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6.10. REMARK. In general a necessary and sufficient condition for £(w)
to be cyclic and separating for both M and M is that LR(w) = M.

Theorem 6.9 shows how far the subset of R(M, My) of its elements dom-
inated by o can be from being dense in R(M, M), while this is the case for
m{w) in (M.
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Interpolation of the measure of non-compactness
by the real method

by
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PEDRO FERNANDEZ-MARTINEZ (Murcia)
and ANTON MARTINEZ (Vigo)

Dedicated to Professor David E. Edmunds
on the occasion of his 65th birthday

Abstract. We investigate the behaviour of the measure of non-compactness of an op-
erator under real interpolation. Qur results refer to general Banach couples. An application
to the essential spectral radius of interpolated operators is also given.

Introduction. In 1960 Krasnosel’skii [11] proved that compactness of an
operator can be interpolated between Ly-spaces. A motivation for this result
might have been a remark by S. G. Krein on the interpolation character
that certain compactness results for integral operators between Lj-spaces
established by Kantorovich in 1956 seemed to have {see [12], p. 118).

At the beginning of the sixties, with the foundation of abstract inter-
polation theory, Krasnosel'skii’s result led to the investigation of interpola-
tion properties of compact operators between abstract Banach spaces. The
main coutributions during that period are due to J. L. Lions, J. Peetre,
E. Gagliardo, A. Calderén, A. Persson, S. G. Krein, Yu. 1. Petunin and
K. Hayakawa (see [2] and [16] for precise references).

More recently, the paper [4] by Cobos, Edmunds and Potter opened a new
research period in this area, and in 1992, culminating the efforts of several
authors (see the paper [6] by Cobos and Peetre for references) M. Cwikel [9)]
proved that compactness of an operator can be interpolated between any
Banach couples by the real method.

In the present paper we investigate the behaviour under real interpola-
tion of the measure of non-cormpactness, a concept that means more than
only continuity but not so much as compactness. Previous results on this
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question have been obtained by Edmunds and Teixeira [15] (see also the
monograph by A. Pietsch [14], Prop. 12.1.11 and 12.1.12). These results
require the assumption that one of the Banach couples degenerates to a
Banach space, i.e. Ag = 4; or By = By, or that they are different but the
image couple (By, By) satisfies a certain approximation condition.

We consider here the case of general couples without assuming any ap-
proximation hypothesis on them, and we show that the following logarith-
mically convex inequality holds:

(1} B(T: (Ao, A1)e,q — (Bo, Br)a,g)
<cB(T: Ag— Bo)' ?8(T: A, — By)P.

In the special case where one restriction of 7" is compact, say A(T :
Ap -+ Bp) = 0, we recover Cwikel’s compactness theorem. As another appli-
cation, combining Nussbaum’s formula [13] for the essential spectral radius
of an operator with inequality (1), we derive an estimate for the essential
spectral radius of the interpolated operator that complements previous re-
sults of Albrecht [1].

Our techniques are based on the decomposition of the interpolated op-
erator described in [5], Thm. 1.3 (see also [8], Thm. 3.1), and a more refined
splitting of the different terms. Those operators that in the compact case
were the easiest to deal with require now a very careful study using the
construction of the real interpolation method.

We also show the necessity of a constant in inequality {(1).

1. Real interpolation and measure of non-compactness. Let 4
and B be Banach spaces and let T € L(A, B) be a bounded linear operator
acting from A into B. The (ball) measure of non-compactness of T'is defined
by

B(T) = inf {r > 0 : there exists a finite number of elements by,...,b, € B

k]
such that 7'(l{4) C U{b_.,' - ?*ME}}
i=1
where U4 (resp. Us) stands for the closed unit ball of A (resp. B).
Clearly, 8(T) < ||T|, and 8(T) = 0 if and only if T is compact. We refer
to [10] and [3] for other properties of this notion.
Let A= (Ao, A1) be a Banach couple, that is to say, two Banach spaces
Ag and A4; which are continuously embedded in a common Hausderf® topo-
logical vector space. Let Ag+ A4; be the sum of the spaces and Ag M Ay their
intersection. These spaces become Banach spaces when endowed with the
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NOorms

inf{||ao]la, + llaslla: : @ = ao + a1, a; € 45},
maX{Ha”Ao’ “U‘Hfh}‘
Given any positive number ¢, the K- and the J-functionals are defined by
K(t,a) = K(t,a; Ag, 41)
= inf{[|ag||laq +tlla1]la, e =ao+ a1, a; € 4;}, a€ Ag+ As,
J{t,a) = J(t,a; Ag, A1) = max{||al| 4o, tllalls, }, @€ Ao A;.
Note that for each ¢, K'{2,-) (resp. J(t,)) is a norm on Ag+A4 (resp. AgNA1)
equivalent to || - || 4g+4, (resp. || - 1| 4gna, )-

Let 1 < ¢ € oo and 0 < # < 1. The real interpolation space ;{g,q =
(A, A1)e,q consists of all a € Ag + A; which have a finite norm

llall 4o+
“a“AuﬂAl

i

s dat\
S (K (t,a))? —) if1<g<oo,
lallog =4 ) :
sup,{t 9 K (¢, a)}
(see [2] and [16] for properties of these spaces).
Let (By, B1) be another Banach couple and let T be a linear operator
mapping Ag+A; into By+ B; such that its restrictions to A; are continuous
mappings from A; into B; with norm M; (j = 0,1). Then it is well known
that 7" maps (Ag, A1)s,4 continuously into (Bg, Bi)e,q with norm

-0 8
(2) 1T < 1T 45 5 1T Ny, 5, -

Let Go(T), $1(T") and Bg q(7) be the measures of non-compactness of T
as a mapping from Ay to By, A1 to By and (Ag, A1)e,q into (Bg, Bi)s,q,
respectively. It is natural to wonder if a similar formula to (2) holds for the
measure of non-compactness, i.e. if

(2 Bo.g{T) < Bo(T) = B(T)°.

The following example shows that (2') can only be true in general with an
additional constant.

fg=o0

ExaMPLE 1.1, We work with the spaces £, of p-summable sequences.
Take (Ag, A1) = (£1,41), (Bo, B1) = (£1,£x) and choose T' = I the identity
operator, I£ = ¢.

It is easy to check that

Boll}) = B(I: 41— &) =1.
On the other hand, according to 3], (3.5.17),
Bi(I) = B(I: 8 — Loo) = 1/2.
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Take # € (0, 1) close enough to 1 so that
6192 > 1,

and put 1/g = 1— 6. We compute the interpolation norm on &1 = (£1,4)e 4

T l/q
Ielte.s = ( J oK (e, 6 0,0))° -‘i—t)

0

{

1]

Y e\ e
= (Ve mingt, el £ )

1

g dt —ag Gt —(1—

= (Jer-ondty fe t) lelly = =0~ el
0 1

Hence, the identity map I : £3 — (£1,£1)s,q has norm 618,
Next we estimate the norm of I acting from £, = (£1,4s)s,4 (endowed
with the interpolation norm) into £,. Using the fact that

t

K(t,& 6, 80) = [ £7(5) ds

0
where £* is the non-increasing rearrangement of £ on (0, 00), we derive that

€lle, = (?(5*@))%)% (S(f Baex(1))9 dt) e

3 t

< (T (t“e i £*(s) ds)q %E) e

0 0
® dt\/*
= ( E(t“ K(t,& 61, £e0))? ‘“t““) = [i€llo.q-
0
Since we can factorize I : £, — £, by means of the diagram

(el,fl)ﬂzq —L (ﬂl,gm)e,q
IT lf
£ £y
if (2') were true then we Would.obtain
P by~ L) ST 2 by — (ha, 4a)o,0 | Bog (DT : (81,400 )0, — 44|
< 9—(1-—6)ﬁ ( )1‘_9/91(1-)6 < 9—(1-9)2—9 <1

by our choice of §. Take ~(1=#)2~¢ < 5 < 1. Then there would exist finitely
many vectors &, = (&) € £y, 7 = 1,...,m, such that
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m
(3) Uy, = 1(Up) C | J{& + slhe, }-
=]

Let e; be the sequence which is zero at all coordinates but the jth where it
is 1. It follows from (3) that there is a subsequence (r') of N and some 7,
say r = 1, such that

61— enlle, <5 for all n'.
Consequently,
0<1—s<g  foralln
which contradicts that £ € 4.
We next show that indeed
(2") Bo.4(T) < cBo(TY' *BUT)".

To this end, in what follows we endow (B, B1)g,q with the discrete K-norm

ollogsre = (3 (20K (2™, b; Bo, B))e)

m=—00

(the sum should be replaced by the supremum if ¢ = c0), and we equip
(Ao, A1)g,q with the discrete J-norm

HaHa,q;J:iﬂf{( Z (z—ﬂmJ(zm,um;AO:‘Al))q)I/q.
a= i U, (um)cAonAl}.

It is known (see [2] or [16]) that both norms are equivalent to || ||5,4. More-

over,
1
H ' Hgaqu S 3 o 29 - 21__9 ” ' ’

2,07
For these discrete norms the interpolation property (2) still holds but
with the additional constant § = 2¢(3 — 2% — 21=%)~1, More precisely,
1Tl,4:0 = HT”(A,; aillle,ai ) (Ba,aoll-llo.a:x) = "5E|THAD,BD|[T”A1,B1

In the sequel, 'we denote by fg o(T) the measure of non-compactness of
T : (Ao, A1)e,q — {Bo, B1)s,q computed by using the discrete norms.

Given any sequence (W,,) of Banach spaces and any sequence (Am) of
non-negative numbers, we write £,(AmWy,) for the vector-valued £, space,
that is to say,

2O W) = {w = (W) : Wy € W, and

oy = (3 Ol )?) < o0},

m=-—0a
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Put
Gmﬁ(AgﬂAl,J(Qm,-;Ao,Al)), m € Z,
and
F,={(By+ B, K(2™,-;Bn, B1)), mekL
Vector-valued spaces generated by the sequences (G,,) and (F,,} will be of
special interest for us.

THEOREM 1.2. Let (Ag, A1) and (Bg, B1) be Banach couples and let T
be u linear operator such that T': Ag — By and T': Ay — By are bounded.
Then for any 1 < g < oo and 0 < 8 < 1 we have

Bo,(T) < 16880(TY 2 81(T)°

where § = 2°(3 — 29 - 21-9)-1,
Proof. Consider the operator m(um) = 3
7w €3(Gm) = Ag and 7 : 4 (27G) — Ay

are bounded with norms < 1. Moreover, since the norm of (Ay, A1 )e,q is the
discrete J-norm,

o0
m=—00

Um.- Clearly,

s Eq(2_eme) — (Ag, A1)s,q
is a metric surjection.
Let now j be the operator that associates with any b € Bg + B, the
constant sequence j(b) = (..., b,b,b,...). The restrictions
Jj:Bg—lu(Fy) and j:B; — Loo(27™F)
are bounded with norms < 1. Moreover,
71 {Bo,B1)a,g — £g(27 " Fp)
is a metric injection (recall that (Bg, B1)g,q is equipped with the discrete
K-norm).
We then have the following diagram of bounded operators:

el(Gm) s Ay """‘1"1"* By --'L¢ fao(Fm)
627"0m) 4 D B D e 2™Ry)

G270 Gm) o (Ao, AL)g, —— (Bo,B1)oy —-+ £4(27™Fy,)

Write T = JT'n. Properties of « and § yield that
Bo(T) = B(T : £1(Gim) > foo(Fum))
S s €{Gm) — AoIB(T = Ao — Bo)|lj : Bo — Loo(Fim)]|
S ﬁ(T : AO — BQ) = ﬁG(T)
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o~

Similarly, 51(T') < 81(T), while
ﬁ9,q(T) = IB(T : (A(),Al)ﬂ,q — (Bﬂg Bl)@,q)
L2601 : (Ao, Ar)og — €527 " Frn))
=28(T : £,(27%™G ) — £,(279™F)).
Put, for simplicity, 8(T) = B(T : £,(270G ) = £,(27 Fy)). In order to
establish the theorem it suffices to show that
(4) B(T) < 85Bo(T)** B(T)".
Given any n € N, define operators F,, QF, @ on the Banach couple
(4(Gm), £1(27™Gm)) by
Pﬂ(um) = ( s 0’ O) Ureppy U1y v -y Un1, U,y 01 07 - ')5
Q;(um) = ( cey 07 01 Un41y Un42y .. ')1
Q;(um) = ( . ,ﬂ__n_Q,u_nml,O, 0.. )
It is not hard to check that these operators satisfy the following conditions:
() The identity operator on £1(Gm)+ £1(27™Gy,) can be decomposed
as I =P, +Qf+Q; forn=1,2,...
(II) The operators are uniformly bounded, i.e.
1Pr : &1(Gn) = &(Gm)| = [|1Pn s £2(27™G) = £1(27 ™G] = 1
and similarly for @} and Q.
(III) We have
107+ £1(Gm) = L1277 Gl = 270D = ||Q7 : £1(27™Cm) — L1(Gin).
On the couple (£oo(Fn), €00 (2™ F,,)) we can define analogous operators
that satisfy the corresponding versions of (I), (II) and (III). We call them
Rn, SF, 8-, R
In order to estimate 8(I') we decompose T by using (I) as
T =T(P+Qf +Q7)=TPuy+ (Rn+ 5} + S,)T(QF +Q7)
= TP+ RT(Q7 + Q7) + Sy TQ7 + S:7Q + S5TQ + 5. 7Q;.
Thus N
B(T) < B(STTQR) + B(S;TQ7) + B(STTQY)
+ 85 TQ7) + BT Pa) + BRLT(QF + Q7).
Here all operators act from £,(27™G,,) into £,(279™ F,,).

To proceed with these terms, we recall that the following interpolation
formulae hold with equivalence of norms:

£4(27°C ) = (£1(Gm) £1(27 ™ Gim)),
’gq(z-emFm) = (fm(Fm)"ew(Z_mFm))ﬂaq‘
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Furthermore, writing down for the case of couples the arguments given in [7],
Thm. 3.1, one can verify that the inclusions

427 Gm) = (B(Grm), 127 Gm))o,gs ||+ llo,39)
and
((foo(Fin)i e (27 Fin) o || - ll6,qi) — fq(z_ngm)
have ntorm less than or equal to 1. Therefore
BSITRL) < B5.g(57TQ7) < |1S7TQs llogia
R [Eay Yo ad Eagiomy %

Using now the factorization

—~

6 (Cm) —L > Lo (Fim)
Q;T lS:
H(27™G,) Loo(27™F)

and properties (IT} and (III), we obtain
BISTTQR) < 8ITIG" (20| To2=nr )y’
= 52720 Tlp 5 0 asn — 0.
A similar argument shows that also
B(S;TQHY~0 asn— cc.
Consider next the case of $7TQ;. We have
BSTTQY) < Boo(STQY) < 8| SETQEIN IS T} ¢
ST ST TR,
Since
F|TQTH0; ITQFlo > ... > 0,
there exists A > 0 such that ||[TQf]jsc — A as n — c0. Find vectors u, €
Uy = Uy, (g,,) such that
||fQ,'.'"un||gm(Fm) — X asn— oo.

On the other hand, given any £ > 0, there are finitely many vectors by,...,5
in By so that

L]

Trtly € ) (b, + (4o(T) + etz ).

r=1
Hence, for some subsequence (n') of N and some r, say r = 1, it follows that

TrQfun € {by + (Bo(T) +&)s,} for all n'.
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According to (III), we then get, for any m € Z,
K(2™,b1) € |by — ToQfww || 5o + 2™ | T7 Q7 um || 5,
< (Bo(T) + &) + 2™ T 1| Q. wnt e, 2-mn)
< (Bo(T)+&)+ 2™ |T|h — Bo(T) +¢  asn' — oo.
This implies that
1701 e (Fm) = ;ue%{ff@m,bl)} < Bo(T)+e
and so
A= lim 1TQ leeo tFrm)
< S:P(”T\Qif”n' = 01 e By + 1301 llee (7)) £ 2{Bo(T) + &)

Consequently, given any e > ( there exists Ny € N such that for n > Ny,
(5) ITREIE™® < (260(T)~* +-.

We now turn to [|S7TQ; ||, Given any & > 0, it is easy to see that there
exists a finite set {v.}i_, C £4(27™G,,), formed by sequences having only a
finite number of non-zero coordinates, so that for any v € Uy = Uy (2-mGm)s

(6) 200 {170 = Tvrlle(2-mpny} S 261(T) e

Since {Tv,:}5y € foo(Fn) N foe{2"™F,,), we deduce from (II1) that there
is No € N such that if n > N> then

(7 ||S;ffw||gm(2-mpm) <e foranyr=1,...,s.

Inequalities (6), (7} and the fact that @;fU; C U yield that for n > N and
any v & U4y we may choose r € {1, s] so that

1S TQE v g 2mmmny S ST Q0 — S Twplle, 2-mpi)
+ 157 Torl e 2= )
< |TQfv ~ Torllow z-m gy + € < 261(T) + 26
In other words,
(8) WSHTQE |, < 26.(T) + 2 if n > Na.
From (5) and (8) it follows that for any £ > 0, choosing n large encugh,
B(STTQY) < 2660(TY'~*Bu(T) +=.

The term 8(S;TQ;) can be estimated similarly.
For the remaining two terms our arguments are based on the construction
of the real interpolation method. We start with G(TP,). Let £27+1 be R +1
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with the g-norm. Since £2"*! is finite-dimensional, given any & > 0, there is
a finite set {up}i_; C Uyzn+z such that for any X € Upns,
4

i - ' <e.
min (A= i} <

Take any k; > 3:(T) (i = 0,1), and find v € Z so that 271 < ky /kg < 27,
Given any w = (um) € Uy, (3-6mg,,), since

270 (27 uls), L 2700 (20 w), L (270 T (27, 1)) enens
4

<(3 e ) <,

=00

we can find » € [1, 5] such that

ka7 ky
=-o—0(m—vp) { ML J| gm—v21
2 ko % s Upp

< 2—62»—0(m—v)2—5y+9J(zm—wlm’um) — 2_9mj(2m,um) < lu':n Je

for any m = —n,...,n, where p, = (u”,,,. .. M5 ). That is to say,

k —8 2 18
max {2‘92“‘9(’“_”) (i) Wit |] g, 27021 =E) (=) (-é) Nt || 4, }

it e
for some r € [1, 5] and any m = —,...,n. Then, according to the definition
of 5;(T'), we can pick finite sets {0} G Bs,i=0,1,j=1,...,h, where h
depends on %, such that

. ' PN
P — B e ) <k dy” 8o—(i—0)(m—v) [ M1
28, (T = b 5.} < Rl + )22 (2
= 20360 RS i 1)
with the same r for m = —n,...,n. Put
Vi = 2727 E DM =0R0 4 ),
and for any 7, g and r, choose
dm:? € {bgn,j + wg’L,T‘M«Bﬂ} n {baln,g + Iltb?%n.,ru31}

provided the intersection is not void. The number of the dp,p’s may change
with m, say it is w = w(m), but it is finite. All dm,p's belong to By By and,

by construction, given any u = (u,,) € Up,2-om,,) there are some r € [1, 5]
and some {d, p}%.._,. 50 that

J(2™7, Tum — dm,p) = max{| Tty — Am,pl|Bys 2™ || Tty — Arnpll By }

S max{2y, 27TV ) = 2,
where m = —-n,...,n. :
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Denote by D the collection of all sums § v dy, , where p € [1, w(m)}].
Then D is a finite subset of {By, By)s,, such that for any u € Ue, (2-om Gt
there exists some > dpn, € D with

n
“Tanu - Z dm’P”e K

M=,

- H m;n(Tum - dm’p)Hﬂ,q;K

5 ko
gl 3 @un-an,

g - —6{m—v) m—v g /a
s 5‘9_( 2 (2 T, Tum — dm,p)) )

= 1/q
< 2%2 ’ zgkévgkf( > (i + S)Q) < 26k370K(1 + (2n + 1)V%).
ma=—n
Consequently,

B(TP) € (T Pn : £4(27"Gpa) — (Bo, Bu)o,g) < 2600(T) 0 61(T)°.
Finally, for ,B(Rnf(@;'; + Q7)), we note that
BR.T(QF + Q7)) = BRIT(QF + Q7))
< B(RadT : (Ap, A1)o,g — (270 F,)).

Let again k; > §;(T) (i = 0,1), take v € Z satisfying 2¥~1 < k; /ko < 27,
and given ¢ > 0, find {u,}2-; C u£§n+1 so that for any A € Z/{ggn+l,

s (I = il g} < e

For a € Uag,4,),,,, Since
= 1/ _ _
(3 @ tikem,a)0) " < Jallogx < 276alog0 <27,
m=-—n
there is some r € [1, s] with
9~ 8mt) (oM o) < 2795(uT, + £), m=-n,...,n.
Thus

K (27 a) < KE™,0) £ 26, +2)
0

e
<6(2 ) e m=nn
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Using now the definition of the K-functional, we can find decompositions
a=al +al, & €A (i=0,1), m=-n,..,n

such that
0 'mkl 1 mkl ? r
lemllag + 2™ = llamlla, <6 2™ =) (pm +2).
ko ko

Then, by our choice of k; > 3;(T) (i = 0,1), there are finite sets {b%, ;}7_; C
B; so that

5} < 62Ok (- €)

Jin, {[|Tam, — by, 5|

Write W for the collection of all vector-valued sequences 2z, = (2% ) defined
by

Z.

» {0 if m & [-n,n),

m = b?n,j +bL,, f-n<m<n,
where § and ¢ run over their domains. Then W is a finite subset of
£,(27%F,,) and given any o € Uiag,Ar)e .o If we choose z, € W so that
zo =03 4 bl, o (m=-n,...,n) with
[ Tag, — bm,jllBe < 827 k5~ OkE (kr, + <),
Tt — by gllz, < 827 Vg™ (i, + €),
it follows that
| BniTa — zuwlley2-om 7

- 1/q
= (X @K@, Tal, ~ b5, ; + Tab, - b,,)))
m=—n

n

1/
<20 (3 (um+e)T) < 20RETORI(L+ (204 1)),

m=—n
Therefore
B(RLIT ¢ (Ao, A1)s,g — Lg(279™ Fr)) < 2680(T) 08, (T)°,
and so
BRAT(QF + Q7)) < 2680(T) " Bu(T)°.
In conclusion,
B(T) < 836o(T)'~°Bu(T)".

This proves (4) and completes the proof. m

The theorem shows the deviation from compactness that the interpolated

operator may have. As a special case, taking Gy(T) = 0, we recover Cwikel’s
compactness theorem mentioned in the Introduction.
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We close the paper with an application to spectral theory. Let A be a
complex Banach space, let T' € £(A, A) and let sp,(T) be the essential spec-
trum of T', that is to say, the collection of all complex numbers X satisfying
at least one of the following conditions:

(i) the range of T — AJ is not closed;
(ii) A is a limit point of the spectrum of T
(ifl) U2, Ker(T — AI)" is infinite-dimensional.
The essential speciral radius is defined by
re(T) = sup{})| : X € spg(T)}
(see [13], [10] and [3] for more details on these notions).

COROLLARY 1.3. Let (Ag, A1) be a (complez) Banach couple and let T
be a linear operator such thai its restrictions T : A; — A; are bounded
(i=10,1). Then for any 0 <8 <1 and 1 < g < o0,

‘]‘e(T : (AU,Al)g)q — (Ao,A]_)s’q) < ‘T‘e(T i Ag — Ag)lmGTe(T A = Al)e‘

Proof. According to a result of Nussbaum [13], Thm. 1, the essential
spectral radius can be expressed in terms of the measure of non-compactness
by the formula

ro(T) = lim B(T™)M/™.
Hence, using Theorem 1.2, we conclude that
re(T : (Ao, A1)e,q — (Ao, A1)s,q)
< lim /mBIT™ s Ag = Ag)0VmB(T™ : Ay — AP/

=ro(T: Ag — Ag) “re(T: A1 — A1), w
Note that the inequality for the essential spectral radius helds without
any additional constant, and it does not depend on the norm chosen in
(Ao, A1)a,q.
In the case 1 < g < oo, where AgNA; is dense in (Ag, A1 }g, 4, Corollary 1.3
was established by Albrecht in [1] using different techniques.
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Tail and moment estimates for some types of chaos

by
RAFAL LATALA {Warszawa)

Abstract. Let X; be a sequence of independent symmetric real random variables with
logarithmically concave tails. We consider a variable X = Zi# a; ; X;X;, where a; ; are
real numbers, We derive approximate formulas for the tails and moments of X and of its
decoupled version, which are exact up to some universal constants.

Definitions and notation. Let X;, X ; be two independent sequences
of independent symmetric random variables with logarithmically concave
tails, i.e. the functions Ny, N} : [0, 00) — [0, oo] defined by

Ni(t) = —InP(X;| > 1) and Ni(t) = —~InP(X}| > 1)

are convex. Since it is only a matter of normalization we may and will assume
that for all 7 and 7,

(1) inf{¢ : Ny(t) > 1} = inf{t: Ni(t) > 1} = 1.
Define the functions ]Vi by

s for |t] < 1,
Nift) = {Ni(ltl) for ¢ > L.

For sequences (a;) of real numbers and p > 0 we put

(@)l = sup { 3 asbi: > Ri(o) <}

Il = (2 a2)"

In a similar way we define f‘:f; and ||{(as Hla,p-
For matrices (a; ;) and p > 0 we define

(@i ) ||nv A p = sUP { Zai,jbicj : Zﬁz(bz) <p Zﬁf(cj) SP}-

and
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