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where th;; = > _ am2™" . Therefore,

(Vili)(f) = Q'b—i-"(lf}-f) for f € H.

zd

Now using the same idea as in Theorem 2.2 we can complete the proof.

EXAMPLE 2.6. If a; == ¢ -+ 1 in Theorem 2.5 then

1

(1 —2)(1 —T)(1 —w2)
and U = (U;)85-q, where Uy; = 0 for i > jand Uy = 1for i < 4. So
{z"/(1—2) : n > 0} is an orthogonal basis for H.

The authors would like to thank the referee for several helpful comments
and a careful reading of the article.
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A class of I-preduals which are
isomorphic to quotients of C(w*)

by
TOANNIS GASPARIS (Stillwater, Okla.)

Abstract. For every countable ordinal a, we construct an lj-predual X, which is
P w™+2 . B N
isometric to a subspace of C{w® ) and isomorphic to a quotient of C(w®). However,
X is not isomorphic fo a subspace of C(w®”).

1. Introduction. The study of quotients of C'(«), for @ a countable or-
dinal, is closely related to the problem of the isomorphic classification of the
complemented subspaces of C[0,1]. Indeed, every complemented subspace
of C[0,1] is either isomorphic to a quotient of C(a) for some o < w; (see
[4]), or isomorphic to C[0,1] (see [11]).

According to a result of Johnson and Zippin [8], every quotient of C{w)
is isomorphic to a subspace of C(w). A natural question which arises then
is if such a phenomenon occurs in C'(a) for every o < wy. Alspach [1] gave
a negative answer to this question by exhibiting a quotient of C(w*) which
is not isomorphic to a subspace of C{a) for any o < w;.

Alspach’s example left open the following question: Suppose X is isomor-
phic to a quotient of C'(w*) and that there exists a < w; with X isomorphic
to a subspace of C(a). Is X isomorphic to a subspace of C{w*)?

In this article, we answer this question in the negative by proving the
following:

THEOREM 1.1. For every countable ordinal o, there exists an l1-predual
spoce Xy with the following properties:

1. X4 i5 isomorphic to a quotient of C(w™).
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2. X, s not isomorphic to a subspace of C(w”").
3. X, is isomelric o o subspace of C’(w‘”wuz).

We recall here that according fo a result of Bessaga and Pelczyriski [5],
for every countable compact metric space K, there exists a unique countable
ordinal a so that C{X) is isomorphic to C(w*").

The spaces X, are obtained by a general method of constructing Iy-
preduals which are quotients of C'(w*). (Definitions of the relevant concepts
are given in Sections 2 and 3.) This method, Theorem 5.1, associates with
every w*-compact subset K of the probability measures on [1,w] an Ii-
predual space X (K). Several choices of the set K give rise to {i-preduals
with interesting properties. For instance, if K is taken to be the w*-closure
of the set of the (w® 4 1)-averages (this concept is defined at the end of
Section 2) of (dn), the sequence of point masses on [1,w), then X (K) is the
space X, satisfying the conclusion of Theorem 1.1.

If we choose K to be the set of all probability measures on [1,w], then
X{K), which in this special case is denoted by X, is isometric to the
space constructed by Alspach in [1]. In fact, as shown in Corollary 6.1,
Xoo contains a contractively complemented subspace isometric to X o Tor all
o < wy. Therefore, as a corollary to our Theorem 1.1, X, is isomorphic to
a subspace of C'(a) for no o < wy.

The proof of Theorem 1.1 is based on Theorems 4.3 and 1.2 which are
proved in Sections 4 and 6 respectively. The former is a criterion for esti-
mating the norming constant of a w*-compact norming subset of B X, N
a Banach space X with separable dual X*. The latter is a generalization
of Alspach’s [1] main lemma, which roughly says that if [ is a w*-compact
countable subset of the closed unit ball of I; (w), then there exists a proba-
bility measure on [1,w) which is “almost” mutually singular with respect to
each member of L. More precisely, in Section 6 we show:

THEOREM 1.2. Let K be a w*-compact subset of By, (w) homeomorphic
to [1,w*n] for some a < wy and n € N. (K is endowed with the w* -topolagy
and [1,w%n| is given the order topology.) Let e > 0 and (), a convez block
subsequence of (8;), be given. There exists a conver block subsequence (z;)

of (y:), consisting of («+ 1)-averages of (1), such that z; is e-disjoint from
K for alli e N,

We recall that if K is a compact metric space and & > 0, then two signed
Borel measures j,v € By~ are called e-disjoint if there exist disjoint
Borel measurable subsets A, B of K so that K = AU B and |u[(A) < &,
lv|(B) <e. fM C Bo(x)y», then p is called e-disjoint from M provided that
#, v are e-disjoint for all ¥ € M. It is shown in [1] that if K is a countable
w*-compact subset of By (w) and & > 0, then there is a probability mea~
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sure p on [1,w) which is e-disjoint from K. Theorem 1.2 generalizes this
result.

Finally, we remark that none of the spaces X, is isomorphic to a com-
plemented subspace of C[0,1], since each of them contains a contractively
complemented subspace isometric to the Alspach—Benyamini I;-predual [3].

Acknowledgments. I would like to thank the referee for his most help-
ful comments, corrections and suggestions regarding the results of this paper.

2. Preliminaries. We shall malke use of standard Banach space facts
and terminology. In this section we review some of the necessary concepts.

For a Banach space X, Bx denotes its closed unit ball. A subset B of
By~ is called d-norming, § > 0, provided that §Bx. is contained in the
w*-closure of the convex hull of B U —B. £(X) is the Banach space of
bounded linear operators from X into itself under the operator norm.

l; denotes the Banach space of the absolutely summable sequences under
the norm given by the sum of the absolute values of the coordinates. X is
an li-predual if X* is isometric to 3.

If K is a compact metric space, 4 is a closed subset of K and a < wy,
then we write A®) to denote the ath derived set of 4. If ¢ € K, then 6,
stands for the point mass at z. '

C(K) denotes the Banach space of real-valued functions continuous on
K equipped with the supremum norm. If & is an ordinal and K = [1, o,
the space of ordinals not exceeding @, with the order topology, then we
alternatively write C(a) to denote C(K). Co(w) is the subspace of C(e)
consisting of the functions vanishing at c.

If I is a w*-compact subset of By~ and ¢ < w;, then we say that L
is homeomorphic to [1, a] if there exists a map between L and {1, o] which
is a homeomorphism when L is endowed with the w*-topology and [1, o] is
given the order topology.

If K is a countable compact metric space then C'(K)* is isometrically
isomorphic to I;. We adopt the notation Iy (K) for l; viewed as the dual of
C(K). K K = [1,] for some o < w1, then we write [;{c) instead of I; (K).
By the w*-topology of l1(K) we mean the o{l1(K), C(K))-topology. The
positive face of the ball of ;(K) is the set {3 cpc Xada:da 20, Toex Aa
=1}.

E’n the sequel we will, without further comment, consider elements of the
space 11 (K) as either functions defined on K, or as measures on K.

Next we recall the definition of a convex block subsequence of a sequence
(;) in X. Given finite subsets F', G of N, we denote by F < & the relation
max F < minG. A sequence {z;) is called a conwvex block subsequence of (e;)
if there exist sets F;, ¢ N with Iy < Fy < ... and a sequence of non-negative
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scalars (a;) such that for every i € N, @ = 3, cpp Gnep and 32, o apn = 1,
By s(z;) we denote the support of z;, i.e. the set {n € F; : a, > 0}. We
write 1 < 22 < ... to indicate that By < Fy < ...

We now pass to the definition of an c-average of the sequence (e;), where
o is a countable ordinal. The set of the O-averages of (e;) is {e; : 4 € N}.
Assume that the set of the f-averages of (e;) has been defined for every
B < «. Suppose first that o is a successor ordinal, say o = 8+ 1. A vector
2 € X is an a-average of (e;) if there exist n € N and 21 < ... < &, where
x; is a f-average of (e;) for all j§ < n, so that x = (z1 + ... + ) /n.

If o is a limit ordinal, let (a,) be a strictly increasing sequence of ordinals
tending to a. A vector z € X is now called an a-average of (&;) if there exists
n € N so that x is an an-average of {¢;) and e, < z. Clearly, an a-average
of (e;) is a finite convex combination of elements of (e;).

3. Tree description of ordinal intervals. In this article we shall use
trees in order to describe the ordinal intervals [1,w™], n € N. Recall that a
tree (7, <) is a non-empty partially ordered set such that for all z € T, the
set of the predecessors of z in 7 is well ordered.

To denotes the tree of all finite sequences of positive integers under the
following partial order: Given o = (a1,...,a,) and 8 = (by,...,by) in Tog,
wehavea < fifand onlyif n < m and a; = b; for 1 < n.

We denote by (0) the empty sequence and by |c| the level of . That is,
lof = nif = (aq,...,an).

Weset T, = {a € Tt |a| £ n}U{(®)} foralln e N. If a € 7,,, then F,
denotes the set of the followers of @ in 7,. Thus, F, = {f €T, : a £ B}
We also set Do = @ if lo| = n, and Dy = {(e,4) : 4 € N} if |@] < n. Given a
finite subset & of D, we set

Up ={B €T, :v <6 for some v€ D, \ Fl.

It is not difficult to show that the family {UrU{a}: o € 75, F C D, finite}
forms a basis for a Hausdorff topology in 7. It then follows that 7, en-
dowed with. this topology becomes a countable compact metric space homeo-
morphic to [1,w™].

We let Uy, denote the canonical w* -continuous projection of I1(7T5,,) onto
its subspace [0n : & € T3, || < 1], that is, the linear projection induced
by the relations

Un(d(m,a)) =0(my forall @ € Topy and m e N
and
Un(da) = 8o forall a € T, || < 1.
Clearly, U, is w*-continuous and ||U,,|| = 1.
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Finally we state the following lemma, whose proof is straightforward and
therefore we omit it.

LemMA 3.1. Let z be a finitely supported normalized element of 1 (T7)
whose support lies in the set {a € T) : |a| = 1}. If (z,) s a sequence in
I(Th) such that ||z,|| < 1 for all n € N and limin_ro0 Tn, = (w*), then
iy — oo Zn = T 0 norm.

4. Estimating norming constants. In this section we give a criterion,
Theorem 4.3, for estimating the norming constant of a w*-compact norming
subset of By« for a Banach space X with X* separable. This criterion was
motivated by the proof of the main result of [1].

DEFINITION 4.1. Let X be a Banach space and A, B subsets of X. Then
A and B are e-almost 1§ for some £ > 0 if the following holds for every = € 4
and ¥ € B:
laz +byl| > lalllz}i + [blilyll - e(lal + [bl) for all @,b € R.
REMARK. If 4, v are e-disjoint, then {u} and {v} are 2z-almost 2.
DarniTioN 4.2. Let X be a Banach space, B C Bx, = € Bx and
g > 0. Suppose that V' € £{X) with |{V]| < 1. We say that V" satisfies ()
for (g, z, B) if it admits a decomposition
V=Vi—V; whereV; & L(X) and ||[Vi| < 1fori=1,2,
so that the following properties are satisfied:
1. |Vi(z)|| >1 —¢, fori=1,2.
2. V1(B) and V,(B) are e-almost £3.

We are now able to state our criterion.

THEROREM 4.3. Let X be a Banach space with a separable dual X*. Sup-
pose that B is o w”-compact, §-norming subset of Bx+ and n € N. Assume
that for every & > 0, there emist z* € Bx» and (T})%, C L(X*) so that:

1. T; satisfies (%) for (z,2%, B) and all{ < n.
2. 0 Ty} < L jor all y* € Bx-.
Then & < 1/(2n).

Proof Let ¢ > 0. Choose z* € By« and (T3); C £{X*) according to
the hypothesis. For every ¢ < n, T; admits a decomposition T; = T — Tja
so that: .

(a) T;J & L(X*) and ”T.,,;,“ < 1 for F<2,

(b) ”TU(LB*)” >1l—egforj<2

(c) Ty1(B) and Ti2(B) are e-almost I3
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Next, since X* is separable and B is a w*-compact subset of X", we ob-
serve that according to a result of Bessaga and Pelczyrski [6], the norm
closed convex hull of B U —B coincides with the w*-closed convex hull of
B U —B. Since B is a d-norming subset of Bx., it now follows that there
exist (2})2; ¢ B and scalars {A;)j2,; so that

(d) Hm - Z)\kzk ‘ < e and Zl)\k 3
Fix now i < n. By (c), we ha.ve

lleTs1(25) + bTea(20)|| 2 |all|Tia (z) 1| + |0/ Toz(20) 1| — (lal -+ [b])
forallk < m and a, b in R.

Applying the preceding inequality for-a = Ag, & = —Ap, & < m, we
obtain

Ml IT (=R 2 Ml [ Tea (2] + [l Tia (0] — 2€| A
Summing over & we get

S TGN 2 [ (32 )|+ a3 ) | ~ 26 3 vl
k=1 k=1 k=1 k=]

If we apply (a), {(b), {d), the preceding inequality yields

ki m

DolITs(z) 2 21— 26) = 22 |l
fe==l k=1
for all i € n. Summation over { now gives

D2 T 2 2n(1 - 26) — 260y [N,

te=1 k=1 k=1

Z sl Z 175 ()l

k=1 i=1
But from our hypothesis we have

or

2n(1 — 2) - 2£nz | Anl.

STzl <1 for all k £ m,

gl
and thus,
m
2n(l -2
Z |Ak| 2 "“1"(_}_—2—5-)-
— ne
Hence,
1 2n(1 - 2¢)
§T 1+2ne °

Since e was arbitrary, we obtain the desired estimate § < 1 /(2n). m
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5. A construction of l;-preduals. The aim of this section is to prove
the following

THEOREM 5.1. Let K be a w*-compact subset of the positive face of the
ball of 1;(T1). There exists a sequence (X,) of I, -preduals (depending on K)
so that for every n € N the following are satisfied:

1. The dual, Yy, of X, is a w*-closed subspace of 11 (T3,) with o basis
Oy, comsisting of disjointly supported finite convez combinations of elemenits
of {60 € Typ}.

2.0, = {z;: i e N} U{§p : @ € s, || < 1}, where the support of
each x; is contained in {a € Ty : |a| = 2}, ond K is equal to the set of the
w"-cluster poinis of the sequence (z;) in 11(72).

3. There exists a sequence (Cp..1:) of pairwise disjoint subsets of Cy, so
that the support of each member of Cr_1 ; is contained in {o € Tpy, @ || > 1}
and

oo
C, = U Ch-1,U{0a: @ € Ton, |a| <1}
i=1
Moreover, for all i € N, Y,_1; = [Cp_z] is w*-closed in Y, and w*-
isometric to Yp-1. (We take Cy; = {z;} for all i e N.)

Proof We first let {z; : { € N} be a countable norm dense subset of
K. Then, for each i € N, we choose a sequence (y;;) of finitely supported
convex combinations of elements of {§(n) : 7 € N} U {§(py} such that

jllI{_IO iz — 2|l = 0.

Let (M;) be an infinite partition of N into pairwise disjoint infinite sub-
gets. Set

o0
zj = Y yi{(D)8ag +vis((0)), forallj€MandieN.
Jm=]
Clearly, (a;) consists of disjointly supported convex combinations of ele-
ments of {§ : & € T3, |a| = 2} and the set of its w*-cluster points in /1 (72)
equals K.
Set Y1 = [Cl], where
Ci={z:ieN}U{dp:ae T, |af <1}
Since every w*-cluster point of Ct is contained in Y7, we deduce, by Lemma 1
of [2], that Y7 is w*-closed in'I;{T5).
Assume that n > 2 and that Y,,_1 = [Cn-.1] has been constructed satis-
fying 1 and 3. We first consider the set T(2“ 2 = = {a € Tan : || €2}, which
is order isomorphic to T3. Let (z;) C (T, 2n- 2)) be a sequence chosen as
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in the case n = 1. There exists a sequence {F;) of pairwise disjoint finite
subsets of {o: € Ta, : |a| = 2} so that for all ¢ €N,
3 =1

Ti= Y Aaba, Ao 20forallac E,
ag By acE;
Fix ¢ € N and e € E;. Then F,, the set of the followers of & in Ty,,, is order
isomorphic to Tan..a. Let

¢o : Tan—z — Fy

be an order isomorphism. Define 1 ; : 11{Ton_2) — 11 (T2,) by

gn—l,i(y) = Z )\aﬁb:;(y) forally € Iy (En—2):
ackE;

where by @7, we denote the adjoint of the natural isometry from C(F,)
onto C(Tzn—2) induced by ¢,. Clearly, 8,14 is a w*-continuous isometric
embedding. Set '

Yn—l,i = 9n—1}i(Yn-I) and Chy,;= Qn.—-l,m' (Gn.~1)~

Then Y, 1 = [Cr_1,] is w*-closed in l3(7Tz,), w*-isometric to ¥,_;, and
Ch—1,: consists of disjointly supported finite convex combinations of ele-
ments of the set {dg : 8 € ¢, Fu}. Note that 6,y ; (6(p)) = =, and thus
x; € Cn_]_’.g.

Finally, set Y, = [C,], where

o
C-n, = U Cn—l,'i U {50 T g Té.n, |Ol| < 1}.

=1
Assume now that (uz) is a sequence of elements in C,, such that limg pep = o
(w*). Assume further that there exist integers iy < iy < ... so that Mg €
Ch-1,4, for all k € N. We then observe that limy, Zy, = p (w*) as well. It
follows that every w*-cluster point of C, is contained in Y,, and hence Y7, is
w*-closed in {1(T3n), by Lemma 1 of [2].

Let now X, be the quotient of C(7Tz2,) modulo the annihilator of ¥,
in C(Tzn). This is the desired l;-predual which, by the results of 8], is
isomorphic to ¢y, The inductive construction of the sequence (X,,) is now
complete. m :

NoraTion. We let X(K) denote the co-sum of the sequence (Xn) of
ly-preduals constructed in Theorem 5.1. Clearly, this space is an li-predual

isometric to a quotient of Co{w*). In the sequel we shall refer to X (K) as
the Iy-predual corresponding to K.

. REMARKS. 1. Up(y) = Uy (z;), for all y € C -1,¢; where U, is the canon-
ical w”-continuous projection of 11(T2n) onto [8, : & € T3, laf < 1]

icm

A class of Iy -preduals 139

2. The basis projection Wn—1,4: Yo = Y, 1, ie. the linear map which
is the identity on ;1 ; and vanishes on O, \ Cr—1,i, is w*-continuous. This
is so since |, 5, o 18 a clopen subset of 73, containing the support of each
member of Cy,_; ;, and infersecting the support of none of the members of
Co\ Cr1,ie

3. The space X (K) is, up to isometry, independent of the choice of the
sequence (z;) in {1{75) whose set of w*-cluster points is equal to K.

6. Proofs of the main results. We first give the proof of Theorem
1.1 using Theorem 1.2 and our previously obtained results, and then pass
to the proof of Theorem 1.2 itself.

Proof of Theorem 1.1. We denote by A(a), a < wy, the set of the a-
averages of the sequence (6y,)). Also, let K, be the w*-closure of A{w® +1)
in l]_ ('Tl)

We fix & < wi. For every n € N let Y, Cp, (Crh—1) be as in the
conclusion of Theorem 5.1 applied to K,. Let also X, be the [;-predual
cotresponding to K. We are going to show by induction on n € N the
following

CLAIM. For every w*-compact subset B of By, homeomorphic to [1,w”"],
and for all € > 0, there ezist iy € N, z* € Cp_1,5, ond (T}, C L(Y,) so
that:

(1) T; satisfies (*) for (g,2*, B) and alli < n.

(2) s Tl £ 1 for all y € By,

Once the claim is established, we deduce from Theorem 4.3 that for every
n € N, the norming constant of any w*-compact norming subset of By,
homeomorphic to [1,w*"] is at most 1/(2n). Therefore, X, is not isomorphic
to a subspace of C'({w*“").

We now proceed to establish our claim. First we treat the case n = 1.
Let Uy|y, be the restriction of the canonical w*-continuous projection to ¥7.
Because U(B) is homeomorphic to [1,w?k] for some 8 < w® and k € N,
Theorem 1.2 with (y;) = (§(;)) ylelds a (§ + 1)-average p of (8(;)) such that
{u} and U1(B) are g/4-almost I2. Since the (3 1)-averages are contained in
the (w*+ 1)-averages, we deduce that p € K. By the choice of the sequence
(w;) < C1, p is a w*-cluster point of {z;). Since U7 is w*-continuous and
Ui(p) = @, Lemma 3.1 yields the existence of 19 € N such that

U (@i} — il < /4.
It now follows that
(8)  {Ui(zi,)} and Uy (B) are g~almost I and [|Ur(zy,)| > 1 —&.
(Actuzlly, [T (zi,)]| = 1.
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Let R;, : Y7 — [2;,] be the basis projection onto [z;,]. Set
. TL = Ul{Yl - U1|Y1R1;0 and 5‘:'* == Liq-

It follows that ||77] < 1 and that Ty satisfies () for {¢,2*, B). Indeed,
Ti(wi,) = 0 and Ti(y} = Us(y) for all y € Cy, y 5 24, Thus |71]] < 1.
We also find, by (3), that Uy (B) and U1 R;, (B) are e-almost /2, since for all
b € B, there exists A € R with [A| € 1 so that Uy Ry, (b) = AUt (zy,)-

Thus the claim holds for n = 1. Assuming the claim is proved for n—1, let
Upny,, be the restriction of the canonical w*-continuous projection onto V.
As in the first part of the argument given in the case n = 1, we obtain ip € N
such that

(4) {Un(zs,)} and Uy (B) are e-almost 12 and ||Un{z:,)| > 1 —&.

(Recall that by our construction of the space Yy, we have z;, € Cy.14, and
thus it belongs to Y,,.)

Let now Qn_1,4, : ¥n — Y1, be the basis projection. As was pointed
out in the Remarks of Section 5, @n—_1,4, is w*-continuous. We may thus
apply our induction hypothesis to ¥,_1 ;, {which is of course w*-isometric to
Y, 1 via the map 0;_11’2.0 that sends Oy, 1,5, onto C,—) and the w*-compact
seb Qn-1,i,(B) in order to obtain z* € Ch_ys and (TNPS C L(Vno1,,)
with [ T{]| < 1 for ¢ < n — 1, so that

(5) T} satisfies (%) for (g, 2%, Qu-1,4,($3)) and all § < — 1.
(6) 23S T (@Il < 1 for all y € Cpy gy

We set T} = T{Qn_14, for all ¢ < n — 1. Evidently, T} satisfies (%) for
(e,2*,B) and all i < n — 1. Let now Ry, Yo — [2;,] be the projection
which takes the constant value z;, on Cr—1,i, and vanishes on Cp \ Gy in-
It is clear that ||R,, | = 1. Finally, set ,

TTL = nJYn - Unlyn Rmio'

Note that T, vanishes on Cp_y,,, since Up(y) = Un(zi,) for every y €
Ch.-1,4, by the Remarks after the proof of Theorem 5.1, On the other hand,
T; vanishes on €, \ Cr_y 4, for all i < n — L. This fact combined with (6)
yields that (2) of our claim holds.

- To complete the inductive proof of the claim, it remains to be shown that
T, satisfies (*) for (e,z*, B). We need only observe that U, (2i5) = Upn(z™)
and repeat the argument given in the case n = 1, using (4).

Finally, we wish to show that X, is isometric to a subspace of C’(w“‘w«“).
To this end, we note that a routine transfinite induction argument (details
appear in [7]) shows that the w*-closure of 4(a) in I (71) is homeomorphic
to [1,w*"]. It now follows, by induction on n & N, that the w*-closure of
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Cy in 11(Ty) is homeomorphic to [l,w“’waﬂn]. The proof of Theorem 1.1
is now complete. =

Proof of Theorem 1.2. Let us say that K a-works provided K is a count-
able w*-compact subset of By, (,,y homeomorphic to [1,w%n] for some n € N,
and satisfies the conclusion of Theorem 1.2. It suffices to show that K
a-works if K™ = {0}.

Indeed, if K is homeomorphic to [1,w®n], then there exist distinct ele-
ments Zy, ..., T, of K so that K is the union of n pairwise disjoint clopen
subsets K3, ..., K, with Ki(”‘) = {x;} for all ¢ < n. We set

L_” 11
—U 556—5215..’1}61{.,; .
f=1

Choose m € N such that |xz;|[m,cc) < &/3 for all i < n. It is easy to check
that if y € By (u), s(y) C [m,0) and y is &/3-disjoint from L, then it is
e-disjoint from K. But L{® = {0} and thus if L a-works, so does K.

We proceed by transfinite induction on o to show that K a-works if
K = {0}. The argument for the case & = 1 is contained in the general
inductive step and so we cmit it. Assume the assertion helds for all erdi-
nals smaller than « and let (o, ) be a sequence of ordinals such that either
n+ 1 =uaforall n €N, or (a,) is a strictly increasing sequence of ordinals
whose limit is a. We may write

o

n=1
where (K,,) is a sequence of pairwise disjoint clopen subsets of K with K,
homeomorphic to [1,w®:]. We fix m € N. It is enough to exhibit z, an
(e + 1)-average of (y;) which is e-disjoint from K and such that ¥, < 2.

We first choose ! € W such that 2/ < £/2. Inductively we choose 1 =

ng < n1 < ...and (&), a convex block subsequence of (y;) consisting of
a-averages of (y;), so that for all ¢ € N:

(7) |2|(s(z)) < &/l for all x € K, and all n > n; (since s(z;) is finite
and the K,’s cluster at 0).

(8) zi41 is g/l-disjoint from |J, ...
(If @ = 1, then (8) is obtained from the fact that K consists of a w*-
null sequence and 0.) Note that z; can be chosen arbitrarily. We let z =
(214 ...+ z)/l, which is an (o + 1)-average of (y;) with ym < 2. We claim
that z is e-disjoint from K. To show this, let « € K,, for some n € N
and choose i € N so that n;_; < n < n;. If j < 4, then (7) yields that
|z{(s(2;)) < &/l. If j > 1, then (8) implies that z; is /l-disjoint from K,,. In

K, (by the induction hypothesis).
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this case choose F; C s(z;) such that
2 (E;) > 1—¢fl and |z|(E;) < ¢/l

Finally, set B = |J;5; B5 U U;<; (%), where j runs in {1,...,0} It
follows that |z|(F) < & and z(E) > 1 — €. Hence, z and z are g-disjoint for
every z € K. The proof of Theorem 1.2 is now complete. »

COROLLARY 6.1. There exists an ly-predual which is isomorphic o a
quotient of C(w®) yet isomorphic to a subspace of C(a) for no o < wy.

Proof Let K be the set of all probability measures on [1,w]. Let also
X = X(K) be the I;-predual corresponding to K according to Theorem
5.1. We denote by C the I;-basis of X% constructed in the proof of Theorem
5.1. Let o < wq and observe that there exists a subset of C which spans a w*-
closed subspace, Z,, of X?%,, w*-isometric to X2. It now follows by Corollary
1 of [9] (an alternative proof of this result for the case of I;-preduals is given
in [7]) that Z, is contractively complemented in X7, via a w*-continuous
projection. Hence, X, is isomnetric to a contractively complemented subspace
of X .. Corollary 6.1 now follows since X is isomorphic to a subspace of
C{w*") forno e < wy. m

7. Final remarks. The proof of Theorem 1.2 actually shows that if
K is homeomorphic to [l,w*] and £ > 0, then there exists a 2-average
of (8;) which is e-disjoint from K. This observation in turn implies, via
Theorem 5.1, the existence of a subspace of C (w“’a) isomorphic to a quotient
of C{w*) yet not isomorphic to a subspace of C(w*}. We do not know if such
a phenomenon occurs in C (w“’z) and therefore we ask:

QUESTION 1. Does there exist a subspace of C (w“’z) isomorphic to a
quotient of C'(w*) yet not isomorphic to a subspace of C{w*)?

A negative answer to this question yields that every complemented sub-
space of C’(w“’z) whose Szlenk index is equal to w? is isomorphic to a sub-
space of C(w®).

Let us say that the Banach space X A-embeds in the Banach space Y,
A > 0, if there exigts a subspace Z of Y isomorphic to X and such that the
Banach-Mazur distance between X and Z is at most A,

We next let X denote the l;-predual corresponding to the w*-closure in
Ii{w) of the'set of the 1-averages of (8,). In other words, X = X (K), where

K = A1) . According to Theorem 5.1, X is the co-sum of & sequence of
spaces (Xy), each isomorphic to ¢g. An argument similar to the one given in
the proof of Theorem 1.1 yields the following property of the sequence (X,):
If (2vn) is a sequence in [1,w*) and (A,) is a sequence of positive reals so
that X, A,-embeds in C(a,) for all n € N, then limy,_,00 Ap = 00. Further,
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X is isometric to a subspace of C(w*"). We do not know if X is isomorphic
to a subspace of C(w®).

QUESTION 2. Let X be a Banach space isomorphic to the ¢y-sum of a
sequence (X,) of spaces isomorphic to ¢p. Assume X is isomorphic to a
subspace of C(w*}. Do there exist A > 0 and a sequence of ordinals (o) in
[1,w*) so that X, Membeds in C(e,) for all n € N?
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