊗ yi,

we get

〈e, UT ∗V f∗〉 =
N

∑

i=1

〈e, Ux∗
i 〉〈yi, V f∗〉.

So the bilinear map (U, V ) 7→ UT ∗V is continuous, which in turn implies
the compactness of L(T ∗ |F ∗, E∗).

5.9. I am very indebted to W. B. Johnson for a proof of the following
result, which is the crucial device in our understanding of local theory.

Basic Lemma. L(T |E,F ) ⊆ (1 + ε)L(T |E,F ) for all ε > 0.

P r o o f. If T has finite rank, then it follows from the previous proposition
that L(T ∗∗ |E,F ) is closed. Hence, by 5.7,

L(T |E,F ) ⊆ L(T ∗∗ |E,F ) ⊆ (1 + ε)L(T |E,F ).

To treat the case rank(T ) = ∞, we let m := dim(E) and n := dim(F ).
If d := 2m + n, then there exist A0 ∈ L(ld2 , X) and B0 ∈ L(Y, ld2) such that
B0TA0 is the identity map of ld2 . Given S ∈ L(T |E,F ) and δ > 0, we find a
decomposition S = S1 + S2 such that S1 ∈ L(T |E,F ) and ‖S2‖ ≤ δ. Write
S1 = B1TA1 with ‖A1‖ ≤ 1 and ‖B1‖ ≤ 1. Let M be the range of B0TA1,
and let N be the null space of B1TA0. Then cod(M⊥) = dim(M) ≤ m
and cod(N) ≤ n. Hence cod(M⊥ ∩ N) ≤ m + n, which is equivalent to
dim(M⊥ ∩ N) ≥ m. This implies that M⊥ ∩ N contains an m-dimensional
subspace H. Let J denote the embedding from H into ld2 , while Q stands
for the orthogonal projection from ld2 onto H. So QB0TA0J is the identity
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map of H. John’s theorem provides us with an isomorphism U ∈ L(E,H)
such that ‖U‖ · ‖U−1‖ ≤ √

m.

E F

X Y

N ⊂ ld2 ld2 ⊃ M

H H

E E

S1 //

A1

��
T //

B0

��

B1

OO

A0

OO

Id //

Q

��
J

OO

IH //

U−1

��
U

OO

IE //

We obtain S2 = S2U
−1QB0TA0JU = B2TA2, where B2 := S2U

−1QB0 and
A2 := A0JU . The main purpose of the construction above was to get the
formulas B1TA0J = O and QB0TA1 = O, which in turn yield

B1TA2 = B1TA0JU = O and B2TA1 = S2U
−1QB0TA1 = O.

Hence

S = S1 + S2 = B1TA1 + B2TA2 = (B1 + B2)T (A1 + A2).

Moreover,

‖B2‖ · ‖A2‖ ≤ ‖S2U
−1QB0‖ · ‖A0JU‖ ≤ δ

√
m ‖B0‖ · ‖A0‖.

Clearly, U may be chosen such that ‖A2‖ = ‖B2‖. Then

‖A1 + A2‖ · ‖B1 + B2‖ ≤ (1 +
√

δ
√

m ‖B0‖ · ‖A0‖ )2 ≤ 1 + ε

whenever δ > 0 is sufficiently small. This proves that S ∈ (1+ε)L(T |E,F ).

5.10. The preceding result can be stated in the following form.

Theorem. L(T |E,F ) =
⋂

ε>0(1 + ε)L(T |E,F ).

5.11. In the theory of ultraproducts, we have a striking counterpart of
the principle of local reflexivity; see [kue], [ste] and [hei 1], p. 8.

Kürsten–Stern Lemma. Let M and N be finite-dimensional sub-

spaces of (Xi)
U and ((Xi)

U )∗, respectively. Then for every ε > 0 there

exists an isomorphism Iε from N onto some subspace Nε of (X∗
i )U such

that ‖Iε‖ ≤ 1 + ε, ‖I−1
ε ‖ ≤ 1 + ε and

〈x,x∗〉 = 〈x, Iεx∗〉 for all x ∈M and x∗ ∈N .
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5.12. For completeness, we provide another standard result of the theory
of ultraproducts.

Lemma. Assume that x1 = (x1i)
U , . . . ,xm = (xmi)

U ∈ (Xi)
U are lin-

early independent. Then, given ε > 0, there exists U ∈ U such that

∥

∥

∥

m
∑

h=1

ξhxhi

∥

∥

∥
≤ (1 + ε)

∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥
for ξ1, . . . , ξm ∈ K and i ∈ U .

P r o o f. First of all, fix δ > 0 and choose a finite δ-net N in the unit
sphere S

m
1 of lm1 . Next, pick U ∈ U such that

∣

∣

∣

∥

∥

∥

m
∑

h=1

ξhxhi

∥

∥

∥
−

∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥

∣

∣

∣
≤ δ

for (ξh) ∈ N and i ∈ U . Clearly, we may assume that N contains the unit
vectors of lm1 . Then it follows that |‖xhi‖ − ‖xh‖| ≤ δ for h = 1, . . . ,m and
i ∈ U . Putting c := max{‖x1‖, . . . , ‖xm‖}, we get

∣

∣

∣

∥

∥

∥

m
∑

h=1

ξhxhi

∥

∥

∥
−

∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥

∣

∣

∣
≤ (1 + 2c + δ)δ

for (ξh) ∈ S
m
1 and i ∈ U . Hence, by homogeneity,

∥

∥

∥

m
∑

h=1

ξhxhi

∥

∥

∥
≤

∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥
+ (1 + 2c + δ)δ

m
∑

h=1

|ξh|

for ξ1, . . . , ξm ∈ K and i ∈ U . Since x1, . . . ,xm are linearly independent,
we find a constant b > 0 such that

m
∑

h=1

|ξh| ≤ b
∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥
for ξ1, . . . , ξm ∈ K,

which implies

∥

∥

∥

m
∑

h=1

ξhxhi

∥

∥

∥
≤ (1 + (1 + 2c + δ)bδ)

∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥

for ξ1, . . . , ξm ∈ K and i ∈ U . Choosing δ > 0 sufficiently small completes
the proof.

5.13. We are now in a position to establish an analogue of 5.7.

Proposition.

L(T |E,F ) ⊆ L(T U |E,F ) ⊆ (1 + ε)L(T |E,F ) for all ε > 0.

P r o o f. The left-hand inclusion follows from T reg = QU
Y TUJU

X ; see 2.7.
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Decompose the operator S ∈ L(T U |E,F ) in the form S = BT UA with
‖A : E → XU‖ ≤ 1 and ‖B : Y U → F‖ ≤ 1. Write

A =

m
∑

h=1

e∗h ⊗ xh and B =

n
∑

k=1

y∗k ⊗ fk ,

where x1, . . . ,xm ∈ XU and y∗1 , . . . ,y∗n ∈ (Y U )∗ are linearly independent.
By 5.11, we find an isomorphism Iε from F := span{y∗1 , . . . ,y∗n} onto some
subspace Fε of (Y ∗)U such that ‖Iε‖ ≤ 1 + ε and

〈TUxh,y∗k〉 = 〈TUxh, Iεy
∗
k〉 for h = 1, . . . ,m and k = 1, . . . , n.

Fix representations xh = (xhi)
U and Iεy

∗
k = (y∗

ki)
U with xhi ∈ X and

y∗
ki ∈ Y ∗. By the preceding lemma, there exists U ∈ U such that

∥

∥

∥

m
∑

h=1

ξhxhi

∥

∥

∥
≤ (1 + ε)

∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥
and

∥

∥

∥

n
∑

k=1

ηky∗
ki

∥

∥

∥
≤ (1 + ε)

∥

∥

∥

n
∑

k=1

ηky
∗
k

∥

∥

∥

for ξ1, . . . , ξm ∈ K, η1, . . . , ηn ∈ K and i ∈ U . Letting

Ai :=

m
∑

h=1

e∗h ⊗ xhi and Bi :=

n
∑

k=1

y∗
ki ⊗ fk

yields operators with ‖Ai : E → X‖ ≤ 1 + ε and ‖Bi : Y → F‖ ≤ 1 + ε.
Moreover, in view of

〈TUxh,y∗k〉 = 〈TUxh, Iεy
∗
k〉 = U -lim

i
〈Txhi, y

∗
ki〉,

it may be achieved that

‖BTUA− BiTAi‖ =
∥

∥

∥

m
∑

h=1

n
∑

k=1

(〈TUxh,y∗k〉 − 〈Txhi, y
∗
ki〉)e∗h ⊗ fk

∥

∥

∥

becomes as small as we please. So

S = BTUA ∈ (1 + ε)2L(T |E,F ) ⊆ (1 + ε)3L(T |E,F ).

5.14. Finally, we summarize the most important results of this section.

Theorem.The closed germs L(· |E,F ) coincide for the operators T ,
T reg, T ∗∗ and TU .

That is, from the local point of view we cannot distinguish between T ,
T reg, T ∗∗ and TU .

6. Local representability

6.1. Let c ≥ 0. We say that an operator T0 ∈ L(X0, Y0) is locally

c-representable in an operator T1 ∈ L(X1, Y1) if for ε > 0, for any choice of
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finite-dimensional spaces E and F , for A0 ∈ L(E,X0) and B0 ∈ L(Y0, F )
there exist A1 ∈ L(E,X1) and B1 ∈ L(Y1, F ) such that

B1T1A1 = B0T0A0 and ‖B1‖ · ‖A1‖ ≤ (c + ε)‖B0‖ · ‖A0‖.
In other words, we assume that

L(T0 |E,F ) ⊆ (c + ε)L(T1 |E,F ) whenever ε > 0

or, by 5.10, that

L(T0 |E,F ) ⊆ cL(T1 |E,F ).

Roughly speaking, it is required that the finite-dimensional structure of T1

is at least as rich as that of T0.

6.2. An operator T0 ∈ L(X0, Y0) is said to be locally representable in
an operator T1 ∈ L(X1, Y1) if the above conditions hold for some c ≥ 0. In

this case, we write T0

loc≺ T1. Of course,
loc≺ is a preordering on L.

6.3. We now restate Theorem 5.14.

Theorem. The operators T , T reg, T ∗∗ and TU are locally equivalent.

6.4. We see from 5.6 that the concept of local representability is stable
under duality.

Proposition. Let c ≥ 0. Then the following are equivalent :

(1) T0 is locally c-representable in T1.

(2) T ∗
0 is locally c-representable in T ∗

1 .

6.5. The local nature of the above notion can also be seen from the next
criterion.

Proposition. Let c ≥ 0. Then the following are equivalent :

(1) T0 is locally c-representable in T1.

(2) For ε > 0, for x01, . . . , x0m ∈ X0 and for y∗
01, . . . , y

∗
0n ∈ Y ∗

0 we can

find x11, . . . , x1m ∈ X1 and y∗
11, . . . , y

∗
1n ∈ Y ∗

1 such that

〈T1 x1h, y∗
1k〉 = 〈T0 x0h, y∗

0k〉 for h = 1, . . . ,m and k = 1, . . . , n,
∥

∥

∥

m
∑

h=1

ξhx1h

∥

∥

∥
≤

∥

∥

∥

m
∑

h=1

ξhx0h

∥

∥

∥
and

∥

∥

∥

n
∑

k=1

ηky∗
1k

∥

∥

∥
≤ (c + ε)

∥

∥

∥

n
∑

k=1

ηky∗
0k

∥

∥

∥

whenever ξ1, . . . , ξm ∈ K and η1, . . . , ηn ∈ K.

P r o o f. We consider the operators A0 := JX0

M and B0 := QY0

N , where
M := span{x01, . . . , x0m} and N := {y ∈ Y0 : 〈y, y∗

01〉 = . . . = 〈y, y∗
0n〉 = 0}.
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Note that (Y0/N)∗ can be identified with span{y∗
01, . . . , y

∗
0n}. Choose A1

and B1 such that

B1T1A1 = B0T0A0, ‖A1‖ ≤ ‖A0‖ and ‖B1‖ ≤ (c + ε)‖B0‖.
Then we may put x1h := A1x0h and y∗

1k := B∗
1x∗

0k. This proves that
(1)⇒(2).

In order to verify the reverse implication, we represent A0 ∈ L(E,X0)
and B0 ∈ L(Y0, F ) in the form

A0 =

m
∑

h=1

e∗h ⊗ x0h and B0 =

n
∑

k=1

y∗
0k ⊗ fk .

Pick x11, . . . , x1m and y∗
11, . . . , y

∗
1n as described in (2). Then the operators

A1 :=
m

∑

h=1

e∗h ⊗ x1h and B1 :=
n

∑

k=1

y∗
1k ⊗ fk

satisfy the conditions

B1T1A1 = B0T0A0, ‖A1e‖ ≤ ‖A0e‖ and ‖B∗
1f∗‖ ≤ (c + ε)‖B∗

0f∗‖.
6.6. Next, we connect the concepts of local and global representability

with the help of ultrapowers. This result should be compared with Theo-
rem 1.2 in [hei 1].

Theorem. Let c ≥ 0. Then the following are equivalent :

(1) T0 is locally c-representable in T1.

(2) There exist operators A ∈ L(X0, X
U
1 ) and B ∈ L(Y U

1 , Y ∗∗
0 ), where

U is an ultrafilter on a suitable index set I, such that

T reg
0 = BTU

1 A and ‖B‖ · ‖A‖ ≤ c.

P r o o f. In view of 5.13, we conclude from T reg
0 = BTU

1 A that

L(T0 |E,F ) = L(T reg
0 |E,F ) ⊆ cL(T U

1 |E,F ) ⊆ (1 + ε)cL(T1 |E,F ).

This proves that (2)⇒(1).

We consider the index set I formed by all triples i = (M,N, ε). Here M
is any finite-dimensional subspace of X0, and N is any finite-codimensional
subspace of Y0. As usual, ε > 0. For i = (M,N, ε) and i0 = (M0, N0, ε0),
we write i ≥ i0 if M ⊇ M0, N ⊆ N0 and 0 < ε ≤ ε0. Furthermore,
fix some ultrafilter U on I that contains all sections {i ∈ I : i ≥ i0} with
i0 ∈ I. Choose Ai ∈ L(M,X1) and Bi ∈ L(Y1, Y0/N) such that ‖Ai‖ ≤ 1,
‖Bi‖ ≤ c + ε and BiT1Ai = QY0

N T0J
X0

M . Let

xi :=

{

Aix if x ∈ M ,
o if x 6∈ M .
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Clearly, A : x 7→ (xi)
U defines an operator A ∈ L(X0, X

U
1 ) with ‖A‖ ≤ 1.

Next, given (yi)
U ∈ Y U

1 , we pick (y◦
i )U ∈ Y U

0 such that QY0

N y◦
i = Biyi and

‖y◦
i ‖ ≤ (1 + ε)‖Biyi‖. Put B : (yi)

U 7→ U -limi KY0
y◦

i , where the limit
is taken with respect to the weak∗ topology of Y ∗∗

0 . Then ‖B‖ ≤ c and
T reg

0 = BTU
1 A.

6.7. A property is said to be

• local if it is
loc≺ -stable,

• global if it is
glo
≺ -stable,

• regular if it carries over from

T reg ∈ L(X,Y ∗∗) to T ∈ L(X,Y ),

• injective if it carries over from

T inj ∈ L(X,Y inj) to T ∈ L(X,Y ),

• ultrapower-stable if, for all ultrafilters U , it is inherited from

T ∈ L(X,Y ) to T U ∈ L(XU , Y U ).

6.8. Thanks to 6.6, we are able to exhibit the typical ingredients of local
representability.

Theorem. A property is local if and only if it is regular , ultrapower-

stable and global.

7. Local operator schemes

7.1. We now define a preordering on the set of all operators acting
between finite-dimensional spaces. If S0 ∈ L(E0, F0) and S1 ∈ L(E1, F1),
then S0 ≤ S1 means that S0 ∈ L(S1 |E0, F0). In other words, there exist
A1 and B1 such that

S0 = B1S1A1, ‖A1 : E0 → E1‖ ≤ 1 and ‖B1 : F1 → F0‖ ≤ 1.

7.2. A local operator scheme is a rule that assigns to every pair (E,F )
of finite-dimensional Banach spaces a compact subset G(E,F ) of L(E,F )
such that the following conditions are satisfied:

(1) If S0 ∈ L(E0, F0) and S1 ∈ G(E1, F1), then S0 ≤ S1 implies that
S0 ∈ G(E0, F0).

(2) For S1 ∈ G(E1, F1) and S2 ∈ G(E2, F2) there exists S ∈ G(E,F ) such
that S1 ≤ S and S2 ≤ S.

(3) The sets G(E,F ) are uniformly bounded. That is, ‖S‖ ≤ c for all
S ∈ G(E,F ), where the constant c > 0 does not depend on E and F .

7.3. The closed germs G(T |E,F ) := L(T |E,F ) of any operator T
constitute a local operator scheme. Indeed, in order to verify (2) we let
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Si ∈ L(T |Ei, Fi) for i = 1, 2. Given ε > 0, there exist factorizations
Si = Bi,εTAi,ε such that ‖Ai,ε : Ei → X‖ ≤ 1 + ε and ‖Bi,ε : Y → Fi‖ ≤ 1.
Define E to be the direct sum E1 ⊕E2 equipped with the l1-norm, while F
is the direct sum F1 ⊕ F2 under the l∞-norm. Put

Aε := A1,εQ
E
1 + A2,εQ

E
2 , Bε := JF

1 B1,ε + JF
2 B2,ε and Sε := BεTAε,

where JE
i and QE

i , JF
i and QF

i are the canonical injections and surjections,
respectively. Then ‖Aε : E → X‖ ≤ 1 + ε and ‖Bε : Y → F‖ ≤ 1. In
addition,

Si = Bi,εTAi,ε = QF
i BεTAεJ

E
i = QF

i SεJ
E
i .

By compactness, the operators Sε ∈ (1 + ε)L(T |E,F ) have a cluster point
S ∈ L(T |E,F ) as ε → 0. Since Si = QF

i SεJ
E
i passes into Si = QF

i SJE
i ,

we finally obtain Si ≤ S for i = 1, 2. Conditions (1) and (3) are obviously
fulfilled.

7.4. From the philosophical point of view, the following observation is
the most important result of this paper. Operators at hand can be recon-

structed from their germs, and finite-dimensional pieces can be glued together

to form new operators. Our considerations are based on an isometric con-

cept of local equivalence: T0
loc∼1 T1 if and only if L(T0 |E,F ) = L(T1 |E,F )

for all finite-dimensional test spaces E and F .

Theorem. There is a one-to-one correspondence between
loc∼1-equiva-

lence classes of operators and local operator schemes.

P r o o f. We only need to show that every local operator scheme can
be obtained from an operator T , which will be produced by ultraproduct
techniques. The underlying index set I consists of all triples i = (S : E → F )
with S ∈ G(E,F ). Condition (2) implies that I is upwards directed. So we
can find an ultrafilter U that contains all sections U(i0) := {i ∈ I : i ≥ i0}
with i0 ∈ I. Construct the ultraproducts X := (Xi)

U , Y := (Yi)
U and

T := (Ti)
U , where Xi := E, Yi := F and Ti := S.

Fix i0 = (S0 : E0 → F0) ∈ I. If i ∈ U(i0), then we find operators Ai and
Bi such that S0 = BiTiAi, ‖Ai : E0 → Xi‖ ≤ 1 and ‖Bi : Yi → F0‖ ≤ 1.
Put Ai := O and Bi := O whenever i 6∈ U(i0). Define

A : e 7→ (Aie)U and B : (yi)
U 7→ U -lim

i
Biyi.

Then ‖A : E0 →X‖ ≤ 1 and ‖B : Y → F0‖ ≤ 1. Finally,

BTAe = U -lim
i

BiTiAie = S0e for all e ∈ E0.

This means that G(E0, F0) ⊆ L(T |E0, F0).
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In order to prove the reverse inclusion, let ‖A : E0 → X‖ ≤ 1 and
‖B : Y → F0‖ ≤ 1. Write

A =
m

∑

h=1

e∗h ⊗ xh and B =
n

∑

k=1

y∗k ⊗ fk ,

where x1, . . . ,xm ∈ X and y∗1 , . . . ,y∗n ∈ Y ∗ are linearly independent. By
5.11, we find an isomorphism Iε from F := span{y∗1 , . . . ,y∗n} onto some
subspace Fε of (Y ∗

i )U such that ‖Iε‖ ≤ 1 + ε and

〈Txh,y∗k〉 = 〈Txh, Iεy
∗
k〉 for h = 1, . . . ,m and k = 1, . . . , n.

Fix representations xh = (xhi)
U and Iεy

∗
k = (y∗

ki)
U with xhi ∈ Xi and

y∗
ki ∈ Y ∗

i . In view of Lemma 5.12, there exists U ∈ U such that

∥

∥

∥

m
∑

h=1

ξhxhi

∥

∥

∥
≤ (1 + ε)

∥

∥

∥

m
∑

h=1

ξhxh

∥

∥

∥
and

∥

∥

∥

n
∑

k=1

ηky∗
ki

∥

∥

∥
≤ (1 + ε)

∥

∥

∥

n
∑

k=1

ηky
∗
k

∥

∥

∥

for ξ1, . . . , ξm ∈ K, η1, . . . , ηn ∈ K and i ∈ U . Letting

Ai :=

m
∑

h=1

e∗h ⊗ xhi and Bi :=

n
∑

k=1

y∗
ki ⊗ fk

yields operators with ‖Ai : E0 → Xi‖ ≤ 1 + ε and ‖Bi : Yi → F0‖ ≤ 1 + ε.
Moreover, in view of 〈Txh,y∗k〉 = 〈Txh, Iεy

∗
k〉 = U -limi〈Ti xhi, y

∗
ki〉, it may

be achieved that

‖BTA− BiTiAi‖ =
∥

∥

∥

m
∑

h=1

n
∑

k=1

(〈Txh,y∗k〉 − 〈Ti xhi, y
∗
ki〉)e∗h ⊗ fk

∥

∥

∥

becomes as small as we please. By (1), we have BiTiAi ∈ (1 + ε)2G(E0, F0).
So BTA ∈ G(E0, F0) as ε → 0, which gives L(T |E0, F0) ⊆ G(E0, F0).

7.5. Assigning to (E,F ) the closed unit ball of L(E,F ), we get a local
operator scheme. Any generating operator T0 is maximal with respect to

the preordering
loc≺ ; that is, T

loc≺ T0 for all operators T . There is a re-
flexive and separable Banach space whose identity map is universal in this
sense. Indeed, choosing a dense sequence Em1, Em2, . . . in the Minkowski
compactum of all m-dimensional Banach spaces with m = 1, 2, . . . , we may
take the l2-sum of the double sequences (Emn) so obtained.

8. Injective-local representability

8.1. Let c ≥ 0. We say that an operator T0 ∈ L(X0, Y0) is injective-

locally c-representable in an operator T1 ∈ L(X1, Y1) if for ε > 0, for any
choice of a finite-dimensional space E and N = 1, 2, . . . , for A0 ∈ L(E,X0)
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and B0 ∈ L(Y0, l
N
∞) there exist A1 ∈ L(E,X1) and B1 ∈ L(Y1, l

N
∞) such

that

B1T1A1 = B0T0A0 and ‖B1‖ · ‖A1‖ ≤ (c + ε)‖B0‖ · ‖A0‖.
In other words, we assume that

L(T0 |E, lN∞) ⊆ (c + ε)L(T1 |E, lN∞) whenever ε > 0

or, by 5.10, that

L(T0 |E, lN∞) ⊆ cL(T1 |E, lN∞).

This means that, compared with Definition 6.1, we only use a special type of
test spaces F . The main point is that lN∞ has the metric extension property.

8.2. An operator T0 ∈ L(X0, Y0) is said to be injective-locally repre-

sentable in an operator T1 ∈ L(X1, Y1) if the above conditions hold for some

c ≥ 0. In this case, we write T0

injloc
≺ T1. Of course,

injloc
≺ is a preordering on

L. Note that T0

loc≺ T1 implies T0

injloc
≺ T1.

8.3. In the following, we need a folklore result.

Lemma. Let ε > 0, A ∈ L(E,X) and B ∈ L(X, l∞(I)). Then there exist

B0 ∈ L(X, lN∞) and V ∈ L(lN∞, l∞(I)) such that ‖B0‖ ≤ ‖B‖, ‖V ‖ ≤ 1 + ε
and

E X l∞(I)

lN∞

A // B //

B0

�
�

�
�

�
�� V�

�
�

�
�

� ==

In addition, we may arrange that N ≤ (3+2/ε)n, with n := dim(E) replaced

by 2n in the complex case.

P r o o f. Choose functionals x∗
1, . . . , x

∗
N ∈ X∗ of norm 1 whose restric-

tions to M := A(E) constitute a minimal finite δ-net in the unit sphere of
M∗, where δ := ε/(1 + ε). Since (1 − δ)‖x‖ ≤ maxi |〈x, x∗

i 〉| for all x ∈ M ,
the map B0 : x 7→ ‖B‖(〈x, x∗

i 〉) is invertible on B0(M). Finally, V can
be obtained as a norm-preserving extension of BB−1

0 . The estimate of N
follows from entropy theory.

8.4. The symbol
injloc
≺ is justified by the next criterion.

Proposition. Let c ≥ 0. Then the following are equivalent :

(1) T0 is injective-locally c-representable in T1.

(2) T inj
0 is locally c-representable in T inj

1 .
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P r o o f. (1)⇒(2). Look at the commutative diagram

X0 Y0 Y inj
0

E lN∞ G

X1 Y1 Y inj
1

T0 //

B0

��

J inj

Y0 //

C0

��
A0

OO

A1

��

V0�
�

�
�

�
� ==

T1

//
J inj

Y1

//

B1

OO
V1

``�
�

�
�

�
�

C1

OO

which is obtained as follows: Let A0 and C0 be given. Applying Lemma 8.3
to T0A0 and J inj

Y0
, we find B0 and V0 such that ‖B0‖ ≤ 1 and ‖V0‖ ≤ 1 + ε.

Choose A1 and B1 with ‖B1‖ · ‖A1‖ ≤ (c + ε)‖B0‖ · ‖A0‖. Finally, let V1 be
any norm-preserving extension of B1 and put C1 := C0V0V1. Then

‖C1‖ · ‖A1‖ ≤ ‖C0‖ · ‖V0‖ · ‖V1‖ · ‖A1‖ ≤ (1 + ε)‖C0‖ · ‖B1‖ · ‖A1‖
≤ (1 + ε)(c + ε)‖C0‖ · ‖A0‖.

(2)⇒(1). Now we use the commutative diagram

X0 Y0 Y inj
0

E lN∞

X1 Y1 Y inj
1

T0 //

B0

��

J inj

Y0 //

C0}}�
�

�
�

�
�

A0

OO

A1

��

T1

//
J inj

Y1

//

B1

OO
C1

``�
�

�
�

�
�

Let A0 and B0 be given. Fix any norm-preserving extension C0 of B0.
Choose A1 and C1. Finally, let B1 := C1J

inj
Y1

.

8.5. Next, we state a counterpart of 6.8.

Theorem. A property is injective-local if and only if it is injective,
ultrapower-stable and global.

8.6. In the case of injective-local representability the list of locally equiv-
alent operators, given in 6.3, can be extended by T inj.

Theorem. The operators T , T reg, T inj, T ∗∗ and TU are injective-locally

equivalent.

P r o o f. Note that L(T inj |E, lN∞) = L(T |E, lN∞).



Local theory of Banach spaces 289

8.7. We now establish an analogue of 6.5.

Proposition. Let c ≥ 0. Then the following are equivalent :

(1) T0 is injective-locally c-representable in T1.

(2) For ε > 0 and for x01, . . . , x0m ∈ X0 we can find x11, . . . , x1m ∈ X1

such that
∥

∥

∥

m
∑

h=1

ξhx1h

∥

∥

∥
≤

∥

∥

∥

m
∑

h=1

ξhx0h

∥

∥

∥
and

∥

∥

∥

m
∑

h=1

ξhT0x0h

∥

∥

∥
≤ (c + ε)

∥

∥

∥

m
∑

h=1

ξhT1x1h

∥

∥

∥

whenever ξ1, . . . , ξm ∈ K.

(3) For ε > 0, for any finite-dimensional space E, and for A0 ∈ L(E,X0)
there exists A1 ∈ L(E,X1) such that

‖A1e‖ ≤ ‖A0e‖ and ‖T0A0e‖ ≤ (c + ε)‖T1A1e‖ whenever e ∈ E.

P r o o f. (1)⇒(2). Let A0 := JX0

M with M := span{x01, . . . , x0m}. Ap-

plying 8.3 to T0A0 and J inj
Y0

, we find B0 and V with J inj
Y0

T0A0 = V B0T0A0,

‖B0‖ ≤ 1 and ‖V ‖ ≤ 1 + ε. Choose A1 ∈ L(M,X1) and B1 ∈ L(Y1, l
N
∞)

such that

B1T1A1 = B0T0A0, ‖A1‖ ≤ ‖A0‖ = 1 and ‖B1‖ ≤ (c+ε)‖B0‖ ≤ c+ε.

Putting x1h := A1x0h, we finally arrive at
∥

∥

∥

m
∑

h=1

ξhx1h

∥

∥

∥
≤

∥

∥

∥

m
∑

h=1

ξhx0h

∥

∥

∥

and
∥

∥

∥

m
∑

h=1

ξhT0x0h

∥

∥

∥
=

∥

∥

∥

m
∑

h=1

ξhJ inj
Y0

T0A0x0h

∥

∥

∥
≤ ‖V ‖ ·

∥

∥

∥

m
∑

h=1

ξhB0T0A0x0h

∥

∥

∥

≤ (1 + ε)
∥

∥

∥

m
∑

h=1

ξhB1T1A1x0h

∥

∥

∥

≤ (1 + ε)(c + ε)
∥

∥

∥

m
∑

h=1

ξhT1x1h

∥

∥

∥
.

(2)⇒(3). Write A0 ∈ L(E,X0) in the form A0 =
∑m

h=1 e∗h ⊗ x0h, and
let A1 :=

∑m
h=1 e∗h ⊗ x1h.

(3)⇒(1). Given A0 ∈ L(E,X0) and B0 ∈ L(Y0, l
N
∞), we choose an

operator A1 ∈ L(E,X1) such that ‖A1e‖ ≤ ‖A0e‖ and ‖T0A0e‖ ≤ (c +
ε)‖T1A1e‖ whenever e ∈ E. Of course, ‖A1‖ ≤ ‖A0‖. It follows from

‖B0T0A0e‖ ≤ ‖B0‖ · ‖T0A0e‖ ≤ (c + ε)‖B0‖ · ‖T1A1e‖
that T1A1e 7→ B0T0A0e yields a well-defined operator from T1A1(E) into
lN∞. If B1 is any norm-preserving extension, then ‖B1‖ ≤ (c + ε)‖B0‖.
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Remark. In the case when T0 and T1 are identity maps, the inequalities
from (2) pass into

∥

∥

∥

m
∑

h=1

ξhx1h

∥

∥

∥
≤

∥

∥

∥

m
∑

h=1

ξhx0h

∥

∥

∥
≤ (c + ε)

∥

∥

∥

m
∑

h=1

ξhx1h

∥

∥

∥
.

This yields an upper estimate of the Banach–Mazur distance between
span{x01, . . . , x0m} and span{x11, . . . , x1m}. More precisely, it turns out

that the relation
injloc
≺ extends the concept of crudely finite representability

to the setting of operators.

8.8. The next criterion is an analogue of 6.6, from which it could be
derived via 8.4. We prefer, however, to give a direct proof.

Proposition. Let c ≥ 0. Then the following are equivalent :

(1) T0 is injective-locally c-representable in T1.

(2) There exist operators A ∈ L(X0, X
U
1 ) and B ∈ L(Y U

1 , Y inj
0 ), where

U is an ultrafilter on a suitable index set I, such that

T inj
0 = BTU

1 A and ‖B‖ · ‖A‖ ≤ c.

P r o o f. If T inj
0 = BTU

1 A, then

L(T0 |E, lN∞) = L(T inj
0 |E, lN∞) ⊆ ‖B‖ · ‖A‖L(T U

1 |E, lN∞)

⊆ (1 + ε)cL(T1 |E, lN∞).

This proves that (2)⇒(1).

We consider the index set I formed by all pairs i = (M, ε). Here M
is any finite-dimensional subspace of X0 and ε > 0. For i = (M, ε) and
i0 = (M0, ε0), we write i ≥ i0 if M ⊇ M0 and 0 < ε ≤ ε0. Furthermore, fix
some ultrafilter U on I that contains all sections {i ∈ I : i ≥ i0} with i0 ∈ I.
Choose Ai ∈ L(M,X1) such that

‖Aix‖ ≤ ‖x‖ and ‖T0x‖ ≤ (c + ε)‖T1Aix‖ for x ∈ M .

Let

xi :=

{

Aix if x ∈ M ,
o if x 6∈ M ,

and yi :=

{

T1Aix if x ∈ M ,
o if x 6∈ M .

Clearly, A : x 7→ (xi)
U defines an operator A ∈ L(X0, X

U
1 ) with ‖A‖ ≤ 1.

Next, it follows from

‖T inj
0 x‖ = ‖T0x‖ ≤ U -lim

i
(c + ε)‖T1Aix‖ = c‖(yi)

U‖

that B0 : (yi)
U 7→ T inj

0 x yields a map from the range of T U
1 A into Y inj

0 .
Choosing any norm-preserving extension, we obtain the required operator
B ∈ L(Y U

1 , Y inj
0 ) with ‖B‖ ≤ c. Hence (1)⇒(2).
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9. Local and injective-local distances. In the definition of local
representability the dimensions of the test spaces E and F are arbitrary.
Now we introduce a gradation.

9.1. For n = 1, 2, . . . , the nth local distance between T0 and T1 is defined
by

ln(T0, T1) := inf

{

c ≥ 0 : L(T0 |E,F ) ⊆ cL(T1 |E,F ),
dim(E) ≤ n

dim(F ) ≤ n

}

.

If such a constant c ≥ 0 does not exist, we let ln(T0, T1) := ∞. This happens
if and only if rank(T0) ≥ n > rank(T1). In view of 5.10, we have

ln(T0, T1) := min

{

c ≥ 0 : L(T0 |E,F ) ⊆ cL(T1 |E,F ),
dim(E) ≤ n

dim(F ) ≤ n

}

.

9.2. Note that

‖T0‖ · ‖T1‖−1 = l1(T0, T1) ≤ l2(T0, T1) ≤ . . . ≤ ln(T0, T1) ≤ . . .

The growth of this sequence measures the deviation of T1 from T0.

For operators T0, T1 and T2 between arbitrary couples of Banach spaces,
we have a multiplicative triangle inequality :

ln(T0, T2) ≤ ln(T0, T1)ln(T1, T2).

Moreover, 5.6 yields

ln(T ∗
0 , T ∗

1 ) = ln(T0, T1).

9.3. For n = 1, 2, . . . , the nth injective-local distance between T0 and T1

is defined by

in(T0, T1) := inf

{

c ≥ 0 : L(T0 |E, lN∞) ⊆ cL(T1 |E, lN∞),
dim(E) ≤ n

N = 1, 2, . . .

}

.

If such a constant c ≥ 0 does not exist, we let in(T0, T1) := ∞. This happens
if and only if rank(T0) ≥ n > rank(T1). In view of 5.10, we have

in(T0, T1) := min

{

c ≥ 0 : L(T0 |E, lN∞) ⊆ cL(T1 |E, lN∞),
dim(E) ≤ n

N = 1, 2, . . .

}

.

9.4. In analogy with 9.2,

‖T0‖ · ‖T1‖−1 = i1(T0, T1) ≤ i2(T0, T1) ≤ . . . ≤ in(T0, T1) ≤ . . .

and

in(T0, T2) ≤ in(T0, T1)in(T1, T2).

However, in(T ∗
0 , T ∗

1 ) and in(T0, T1) may behave quite differently.
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9.5. We now compare the local distances with the injective-local dis-
tances.

Proposition. For every ε > 0 there exists a natural number a > 1 such

that

in(T0, T1) ≤ (1 + ε)lan(T0, T1) for n = 1, 2, . . .

P r o o f. Put a := 4 + [2/ε] (real case) and a := (4 + [2/ε])2 (complex
case). Note that

cn := inf

{

c ≥ 0 : L(T0 |E, lN0

∞ ) ⊆ cL(T1 |E, lN0

∞ ),
dim(E) ≤ n

N0 ≤ an

}

≤ lan(T0, T1).

We now construct a commutative diagram:

X0 Y0

E lN∞ lN0
∞

X1 Y1

T0 //

B0

��

C0

�
�

�
�

�
�   

A0

OO

A1

��

Voo

T1

//

B1

OO

C1�
�

�
�

�
� >>

Let δ > 0, A0 and B0 be given. Applying Lemma 8.3 to T0A0 and B0, we
find C0 and V such that ‖C0‖ ≤ ‖B0‖ and ‖V ‖ ≤ 1 + ε. Choose A1 and
C1 with ‖C1‖ · ‖A1‖ ≤ (cn + δ)‖C0‖ · ‖A0‖. Finally, putting B1 := V C1, we
arrive at ‖B1‖ · ‖A1‖ ≤ (1 + ε)(cn + δ)‖B0‖ · ‖A0‖, which proves that

in(T0, T1) ≤ (1 + ε)(cn + δ) ≤ (1 + ε)(lan (T0, T1) + δ).

Remark. An inequality of the form in(T0, T1) ≤ clϕ(n)(T0, T1) can only
hold if ϕ : N → N grows exponentially: ϕ(n) � an with a > 1; see 11.6.

9.6. Here is another consequence of Theorem 5.14.

Theorem. The ln-distances between T , T reg, T ∗∗ and TU equal 1. In

the case of in-distances the same is true for T , T reg, T inj, T ∗∗ and TU .

9.7. Distances between spaces X0 and X1 are obtained as the distances
between the associated identity maps IX0

and IX1
. In the infinite-dimensio-

nal case, we have ln(X0, X1) ≤ n and in(X0, X1) ≤ √
n. It turns out that

in(X0, X1) is the infimum of all constants c ≥ 1 with the following property:
For every n-dimensional subspace M0 of X0 there exists an n-dimensional
subspace M1 of X1 such that the Banach–Mazur distance d(M0,M1) is less
than or equal to c.
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9.8. For n = 1, 2, . . . and T ∈ L(X,Y ), the nth Bernstein number bn(T )
is the supremum of all constants b ≥ 0 such that ‖Tx‖ ≥ b‖x‖ for every x
in some n-dimensional subspace of X. In the case when dim(X) < n, we let
bn(T ) := 0. Obviously,

‖T‖ = b1(T ) ≥ b2(T ) ≥ . . . ≥ bn(T ) ≥ . . . ≥ 0.

9.9. Roughly speaking, the following estimate shows that the decay of
the sequence (bn(T )) depends continuously on T .

Proposition. bn(T0) ≤ in(T0, T1)bn(T1).

P r o o f. If bn(T0) > b > 0, then there exists an n-dimensional subspace
E0 of X0 such that

‖T0x‖ ≥ b‖x‖ for all x ∈ E0.

Let A0 ∈ L(E0, X0) denote the embedding map from E0 into X0. Choose
A1 ∈ L(E0, X1) such that

‖A1x‖ ≤ ‖A0x‖ and ‖T0A0x‖ ≤ (in(T0, T1) + ε)‖T1A1x‖
for all x ∈ E0. Note that A1x = o implies x = o. So E1 := A1(E0) is an
n-dimensional subspace of X1. Hence it follows from

(in(T0, T1) + ε)‖T1A1x‖ ≥ ‖T0A0x‖ ≥ b‖A0x‖ ≥ b‖A1x‖
that

b

in(T0, T1) + ε
≤ bn(T1).

Finally, letting b → bn(T0) and ε → 0 completes the proof.

10. Operators in Hilbert spaces

10.1. Throughout this section, we let T ∈ L(H,K), T0 ∈ L(H0,K0)
and T1 ∈ L(H1,K1), where H, H0, H1 and K, K0, K1 denote Hilbert
spaces. Since in this setting all s-numbers coincide, we may work with the
Bernstein numbers whose local nature is evident.

10.2. Theorem. All non-compact operators between Hilbert spaces are

locally equivalent.

P r o o f. If ‖A : E → H‖ ≤ 1 and ‖B : K → F‖ ≤ 1, then there exist

factorizations A : E
A0−→ l2

U−→ H and B : K
V−→ l2

B0−→ F such that
‖A0‖ = ‖A‖ and ‖U‖ = 1, ‖B0‖ = ‖B‖ and ‖V ‖ = 1. Putting T0 := V TU ,
we get the diagram
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H K

E l2 l2 F

T //

A

��
B

��

V

���
�

�
�

�
�

A0

//

U

__�
�

�
�

�
�

T0

//
B0

//

That is, BTA = B0T0A0 = (B0)I(V TUA0), where I denotes the identity
map of l2. This proves that every operator T is locally ‖T‖-representable
in I.

Conversely, I is even globally representable in all non-compact operators,
since these operators fail to be strictly singular.

Remark. In separable Hilbert spaces, all non-compact operators are
globally equivalent.

10.3. As just observed, in the setting of Hilbert spaces there is almost
no difference between local and global properties. This assertion will be
confirmed by the next result.

Theorem. Let c ≥ 0. Then, for compact operators T0 and T1, the

following are equivalent :

(1) T0 is globally representable in T1.

(2) T0 is locally representable in T1.

(3) T0 is injective-locally representable in T1.

(4) There exists c ≥ 0 such that bn(T0) ≤ cbn(T1) for n = 1, 2, . . .

P r o o f. The implications (1)⇒(2) and (2)⇒(3) are trivial, and (3)⇒(4)
follows from 9.9.

In order to verify (4)⇒(1), we assume that the underlying spaces are
infinite-dimensional. Consider Schmidt representations

T0 =
∞
∑

n=1

bn(T0)x∗
0n ⊗ y0n and T1 =

∞
∑

n=1

bn(T1)x∗
1n ⊗ y1n,

where (x0n), (y0n), (x1n) and (y1n) are orthonormal sequences. Moreover,
define x∗

0n : x 7→ (x|x0n) and x∗
1n : x 7→ (x|x1n). Since bn(T0) ≤ cbn(T1), we

find a sequence (βn) such that bn(T0) = βnbn(T1) and 0 ≤ βn ≤ c. Finally,
letting

A1 :=

∞
∑

n=1

x∗
0n ⊗ x1n and B1 :=

∞
∑

n=1

βny∗
1n ⊗ y0n

yields the factorization T0 = B1T1A1.

10.4. The following formulas can be proved by standard techniques:

L(T | ln2 , ln2 ) = {S ∈ L(ln2 , ln2 ) : b1(S) ≤ b1(T ), . . . , bn(S) ≤ bn(T )}
and

ln(T0, T1) = in(T0, T1) = max{b1(T0)b1(T1)−1, . . . , bn(T0)bn(T1)−1}.
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11. Examples

11.1. Obviously, belonging to an operator ideal is a global property.

Every maximal quasi-Banach ideal A can be obtained as the collection
of all operators T ∈ L for which sup{α(S) : S ∈ L(T |E,F ), E, F ∈ F} is
finite. So A is uniquely determined if we know the underlying quasi-ideal
norm α only for operators acting between finite-dimensional spaces. This
observation implies that belonging to a maximal quasi-Banach operator ideal
is a local property.

11.2. Global, but non-local classes:

• completely continuous operators,

• weakly compact operators,

• operators with the Radon–Nikodým property,

• strictly singular operators,

• operators with separable range.

11.3. Global and ultrapower-stable, but non-regular classes:

• nuclear operators.

11.4. Local, but non-injective classes:

• approximable operators,

• operators with p-summable approximation numbers,

• p-integral operators, p 6= 2,

• Lp-factorable operators, p 6= 2.

11.5. Injective-local classes:

• compact operators,

• super weakly compact operators,

• 2-integral operators,

• L2-factorable operators,

• p-summing operators,

• operators of Rademacher type p,

• operators of Rademacher cotype q,

• UMD-operators.

11.6. For positive sequences (αn) and (βn), the asymptotic relation
αn � βn means that αn = O(βn) and βn = O(αn).

We now describe the asymptotic behaviour of the distances ln(Lp, Lq)
and in(Lp, Lq) as n → ∞. Since infinite-dimensional Lp spaces are locally
equivalent, it is enough to think of Lp[0, 1] or lp. In all cases that are settled
until now, we have ln(Lp, Lq) � nλ and in(Lp, Lq) � nµ.
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The following diagrams show the values of the exponents λ and µ if
1 < p, q < ∞. On the border-lines p = 1, q = 1, p = ∞ and q = ∞, discon-
tinuities may occur. We see that the sequences (ln(Lp, Lq)) and (in(Lp, Lq))
behave differently for 2 < q ≤ p < ∞.

�

�

�
�

�
�

�
�

�
�

�
�

� �

�����

���	�

����


����
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����	��
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�������
����


�������
����


�������
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�����
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�
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�

�
�
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�

�
�
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�����

���	�

����


����


�


����	��
����


�������
����


�������
����
���� 
�������
������

�����

�

The λ-diagram is due to A. Hinrichs (unpublished), while the µ-diagram
was established by A. Hinrichs and T. Kaufhold and by Y. Gordon and
M. Junge. In particular, we have

√

n/q ≤ in(L∞, Lq) and ln(L∞, Lq) ≤ n1/q if 2 ≤ q < ∞,

which implies the remark in 9.5 by letting q := n/(4c2).

12. Final remarks. By 6.5 and 8.7 we have the following

Criteria. An operator T0 is locally c-representable in T1 if and only

if for ε > 0, for x01, . . . , x0m ∈ X0 and for y∗
01, . . . , y

∗
0n ∈ Y ∗

0 we can find

x11, . . . , x1m ∈ X1 and y∗
11, . . . , y

∗
1n ∈ Y ∗

1 such that

〈T1x1h, y∗
1k〉 = 〈T0x0h, y∗

0k〉 for h = 1, . . . ,m and k = 1, . . . , n,
∥

∥

∥

m
∑

h=1

ξhx1h

∥

∥

∥
≤

∥

∥

∥

m
∑

h=1

ξhx0h

∥

∥

∥
and

∥

∥

∥

n
∑

k=1

ηky∗
1k

∥

∥

∥
≤ (c + ε)

∥

∥

∥

n
∑

k=1

ηky∗
0k

∥

∥

∥

whenever ξ1, . . . , ξm ∈ K and η1, . . . , ηn ∈ K.

An operator T0 is injective-locally c-representable in T1 if and only if for

ε > 0 and for x01, . . . , x0m ∈ X0 we can find x11, . . . , x1m ∈ X1 such that

∥

∥

∥

m
∑

h=1

ξhx1h

∥

∥

∥
≤

∥

∥

∥

m
∑

h=1

ξhx0h

∥

∥

∥
and

∥

∥

∥

m
∑

h=1

ξhT0x0h

∥

∥

∥
≤ (c + ε)

∥

∥

∥

m
∑

h=1

ξhT1x1h

∥

∥

∥

whenever ξ1, . . . , ξm ∈ K.
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So the concept of local respresentability is based on elements and func-

tionals, while injective-local representability is formulated in terms of ele-

ments only. This means that the latter concept works on a lower level.
Clearly, there is a third concept: surjective-local representability . But this
can be obtained just by duality, and nothing really new happens.

Since the local theory reduces infinite-dimensional statements to finite-
dimensional ones, it requires a deep knowledge about n-dimensional normed
linear spaces and about operators acting between them, where the dimension
n is understood to be large. Consequently, the finite-dimensional theory is
often viewed as a part, or even the main part, of local theory.
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[bea 1] B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976),
103–139.
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