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Proof of Theorem 2. If Gr{X) acts transitively on S(X), then the only
Gp(X)-invariant subspaces of X are the trivial ones, hence H = X in
Lemma 2 and {-,-) is defined on the whole X. Moreover, (-,-) is Gp{X)-
invariant and (g, zq) = ||zp]? = 1. Transitivity of Gr(X) now iroplies that
(z,z) = ||z||? = for every £ € X, which proves the theorem. a

3. Concluding remarks and questions. In a sense, the proof of The-
orem 2 is algebra. Thus, it is not surprising that Theorem 2 holds if X
is assumed to be a quasi-normed space. But, actually, an almost isotropic
quasi-normed space having a non-trivial finite-dimensional perturbation of
the identity must be locally convex, its quasi-norm being, in fact, a norm [5].
Recall that an almost isotropic quasi-normed space is one in which the isom-
etry group acts with dense orbits on the unit sphere. Theorem 2 suggests
the following questions:

QUESTION 1. Let X be a normed space for which, given z,y € §(X) and
€ > 0, there exists T € Gp(X) such that ||y — T'z|| < &. Must X be an inner
product space?

QUESTION 2. Find operator ideals J (containing F) for which Theorem 2
remains true if T — Id € F is replaced by T'— Id € J.
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Weighted inequalities and the shape of approach regions
by
JOSE L. GARCIA (Vic) and JAVIER SORIA (Barcelona)

Abstract. We characterize geometric properties of a family of approach regions by
means of analytic properties of the class of weights related to the boundedness of the
maximal operator associated with this family.

1. Introduction. In [NS], Nagel and Stein studied under which condi-
tions on a general domain 2 C IR{1+1, the associated maximal operator Mg
is of weak type (1, 1}. J. Sueiro [Su] gave an extension of this result for spaces
of homogeneous type. Following the ideas of [Su], Pan [Pa] studied weak type
weighted norm estimates for Mg also in spaces of homogeneous type. Later,
Sanchez-Colomer and Soria [8S1] gave strong-type weighted norm estimates
for My in the Fuclidean space, and they also studied the relationship be-
tween weighted inequalities for this operator and the geometry of 2 (see
[8s2)).

In this paper we find another (easier) characterization of the weak-type
inequalities for Mg, in terms of the classical A, condition plus an extra
property related to being a Carleson measure (see Theorem 2.12). For this,
we use some of the techniques given in [AC].

This result allows us to prove that the equivalence of weighted inequali-
ties for M and the classical Hardy-Littlewood maximal function M com-
pletely determines the geometry of the family of approach regions {2 (see
Theorem 3.4). We work in the setting of spaces of homogeneous type, ex-
tending previous results in R™ for the special case of regions obtained by
translation of a fixed one (see [582]).

To this end, we observe that there exists a class of “power” weights
(see Coroliary 3.2) which are the key to establishing the correspondence
between analytic properties (boundedness of maximal operators) and geo-
metric properties of the domains (2. The main idea behind this technique
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is to find an equivalent metric in the given space which enjoys some extra
invariance properties.

2. Definitions and previous results. Let X be a topological space
with a nonnegative Borel measure u. Suppose we have a nonnegative real-
valued function § defined in X x X with the following properties:

(i) §(z,y) =0 if and only if z =

(ii) There is a constant D > 1 such that §(z,y) < Dé{y, z).

(iii) There is a constant A > 1 such that é(z,y) < A(6 (a: z) + 6(y, 2)),
for all z,y,zin X.

(iv) The balls B(z,7) = {y € X : §(z,y) < r} are measurable sets for all
% in X and r > 0. Moreover, {B(z,7)}r»0 is a basis of open neighborhoods
for all z in X.

(v) There is a constant K > 1 such that 0 < p(B(z, 2r)) < Kp(B(z, r))
forall zin X and r > 0.

(vi) There is a constant M > 1 such that B{z, Mr)\ B(z,r) # 0 for all
zm X and r > 0.

A measure satisfying (v) is called a doubling measure. Although our
purpose is to be in the setting of spaces of homogeneous type, we need to
assume our function § nonsymmetric in general (we call it a guasidistance).
In the sequel, we will write every positive constant as C; it may change from
one occurrence to the next.

We give some technical results that are important for later purposes.

LeEMMA 2.1 (see [8T]). Let a > 0. If B(z,r)NB(y,7)# 0 and r < ar’,
then B(z,7) C Bly,cor’) with ¢ = A%(1 +a) + ADa.

PROPOSITION 2.2. There exist o, 8> 0 and 0 < Ky < 1 such that
(1) K1tPp(B(w, 7)) < u(B(a, tr)) < Kt*u(B(z,7))
forallzin X, » >0 and t > 1.

Proof. The right inequality is well known, with o = log,(K), and con-
dition (vi) is not needed. To see the left 1nequa,l1ty7 we claim that there exist
constants Ag > 1 and 0 < K < 1 such that p(B(z,7)) < Kyu(B(z, Aer))
for all z € X and r > 0. Granted this, let n > 1 be so that A7™" <t < A%,
Applying the last inequality we obtain

w(Bla,tr)) > p(Blo, 457) 2 KE"a(B(z,r)) 2 Kit w(B(a, 7)),
where 5 = log 4 (K1)

We now prove the claim. Let ¢y be the constant in Lemma 2.1 when

a = 1. Choose L > Dcg, and take y € Bz, MLr) \ B(z, Lr) which is not
empty by (vi). Then Lr < §{z,y) < MLr, and by (ii), we have Lr/D <
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8(y, @) < DM Lr. By the choice of L, we have cor < 8(y,z) < DM Lr. Now,
using Lemma 2.1, we obtain

B(z,r) N By,r)=0 and B(y,r) C B(z,coMLr).
Let Ay = ¢pM L. By construction, we have

p(B(x, 7)) < w(B(z, Agr)) — u{B(y, 7).

The right inequality in {1} gives us the existence of a constant C' > 1 such
that u(B(z, Aor}) € Cu(B(y,r)), and hence

${B(o,7) < W(Bla, Ar)) — i

This proposition says that our measure is invaeriant in some sense. Also,
observe that we avoid measures with atoms. The next two results are proved

in [ST]:

LEmMMA 2.3. Let F be a family of balls with bounded radii. Then there is
a countable subfamily of pairwise disjoint balls B(zy, ) such that each ball
in JF is contained in one of the balls B(xy, cory), where ¢y is the constant of
the previous lemma in the case o = 2.

(B(z, Agr)) = K1p(B(x, 4or)). =

Given a locally integrable function f, the noncentered Hardy-Littlewood
mazimal function of f with respect {o the measure y is

My f(@) = sup g )Slf(Z)ldM()

Analogously, given a nonnegative measure v, the Hardy-Littlewood mazimal
function of v with respect to the measure p is

MM@=§£%EMW)

We write M = M, if there is no possible confusion.
As a consequence of Lemma 2.3, it is now easy to prove the following
weak-type estimates:

THEOREM 2.4. (a) The Hardy-Littlewood magzimal operator is of weak
type (1,1} ond strong type (p,p) for 1 < p < oo on LP(u).
(b) There is a constant Cy, > 0 such that

C
p({r € X : Me(z) > A}) < T“V(X)
for all nonnegative measures v of finite total variation.

The proof of the following theorem is given in [CW] for spaces of homo-
geneous type, and works in our setting with slight modifications.
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THEOREM 2.5. Let u be a doubling measure. Let f € L'(u) be a positive
function with bounded support. There exists a countable fomily {B(xy, rr) i
of balls such that:

(2) 0= {z € X : Mf(z) > 1/2} = U, Blan,rs).
(b} There is a constant Gy, > 0 such that 3", p{B{zr,vx)) £ Cull fll1-
(c) Blz, 3Arx) N O° £ 0 for all k.

The tent of an open set O is the set T(0) = {{y,t) € X x (0,00) :
B(y,t) C 0}.

DEFINITION 2.6. We say that two measures, ¢ defined on X x (0,00)
and v defined on X, are a Carleson pair if there exists a constant Cp, > 0
such that

e(T(B)) < Cpuv(B) for all balls B C X.

In this case, we use the notation (g,v) € C{X).

PRrOPOSITION 2.7. Let (o,v) € C(X) with v doubling. Then there ezists
a constant Cj, , > 0 such that

o(T(0)) £, ,»(0) for all O C X open.

Proof. We can assume that »(0) < oco. Let f = xo € L'(v}). Then
OcC{zeX: Mf(z)>1/2}. We use Theorem 2.5 to obtain a family
{B(zx, )} of balls satisfying:

(a) O C Uy Blok, ).

(b) There is a constant C,, > 0 such that 3, »{B(zx, ) < C, v(0).

(¢) Blzk,3Ar;) NO° # § for all k.

Take (z,s) € T(O). By definition, B(z,s) C O and (a) implies that
there is kg so that @ € B(zy,, 7k, ). Now, (c) implies there exists y €
B(zy,, 3Ar,) \ B(z,s) and hence

s < 6($:y) < A(J(m7$ko) + 5(y1$k0)) < AD(é(mkmm) + J(Wko,y))
< AD(1 + 3A)rs,.

By Lemma 2.1, there exists C' > 0 independent of z, s, zx, and 4, such that
B(z,s) C B(mko,Crkn) that is, (z,s) € T(B(mkD,Orko)) Therefore T'(0) C

Ur T(B(zx, Cry)). Now, using (b} and the hypothesis on the measures, we
have

o(T(0)) < ) o(T(B(wr, Cri)} < Cop Y w(Blex, Cry))

k k
S CQ:”K”GO‘(V) Z U(B(a’”ka Tk)) S OQ,VKVCQ(V)CU V(O)
: k

= Gy, v(0),
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where K, and a(v) are the constants appearing in Proposition 2.2 for the
measure . =

We say that a family 2 = {£2,},ex of measurable sets in X x (0, 00) is
a family of epproach regions if (z,0) € 2, for all € X, with respect to the
product topology in X x (0, 00). A natural example of a.pproach region is a
cone of width 8 > 0, I'y(z) = {(y,t) € X x (0,00) : z € By, 6t)}. We set
T(z) = I'(z).

For a family 2 = {{2;}zex, let us introduce the following definitions:

DEFINITION 2.8. 1. The section of £2, at height ¢ > 0 is the set {2,(¢) =
{ye X :(y1) € 2}

2. Sz, t) = {y € X : 2,(t) N B(z,t) # 0}.

3. Po(z,t) ={y € X : (z,t) € 2, }.

4. Given a nonnegative measure o on X, we define the outer measure
on X x (0,), 0p(E)=c{r e X : 2, NE #£0}) for EC X x (0,00}
(see [AC]).

The magimnal operator related to 12 for a measurable function f is

1
Mﬂf(m) (yil)léjﬂm ,u,(B(y,t)) B(g,t) f(z)l d,’J.(Z)

We will always assume that My f is a measurable function. In the particular
case of {2, = I'y{x), it is known that M and Mp, are equivalent operators,
that is, there are positive constants C and C” such that

(2) CMf(z) < Mp,f(z) < C'Mf(x)

for all measurable f and z € X. We write Mf ~ My, f. So, the operator
My, has the same estimates as M.

PROPOSITION 2.9. Let ¢ and v be two nonnegative measures on X so
that v is doubling. If Mpn : LP(v) — LP*{p) is bounded for some p > 1,
then there ezists a constant C' > 0 such that

o(8(z,t)) < Cu(B(xz,t)) forall (z,t) € X x (0, 00).

Proof. Take y € S(z,t). Then there exists z € B(z,t) so that z €
2,(t). Now, by condition (iii) on &, we have B(z,¢) C B(z, A(D +1)t). Let
f = X8, A(p1yry Then Maof(y) > 1/2forally € S(z,t), and therefore

o(8 (m,t)) < ol{z e X : Maf(z) > 1/2}) < Cllf11%0y
— Ov(B{z, A(D + 1)t)) < Cv(B(z,1)).

Observe that the constant C is controlled by the norm of the operator My
and the doubling constant K, of the measure #:

C = C(K,, |Ma| ey Lr=(o))- =
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Tt is proved in [Su] that with no loss of generality, we can always assume
that (2 is full on vertical directions, that is, (y,s) € {2, implies (y,t) € 12,
for all £ > s. This is equivalent to the fact that Pn(y, s) C Pn(y, t) whenever
8 < ¢. We will also take this condition for granted.

We now characterize the boundedness of Mp : LP(v) ~+ LF*°(p) for
some p > 1.

THEOREM 2.10. Let ¢ and v be two nonnegative measures on X. If
M : LP(v) — LP*(v) is bounded for some p > 1, then the following condi-
tions are equivalent:

(a) There exists C > 0 such that
o({z € X : Mpf(x) > A}) < Cv({z € X : Mpf(z) > A})
for all X > 0 and measurable f.
(b) Mp : LP(v) — LP{p) is bounded.

(c) There exists C' > 0 such that o(S(z,t)) < Cv(B(z,t)) for all (z,t) €
X x (0,00).

(d)} {eq,v) €C(X).

Proof It is known that v is necessarily a doubling measure. (a)=(b)
follows trivially by using (2). That (b)=(c) is Proposition 2.9. Let us see
that (c)=(d). Take y € X so that 2, N T(B(z,t)) # 0. There is (z,s) € 2,
with B(z,s) C B(z,t). Since 12, is full on vertical directions, (z,t) € £2,.
Therefore 2 € 2,(¢) N B(z,¢), and hence {y € X : 2, NT(B(z, ) # 0} C
S(z,%). So, using the definition of pp, we have

ea(T(B(z,1)) < o(S(2,t)) < Cu(B(z,t)).
Now, suppose (¢q,v) € C(X). Observe that

1
{(y,w:m 5 !f(Z)IdM(z)>A}CT(O),

B(y,t)

where O = {x € X : Mrf(z) > A}, for all functions f. Then, applying
Proposition 2.7, we obtain

g({meX:Mnf(m)mnmm({cy,t)=m § 1fidu>a})

Blw:t)
< 0a(T(0)) < Ov(0)
=Cv({z e X : Mrf(z)>A}). »

REMARKS 2.11. 1. The boundedness of M is only needed in the implica-
tion (a)=-(b).

2. The implication (d)=-(a} says that we can transfer estimates on A to
Mg if we have a Carleson type condition.
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A wetght w on (X, 11, 8) is a positive and locally integrable function. We
set u(D} = {, u(2) du(z) for D C X measurable. We say that w is doubling
if the measure u(z) du(z) is doubling.

A weight v is in the 4y class, 1 < p < oo, if M : LP(u) — LP%(u)
is bounded. By the A, constant ||u|a, of a weight u in A, we mean the
norm of the maximal operator. It is well known that every weight u in A,
is doubling, and it is easy to check that, if we write K, for the doubling
constant of u, then

(3) Ku < KPu]l 4y,

where K is the doubling constant of the ambient measure p.
Define AY to be the class of weights u such that Mg : LP(u) — L#:%°(u)
is bounded, 1 < p < oo, and let the A7 constant ||ul| 4z e the norm of M.
Set

W(2) = {u & Lipc(u),u>0:3C >0, u(S(z,t)) < Cu(B(x,1)), Y(z, 1)}

and define the W({2) constant ||ulw(ny to be the infimum of the constants
(' appearing in this definition.

THEOREM 2.12. For 1 < p < o0, we have A = A, NW(£2), and there
exists C > 0 such that ||ulla, < Ollu]lag for all w in A7.

Proof The previous theorem says that AP N W(£2) C Af and
AZ ¢ W(12). Now, it is proved in [SS1] that if (z,0) € 2, then M. f(z) <
Mg f(z) for all functions f, where M. is the centered Hardy-Littlewood
maximal operator. Therefore, AY C 4p, and |Jul 4, < Cllu| Az with ¢ > 0
independent of u. m

3. The shape of approach regions. Let (X, i1, d) be a space of homo-
geneous type satisfying conditions (i) to (vi), but with D = 1 in (ii), that
is, d is symmetric, and therefore, a quasidistance. Set Bz, 1) = {y e X:
d(z,y) < t}. We will introduce a nonnegative nonsymmetric function 6 on
X x X also satisfying these conditions, but having the property that the
measure of a d-ball is comparable to its radius (see [ST] for the details).

For a fixed 2 € X, consider the function

1
1 .
—t Blw,st))ds ift#0,
exp(l t)lgz,u( (z,st))ds ifts

0 ift:().

This function is strictly increasing, continuous (continuity at 0 is given by
Proposition 2.2), r4(t) — oo as t = oo when X is not a compact space,

re(t) =



268 J. L. Garcfa and J. Soria

and the measure of a ball B%(x,t) is comparable to 7,(t). In fact, using
Proposition 2.2, we can see .

(4) 2r.(t) < w(B%z,t)) < eK2%Tr (1)

The function 7, has an inverse r>1 for all x in X. i X is a compact space,
there exists a constant ¢, > 0 such that ;! is defined in [0, ;).

We define the normalized “quasidistance” §(z,y) = r.(d(z,y)). The
d-balls are B%(z,t) = {y € X : 8(z,y) < t}. Observe that B4(x,t) =
Bi(z,7.(t)) for all z in X and t > 0, and then pu(B%(z,1)) is comparable
to ¢ by (4). Now, it is not difficuit to see that § and B°(z,t) satisfy (i)
to (vi}.

This new quasidistance is not symmetric in general, and this is why
we need this more general condition in the previous section. Consider the
Hardy-Littlewood maximal operator with respect to §,

1
Mif(z) = SUP BS& f(2)| du(z),

for a measurable function f. Since B%(z,7,(t)) = B%(z,t) and r, is one-
to-one, we have M f(z) = M?f(x) for all z in X, where M is the maximal
operator with respect to d. Consequently, the class of Ap weights is not mod-
ified with the change of quasidistance. Given a family of approach regions
in {X,p,d), we define the corresponding family in (X, u, 4} as follows, If
2= {*Q:c}a:EXa set

% ={8): (r; () € 2o} = {(y,my(8) : (1) € ).

Observe that Po(z,t) = Pge(2,7,(t)) for all 2z in X and t > 0, and so
{2 is full on vertical directions if and only if (2¢ is. The maximal operator
associated with 2° on (X, p, 4) is

1
Msf(z)= sup

e BB (5, 5)) |17 dutz),

B (y,s)

for a measurable function f. It is easy to check that ML, flz) = Mq f(x) for
all z in X and all functions f, where My is the maximal operator related
to {2 on (X, i, d), and then, if we define A;?é as the class of weights u such
that M2 : LP(u) — LP°°(u) is bounded, we have Afa = Af with the same
constant.

In the sequel, we assume that § is the ambient quasidistance, and we
write B(z,t) = B%(z,1) and £ = 1%, The next result is essentially proved

in [CR], but we give the proof in our general setting for the sake of com-
pleteness.
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PrROPOSITION 3.1. Let v be a Borel measure on X such that My # co.
Then Mv® € Ay for all 0 <& < 1, with A; constant depending only on ¢.

Proof. We need to see that M : L'(Mv®) — LL°(Mv*) with norm
depending only on ¢. It is well known that this is equivalent to proving that
there exists a constant € = C(g) such that

1(B)

for all balls B C X (see [ST] for a proof of the equivalence in this context).

For a fixed By, take x € By and consider @) = {B 3 z: u(B) < p(2By)}
and @9 = {B 3z : u(B) > u(2By)}, where 2By is the ball with the same
center as By but with twice its radius. We have

L S Mu(z) dulz) < Cess.eigif Muy{x)®
B x

v(B) v(B)
Mu{z) < su + sup = A(z) + B(z),
2 eby M(B) " Beo, w(B) (=)
and then Mv(z)® < A(x)® + B(z)".
If B € @5, then 2By C ¢yB by Lemma 2.1, and

v(B) v(coB) : .
< < fM < Cessinf M ,
w(B) = “aleom) = R = Ot )
hence B(x) € C essinfy e, Mr{y). If B € Q;, then B C 2¢yBy by Lem-
ma 2.1. Consider the measure vy so that dig(y) = Xoc,8, (¥)dv(y). Then
A(z) < Mwg(z), and therefore, it is enough to prove
1 £ s £
—— d < Cessinf Mu(y)®,
e BSO Muo(y)® duly) < C essinf Mu(y)

with C depending only on £. Applying Fubini’s theorem, we get
1 1 7

{(Bo) | Mro(y)® duy) = iy [ et ul{y € By : Muo(y) > 1}) dt
B 0

_’ﬁg

R
= M(;O) ( S - ) )ts_l,u({Mug > t} 0 BD) dt
0

=

:-Il +I2:

for R > O to be chosen later. We obtain I; < R? if we get .the distribution
function bounded by the total mass of By. In the second integral, we use
the boundedness of the maximal operator (Theorem 2.4(b)) to obtain

C,u. £-2 O]-L & £—1
t X)dt < ol X R
IZ 5 ,U:(-B[)) IS%E VO( ) = JU/(_BD) 0( )1_5
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Since vp(X) = v(2coBy), taking B = v(2e9Bg)/p(Bp) and using the dou-
bling condition on pu, we finally have

V(QC{]BO) £ U(QCQBo) )E o, £
< Sl VIR R S —_— ) L IM .
h+1,<Ce) ( (B < Ce) 3By ) = (£ essin v(y)¥. n

COROLLARY 3.2. For all z € X, the weight u(£) = 8(x,£)7° is in A; for
all 0 <e < 1, with Ay constant independent of x.

Proof. The result follows from the previous theorem on taking v = §,,
the Dirac delta at z, since M§,(¢) is pointwise equivalent to §(z,£)™!. m

If u; and us are two A; weights, Holder’s inequality shows that ulw.;”p
is an A, weight for 1 < p < co. The last result now yields that there exists
0 < =(p) <1 such that u(¢) = 6(z,£)” is an A, weight for all z € X,
with A, constant independent of .

We need some kind of regularity of the family of approach regions to
prove our main result. However, in the case of the existence of a group or
pseudo-group structure in X, this additional condition allows us to work
with a larger class of regions than those generated by translating a fixed
one, as we can see in the examples below.

DEFINITION 3.3. We say that a family {2 of approach regions is regular
if there is a constant C' > 0 such that for all (z,¢) € X x (0, 00) the following
condition is satisfied:

Yy € £2.(t), Iy* € X with §(y, z) = §(y”, =) such that B(y*,t) C S(=z, Ct).
Some examples of regular approach regions are the following:

1. Assume that (X, i, §) is a space of homogeneous type and X is a group
with identity e. Let {2, be an approach region of e, and for each z < X set
o = {(yz, 1) : (y,t) € £2}. Then S{z,t) = [2.(t)]"*B(z,t) (see [Su]). If §
s left-invariant, then 5(z,t) = |J,¢0,¢) Bz 2,t). Now, y € 2,(t) if and
only if yo~! € 2.(t). Take y* = oy~ 1z which satisfies §(y, =) = 5(y*,z) by
left-invariance. Then B(zy~tz,t) C S(z,t), and consequently, {2 is regular
with ¢ = 1. This is the case of Fuclidean spaces.

2. Let (X, p,0) be a space of homogeneous type. Consider a family of
approach regions given by cones of width bounded by a constant M > 1,
that is, 2; = Tgey(z) and 0 < 8{x) < M. Then 2,(¢) = B(z,8(z)t) and
B(z,t) € S(z,t) for all  in X and ¢t > 0. Take y € 2,(t) C B(z, Mt)
and use Lemma 2.1 to obtain B(y,t) C B(z,coMt) and hence B{y,t) C
S(z,eoMt). The family is regular with C' = ¢y M and y* = 3.

3. Set X = R, and let u be the Lebesgue measure and & the usual
distance d(z,¥) = |z —y|. The family {T5(x) (%) }zer of cones with 6(z) = |z|
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is also regular. We can see that regularity holds even when the regions are
not translates of a fixed one.

We now prove our main result:

THEOREM 3.4. If (2 is a regular family of approach regions, then the
following conditions are equivalent:

(a) There exist C >0 and 0 > 0 such that My f(zx) < CMp, f(z) for all
z i X and oll measurable functions f.

(b) Af = A, for all 1 < p < oo, with equivalent constants.

(c) There isp > 1 such that A, = AL, with equivalent constants.

(d) There exists O < v <1 such that the family {6(z, )" }ecx of weights
is in W{(82) uniformly in x.

(e) There exists 8 > 0 such that £2, C I'p(z) for allz in X.

Proof. It is obvious that (e)=-(a) and {b)=-(c). The implication (a)=-(h)
is eagy i we recall Theorem 2.12. Now, suppose AI? = 4, for some p > 1,
with equivalent constants. We can assume that p > 1 by the extrapolation
theorem of Rubio de Francia, as proved in [Ja]. We have seen that there is
0 < v = 7v(p) <1 such that the family {§(z, ) }sex of weights is in A,
uniformly in z. So, by hypothesis, this family is in Af uniformly in z.
Proposition 2.9 and (3) show that this family is in W(£2) uniformly in =,
that is, there exists a constant € > 0 such that {{6(z, ) flw (o) < C for all
zin X.

Suppose the family of weights is uniformly in W(£2). Take (y,t) € 12,
for a fixed z € X. By the regularity of £2 and conditions (ii) and (iii) on 4,
we have

.
5y, a)" = 85", 2)" < D6(m,y")" = ——n

= WBED) B(S 6(z, y*)" du(€)

y*,t)
{(AD)7
~ u(B(y*, 1))

< (AD)”’(

| (60,6 +60y™, )7 du(©)

B(y*,t)

u@@@hgmﬂé>w@+q

Set ux(€) = d(z, £)7. Using the hypothesis on the family {#x}scx, and the
fact that u(B(y",t)) is comparable to the radius ¢, we have

(5) ‘ 5('!/7 w)w < (A:D)T (% - ﬁ)

< C(AD)Y (—-——*—~u"” (B(f’ ca) | t"f) .



icm

272 J. L. Garcia and J. Soria

Let us now see that u,(B(z,t)} is comparable to t7 for all £ > 0:

us(Ble,t) = | d(z,87du(&) =) | 8(x,£)" du§)
B(z,t) k20 2—%-1p<8(x,8) <2kt
~ETY 2R 27T < 6(=, 6) < 27F))
k>0
~ Y 27 (u(Bla, 27)) — w(Blz, 27 7))
k>0
~ g7H Z 2 hr(gmk —9h-1) gt
k>0

Finally, returning to (5), we get §(y, z) < CY/YADt, that is, (y,t) € Ty(x)
where 8 = CY/7YAD, and the proof is complete. w

REMARKS 3.5. 1. The implication (b)=-(c) can be viewed as alocal result:
Fix ¢z € X; if {2, satisfies the condition in Definition 3.3 for all ¢ > 0, then
Uy = 8(z,-)T € W({2) implies there exists 6, > 0 such that £, C Iy, (z).

2. A space (X, u,d) of homogeneous type is called regular if there is
o > 0 such that u(B(x,r)) ~ v for all z in X, Our result holds for such
spaces and the change of quasidistance is not needed.

3. We observe that in Definition 3.3 we could have assumed that the point
y* satisfles just d(y, z) = §(y*, £}. Also in statement (d) of Theorem 3.4, the
restriction v < 1 is not really needed.

COROLLARY 3.6. Let (X, p,d) be o space of homogeneous type. Suppose
£2 is a family of approach regions in (X, b, d) such that the related family
2% in (X, s, 8) is regular. Then the following conditions are equivalent:

(a) Ap = Af for all p > 1, with equivalent constants.

(b) There is p > 1 such that A, = Aj,? with equivalent constants.
(c) There is 8 > Q such that 2, C Ip(z) for all x in X.

Proof. We only need to see that (b} implies (c). We saw before that
8
A = A" with the same constants. The previous theorem yields that 2 is

contained in a cone I')}{%) with respect to &, and then 2, is also contained
in a cone. In fact, we will see that there exists 8 > 0 such that 2, C I'y(z) if
and only if there exists 8’ > 0 such that £2¢ C I’} (z). Using Proposition 2.2
and the fact that

ex ;1 < ex _—1 <Lee 1
PlTrt) =P \11a) S \13
for al 8 > 1 and ¢t > 0, we have
(6) : K1 6Py (t) < 1y (68) < eK6%r,(t).
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Assume first that 2, C I'p(z). We can assume that 6>1. Take (y, syens,
that is, (y,7,"(s)) € 2. By hypothesis, d(y,z) < fr;1(s) and by def-
inition §(y,x) < 7,(0r;(s)); using (6) we get 5(y, z) < eK#%s, and so
(y,5) € T (z) with ¢ = eK§*,

On the other hand, assume that 25 C I'S, (x) with ' > 1. Take (y, s) € 2,
Then (y,7y(s)) € 2% and therefore §(y,z) < #'ry(s). Using the definition
of § and (6), we get d(y,z) < (8'/K1)Ps, and so (y,8) € I'y(z) with
= {(0'/K1)"/P. u

We now give a version of our result in the case of a group structure in

X (see [552]).

COROLLARY 3.7. Let (X, i, d) be a space of homogeneous type. Suppose
thot X is a group and that d end p are lefi-invariant, thet is,

L. yB(x.t) = B(yx,t) for all z and y in X and t > 0.
2. p{zB) = u(E) for oll measurable sets B and © € X.

Given an approach region (2. for the identity element of X, set 2, =
{(yz,t) : (y,t) € Re}. Then the following conditions are equivalent:

(a) Ap = Af forall p= 1.
(b) There is p > 1 such that A, = AZ.
{¢) There is 6 > 0 such that 2, C I'y{z) for all = in X.

Proof. The assumptions on d and g show that ry(t) = rg(t) for all
z in X (and therefore 4 is symmetric). Then it is easy to see that 2 =
{(yz, %) : (y,t) € 22} using the definition of (2%, and we saw before that this
kind of family of approach regions is regular. So, we are in the hypothesis of
Theorem 3.4, but we do not need the equivalence of the constants because
in the case of translated approach regions, if one region is contained in a
cone, 50 are all the rest. w

COROLLARY 3.8. Let (X, u,d) be a space of homogeneous type as in the
previous corollary. There ezists a family £2 of approach regions for which
Afl s not Ap, but u=1¢ Af forp>1;de., 0 # AT # Ay

Proof. Sueiro [Su] gives a family 2 = {2:}zex of translated regions
which is not nontangential, and so not contained in a cone, for which the
operator M is of weak type (p,p) on LP(p) for p > 1, that is, u = 1 € AY
for all p > 1. Using the previous corollary, we get Af % Ay for this family. =
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Uniqueness of unconditional bases in ¢y-products
by
P. G. CASAZZA and N, J. KALTON (Columbia, Mo.)

Abstract. We pive counterexamples to a conjecture of Bourgain, Casazza, Linden-
strauss and Tzafriri that if X has a unique unconditional basis (up to permutaticn) then
g0 does ¢ (X). We also give some positive results including a simpler proof that cg(41) has
a unique unconditional basis and a proof that co(ff};") has a unigue unconditional basis
when pp | 1, Npg1 > 2Nn and (pn — pu--1) log Ny, Temnains bounded.

1. Introduction. A Banach space X is said to have a unique uncondi-
tional basis (or more precisely, a unique unconditional basis up to permu-
tation) if it has an unconditional basis and if whenever (u,) and (v,) are
two normalized unconditional bases of X, then there is a permutation 7 of
N such that {v,) and (ur(ny) are equivalent. Since unconditional bases cor-
respond to discrete or atomic order-continuous lattice structures on X, this
can be reworded as a statement that such a lattice-structure is essentially
unique.

The earliest examples of Banach spaces with unique uncenditional bases
are cg, £1 ([10]) and £y (9)). It was shown by Lindenstrauss and Zippin [12]
that amongst spaces with symmetric bases this is the complete list. Later
Edelstein and Wojtaszczyk showed that direct sums of these spaces also
have unigue unconditional bases. All these results can be found in (11]. In
[3] the authors attempted a complete classification and showed that the
spaces co(f1), co(fa), #1(co) and £1(£) all have unique unconditional bases
while £5(41) does not. They also found an unexpected additional space,
9-convexified Tsirelson (see [5] for the definition), with a unique uncon-
ditional basis. Recently, the authors found a new approach to this type.of
problem and were able to add some more spaces, including Tsirelson space
(see [5]) itself and certain Nakano spaces [4] (as pointed out in [4], some
spaces considered by Gowers [8] provide further examples); we also showed

1991 Mathematics Subject Classification: 48B15, 46B07.
The first author was supported by NSF Grant 9708108; the second author was sup-
ported by Grant DMS-9500125.

[275)



