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Tail and moment estimates for some types of chaos

by
RAFAL LATALA {Warszawa)

Abstract. Let X; be a sequence of independent symmetric real random variables with
logarithmically concave tails. We consider a variable X = Zi# a; ; X;X;, where a; ; are
real numbers, We derive approximate formulas for the tails and moments of X and of its
decoupled version, which are exact up to some universal constants.

Definitions and notation. Let X;, X ; be two independent sequences
of independent symmetric random variables with logarithmically concave
tails, i.e. the functions Ny, N} : [0, 00) — [0, oo] defined by

Ni(t) = —InP(X;| > 1) and Ni(t) = —~InP(X}| > 1)

are convex. Since it is only a matter of normalization we may and will assume
that for all 7 and 7,

(1) inf{¢ : Ny(t) > 1} = inf{t: Ni(t) > 1} = 1.
Define the functions ]Vi by

s for |t] < 1,
Nift) = {Ni(ltl) for ¢ > L.

For sequences (a;) of real numbers and p > 0 we put

(@)l = sup { 3 asbi: > Ri(o) <}

Il = (2 a2)"

In a similar way we define f‘:f; and ||{(as Hla,p-
For matrices (a; ;) and p > 0 we define

(@i ) ||nv A p = sUP { Zai,jbicj : Zﬁz(bz) <p Zﬁf(cj) SP}-

and
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We denote by (&;) the Bernoulli sequence, i.e. a sequence of i.id. sym-
metric r.v.’s taking values £1. A sequence of independent standard A0, 1)
Gaussian random variables is denoted by (g;) and the canonical Gaussian
measure on K" by v,.

For a random variable X and p > 0 we write

IX |l = (BIX[P)>.

We also use the notation a ~¢ b to mean that C~'a < b < Ca.
In this paper we prove the following theorem:

THEOREM 1. Let (a;;) be a square summable matriz and X =3 Ja; 1 XX

Then for each p > 1,
1 Xl ~e [l{ai) v e + 1 (AN + 1(Bs)llarps
where A; = (37, ¢} )12, By = (10, 0%,)/* and C is o universal constant.

‘We postpone the proof till the end of this article and now present some
corollaries and examples.

COROLLARY 1. Let (as,;) be o square summable matriz such that a;; = 0
and a;,; = a;; for all4,5. Then for each p > 1,

” > XX, Hp ~g (@i llvae + 1(4D)] & ps

where A = (3, 03 ;}/* and C is o universal constant.

Proof. Let X be an independent copy of X;. Then by the result of de
la Pefia and Montgomery-Smith (cf. [6]) about decoupling chaos we have,

for p> 1,
D R

with some universal constant K. Hence Corollary 1 is an immediate con-
sequence of Theorem 1 if we notice that A; == B; by the symmetry of the
matrix (a; ;).

COROLLARY 2. There exist unfversal constants 0 < ¢ < O < oo such
that under the assumptions of Corollary 1, for cach t > 1,

P(| S ansXes] 2 Ol e + 1A ly)) < e
and
P(| Y ass XXy 2 el (asg)laewv + (Al ) 2 min(e, )

Proof. The first inequality follows from Corollary 1 and Chebyshev’s
inequality. To get the second inequality we first use Corollary 1 and Propo-
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sition 1 below to get

H Zai,inXjH% < 452H Za,—,inXj” for p > 1.
b2

The inequality may now be obtained by Corollary 1, Proposition 2 and the
Paley-Zygmund inequality as in [2].

By simple calculations we may easily derive from Corollary 1 the follow-
ing two examples of interest.

ExamPLE 1. If a matrix (e, ;) satisfies the assumptions of Corollary 1
then for some universal constant K and any p > 1 we have

H Zﬂi,jgigj“p ~x Pll(as,) =i, + VB [ (013) |ms,
where
| (@i lamta = sup { 37 assbics = [(B)la, (el < 1
and

as,5) s = (Zaf,j)lm.

ExampLe 2. Under the assumptions of Corollary 1 we have

H Zaz‘,sffiﬁjup ~K Sup{zai,jbwj Bz, 1 (egdllz < /s 1], fes| < 1}
+ 34+ v ),
i<p i>p

where A} denotes the nondecreasing rearrangement of the sequence A; and
K is a universal constant.

REMARK. Example 1 may also be derived in a simpler way. Using the
invariance of Gaussian r.v.’s under orthogonal transformations, it is enongh
to prove that for any sequence (d;) of real numbers we have

| S digiat] e 2l (@)oo + VB

This easily follows from. the results of [2] {see Theorem 2 below).

The following theorem was established in a slightly less general setting
by Gluskin and Kwapied in [2] and in full generality in {4].

THEOREM 2. There exists a universal constant U1 < oo such that for
any square summable sequence (a;) and p > 1 we have

(2) H 2 a;iX;

~Cy “(ai)“N,P'
»
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In particular, for any p,q > 1 there esmsts a constant Cyp 4, which depends

only on p and q, such that
H S Cp,q” E CL{XZ" q.
o

@ I

REMARK. The inequality (3) may also be obtained by hypercontractive
methods or direct calculations.

We will also use the following theorem of M. Talagrand (see (8] and [5]
for a simpler proof with better constants).

THEOREM 3. Let A be the measure on R with density 5 temlzl gnd let A™
be the product measure @, A on R*. Then for any Bo*rel subset A of R"
with A"(A) > 0 and any s > 0 we have

MAFVE) >1—A"(A)" e,
where
Vo={z e : Y min(lai,2?) < 363}.
In the next part of the paper we need some additional definitions. We
say that a measure ¢ on R is symmetric unimodal if it has a density with

respect to the Liebesgue measure which is symmetric and nonincreasing on
[0, 00). A nonnegative Borel measure u on R™ will be called logconcave if

u(tA+ (1 —)B) 2 w(A)p4(B)

for any nonempty Borel sets A, B in R™ and ¢t € (0,1). A real random
variable is called symmetric unimodal (resp. logconcave) if its distribution.
is symmetric unimodal (resp. logconcave).

By results of Borell [1] products of logconcave measures are logconcave
and nondegenerate measures on R are logconcave if and only if they have
logconcave densities with respect to the Lebesgue measure. In particular,

any symmetric nondegenerate logconcave real r.v. has logconcave tails and
is symmetric unimodal.

PRrROPOSITION 1. The following inequalities are satisfied:

(4) [(as)llaae < All(as)llnve foraz1, p>0,
® Mol < Vlaivame  fordz1, p>0,
and

©  VB(60?) < e inp < pai + va(2)™

where (a7) is o nonincreasing rearrangement of the sequence (|as|).

Proof. Inequalities (4) and (5) follow easily from the observation that
Ni(tz) < tN; () for any ¢ € [0,1] and real number z. To prove (6) fix a
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sequence (b;) such that 3, Ni(b;) < pand let J = {i: b; > 1}. Then since
Ni(z) > & for © > 1 we have Y ey aib; < paf, and since Ni(z) = z? for
o] < 1 we get 3ig 5 aibs < VA((a))) 2.

To prove the other inequality in (6) let k = |p] + 1, 4 = {(k(a})? +
Sinkl@) Y2, by = sgn(as),/Bal/A for |a;| > af and b; = JPaifA for
la;| < af. Then [b;] <1, S Ni(b) = Tb2 = p and

Zaibi > J/PA > ‘/13(2( *)2)1/2

PROPOSITION 2. For any rendom variable X; with logconcave tails nor-
malized as in (1) we have

(7) 1/2<1-e'<E|Xi{ <1
and
(8) /2<2-4e ' <BIX;* <2

Proof By our normalization property (1) and the convexity of N; we
get 0 < N;(¢) < ¢ for & ¢ [0,1] and N;{t) > max(0,k(t — 1) + 1) for some
k> 1 and all t > 0. The assertion easily follows by integration by parts.

LEMMA 1. Let py,..., 4o and vy, ...,V be symmetric logeoncave proba-

bility measures on R such that
9) Vi Vim0 w1 1) € wl[—¢,1]),

U= ®... . Quy ond v =11 ® ... @v,. Then for any convex symmetric
Borel set K in R™ we have

u(K) < v(K).

Proof It is enough to prove that for any symmetric logconcave measure
on R"1 and convex symmetric set K we have

1 ® p(K) <1 ® p(K).

Let Ky = {z € R*™Y : (t,z) € K} and f(t) = p(¥,) for t € R. By the
convexity of K we have, for any A € (0,1) and s,t € R such that Ky, K, # ),

MK+ (1 — MK C K-

Therefore f is logconcave on R and since it is also symmetric, it is nonin-
creasing on [0, co). Hence approximating f by 3° a;I[_¢, ¢, and using (9} we
obtain
 ® p(K) = | £ d(t) < | F(2) din(t) =11 @ p(K).
R R
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LEMMA 2. For all t > 0 we have

t
- S e~ /2 qy > e~

"Yl([ t:t]) - '\/2_77_,,5
Proof. Since for any = > 0,

1 1
iz Thad
the conclusion follows from the well-known (and easy to check) estimate
([~ 1) > 1 ~et"/2,

LEMMA 3. For any matriz (a;;) and C 2 2%, ; we have

.3 zg
<1 Z}Za”mz

_m+e—1/m - 1.’1

< C’) —exp( 22&13)

Proof. From a result of Khatri [3] and Sidak {7} we have

T T
(10) ’Tn(mjﬁx|zai,j$«; < I’Z‘Zaidmi ?
i=1 ) J fom] i 2
> (H’Yn(i Zai,jwz‘ < 1))%(2 i Za‘i,j.ﬁ')i
i i=1 J =1

By Lemma 2 we have

(11) ’Yn( Z a.,,;,jfr.,;
i=1

T ma.x‘i G, ;5

<0)

50).

<3)=n([-(et) ™ (D) ™)
> exp (-2 i a’?,j)'

Since B}, IS i angel® = 5,0 PR from Chebyshev’s inequality we ob-

tain
k] e

(12) %(Z ’ > am : P(Z \Eai,jg,- i
=1 i i=1

i
The conclusion follows from (10)—(12).

LEMMA 4. Let Y1,...,Y, be symmetric unimodal real r.v.’s and d; =
EY?. Then for any matriz (b; ;) we have

2(

<C)=1- >O)2%.

‘< 1+4Zd,:b;’.{j)
> %exp (—4203,-6?,3-).
i3

i, 7Ld| I R e
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Proof. Let ¥; have the distribution y; with density f; and p=Q7_ | t.
Since f; are nonnegative, symmetric, nonincreasing on [0, oo) and p,; are
probability measures, there exist probability measures m1, ..., m, on R such
that for each i,

o0

fi{z) = S %I[_g’ﬂ(lﬂ) dm(t).
1]

We also have

o0 (=)
| £ dmy(t) =3 H I[ —t1{e) dedmi(t) = 3| 2* fu(z) dw = 3d;.
o] R

For any Borel set A in R we have

(13) p A=\
!Rn

(AYdma(t1)...dma{t,),

where vy . denotes the uniform probability measure on [~£1,%;] % ... x
[~tn,tn]. We will also write v}* instead of 27,

From Lemma 1 it immediately follows that for any convex symmetric set
K in R™, V\/—(K) 2 ¥ {K). Hence by Lemma 3,

7 n 2
(14) (R m?x];bi,jmi <1, Z|2bi,jx,~] <0

:uh(meR“:mjax 2. ,;\/7:171 <1, Z ;bjjt \/73:1

Since the function e~ is convex we obtain

4
§ exp (—; > t?bf,j) dma(ty) ... dmn (t)
i

]]l’n

4 12
> exp ( —_ S -7-1_- Zt%b?’j dml(tl) .. .dmn(tn)> = exp(““? Zdibg,j)-
I

g I8

4,7

<0)

Using the above and the obvious estimate

} oo (*“ Z*z bz,g)f{(zz/w) ., 22 >0y dmalty) . dma(En) < e @
Rn
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we obtain, by (13) and (14),

,u(:c eR® :mja,x|zn:bi,jmi < 1,2 | Zn:bi,jmi 2 <1 +4Zdz‘b?,j)

> —exp( 4Zd 132‘3) - —exp ( 1-«4Zd b ) —exp ( 4Zd¢bf’j).
i

LEMMA 5. Let ¥3,...,Y,, be symmetric unimodal r.v.'s such that EY}?
< 4. Then for any p > 0,

p(I(3e0)

Proof. For p < 1 we have |[(a;)||a,p = /P ||(2;)|]z and the assertion fol-
lows easily from Chebyshev’s inequality. So we assume that p > 1. Without
loss of generality we may also assume that By > By > ... and [[{B;)|ap
=p. Let

1 _
< 10)(By)llarp) 2 767

Mip

b, = | 43/ Bi forjsp,
d ajj forj>p

and d; = EY?/4. Then by (6) we get
Zdb” _Z =lpl+ > Bf <p+07Y(By)llirp < 20
i>p
Moreover, if max; [E b“yt| <land 35, |32, bs syl < 1+43, , dib? ; then
by (6),

[P

o (),

+ \/5(2 ‘ > e
Ii»p i

<HB)lwvp+ o+ +/pBp+1) < 5p.

2)1/2

max E ai Ui
+p o | i i,5 Ui
Hence by Lemma 4,

P( (Z E%ZE) < 5|(Bj)|N',p) = %exp(-—tLZd,;bf,j)Z e~
2

i=1
COROLLARY 3. There exists C3 < oo such that for any matriz (a: ;) ond
p>0,

Nip

B (3es)

le,p < Ca{[[{ai )l o + 1B llarp)-
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Proof. For p < 1 the statement follows easily by (8), so we asssume
that p=>1. Suppose first that all X;’s are also unimodal. Then P(|X;| <t) >
tP{|X;] < 1) =t(1 —e 1) for t € [0,1]. So for all £ > 0,

(15) Ni(t) = —InP(|X;| 2 ) > (1 — e 1)t > t/2.

Let F; be an odd function whose restriction to R is the inverse of Nj.
Then X; has distribution F;(A}), where A is the same symmetric exponential
measure as in Theorem 3. Let

e |(Saune)],

Then by Lemma 5 and (8),

- (I(S e,

Let s >0,z =y+zwithy € Aand 2z € V. Let A; = Fy{z;) — Fi(w:);
then by (15) and since Nj is convex we get |A;| < 2min(F;(|z), |z])- So for
36s > p we have

(550w

< 101(B;)lnr }-
lp

1
< 10 , ) e8P,
LS | (B5)ar, 1

\N,,pgsup{||(§;az.,jbi)h| S Rite < 305}
< —sup {H (Zam ) \N’,p : Zﬁi(bi) < P}

723
= 2@l

Hence for 36s > p,

™ T2s
[(DassFui)]|,, < 101B)lw s + @) lwn o
i P b

So by Theorem 3,
723
+ 20 gl )

P m)
<1—M(A+V,) € 4ePPs,

Integrating by parts we therefore get, for any so > p/36,
™

£ (e
gem]

7950 288 T ..
< 10[1(Bj)lIarp + [Haig)llvarp (T + s S P dm)

80

[, > 101B) s

’N’,p
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Choosing sp = 9p we getb
T
o (S0
i=1
Now let X; be arbitrary r.v.’s with logconcave tails and the normal-

ization property (1). Let X, be a r.v. with density e;e™ ™=, where ¢; =
({g e Nellel dy =t Let

). < Calli@sgdllare + (Bl
,p

=inf{t> 0: P(EX| 2 1) 2 e7'},  Vi= X,
Ni(t) = ~In P(|Y;] > t) = —in P(lo;X;| 2 t)
and

o Ni(l#]) for [t > 1,
Mi(t) = {t2 for |t} < 1.

The functions N; are convex and have the normalization property (1), and
the variables Y; are unimodal, so by the first part of this proof,

w  el(Sa),,
where )

(@i ll57 arr p = SUP { Y aibic; sy Mi(b) Sp, D Nijley) < ID}-

Notice that

Ga(ll@i)llx a1 (Bi)lla)

o 1
' <21+ [etdn) <3 and 'z 2fetdo> 1
1 4
Hence

= T o T e %
P(|X;| = t) = 2¢ § e M@ dr <0 § e~/ g = me Na(e)
so for ¢ > 2 we obtain
(17) P(|X:| 2 t) < 26 Vi) < 9= 2Nilt/2) < o= Ni(t/2),
Also,

[se)
(18) P(Xi| = t) S wNi®) g > e Ni(BE/2),

WEt\D

From (17) and the normalization property (1) we get o; > 1/2. Since
P(|X;] <t) < 2¢it < 2¢ we obtain o; < 4. Therefore, by (18), for t > 5/2
we get

P(IX| > t) < P(|5X:/2] > t) < P(|50:X:| > £) = P([5Yi] > ¢).
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So by the confraction principle,

H(Zav,aXI{tst/z} Mo, =58 ( Zam )|

Also by the contraction principle, since E|Y;-| =1 / 2 by (7), we have

o) (S owstamiserm),, < 35| (o)
= i=1

Nip
n
<58 (SSnsnl,
Therefore
w (S, oS,

Let t > 8; then by (17) we have
P(Yi| 2 €)= Pl Xi| 2 1) < P(IX] 2 1/4) < ™D,
Hence N;(t) > Ni(t/8) for t > 8, so M;(t) > Ni( (t/8) for all t and
(20) Mawi) |57, < Bl(@a )l p-
Inequalities (16), (19) and (20) complete the proof.

Proof of Theorem 1. First we estimate ||X||, from below. By the Jensen
inequality and symmetry of X; we have

1%l > | D X:E| Y aesX;
i J
But by (3) and (8) we get
Ei E a:,;,jX_,;-l Z Cﬁ:i” E CL...-,,jXJ",-
7 J

Hence by Theorem 2,
(21) 1Xlp 2 &)

‘ 1 2
2o (The) =oa
J

) H (A v -

In a similar way we prove that
(22) Xl 2 (CCLT I(Bs)llar -
By Theorem 2 we also find that for any (¢;) with 37, ﬁ}(cj) < p we have

| Xlp 2 Cfl(E} PBLINRS p) T 01_2” (Za‘i’j'cj) HN,p'
i i
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Taking the supremum over all such sequences (c;) we get

(23) IXlp = €12l as ) iwvar,pe

Now, (21)—(23) complete the proof of this part of Theorem 1.
To prove the estimate from above we first notice that X; = Y; + Z; for
some symmetric random variables Y; and Z; such that

- - <
P(Yi| 2 t) = e~ where N;(t) = {?V’(t) igi : > i’

and |Z;| < 1 a.e.; we also assume that the ¥; are independent and so are
the Z;. In the same way we split X/ = ¥/ + Z!. By the contraction principle
and since F|Y;|, E|¥;| 2 1/2 by (7), we have

| ez, < [ Euaeti], <2| Seav],

and
IDMAEEA NS DL
P

Hence

!
< ez, <] S,

X1, < H Zai,jzizg”p + H S ez
|z
ez
59“ 0; YiY!
]

So it is enough to prove that for p > 1,

)

To simplify the notation let

+[ Easw],

< C(iltasg)liaar e + [(Adlive + 1(Bj)larp).

myp = |[(ai)vare + (Al + 1 (B3l p-

Then m, > [[(A)llwp + I(Bs)lara = 2(3; ; af)'/?. Since EYE, B(Y])*
< 2 by (8), we get

(24) PO Zai,my!’ > 2,
< P(| > asvvy | 2 48] 3 asvYy

From Corollary 3 we have

o r((Sen

and

<k

1
> < -
lJ\f’,p - 403mp) 4
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2 P(l(Zesn)
=1

Let F;, F J’ R — R be odd functions whose restrictions to Bt are the

inverses of N;, N ; respectively. Then ¥;, Y] have distributions F;(A) and
Fi(X), where A is the same symmetric exponential measure as in Theorem 3.

Let
A= {(a:,:r;’) e R . iZGz‘jFi fﬂi)F{

[(Sewnie)l,,

then by (24)-(26),

1
> 4C )<—.
Np 3Mp | = 4

< 2my,

< 4Comy };

3 75 )”Np

A2 (4) > 1/4.
Hence by Theorem 3, for s > 0,
NHA+V) 21 —de™™.
Let (z,z') = (y + z,¢/ + 2/) with (3,¢') € 4, (2,7) € V,. Let 4; =
Fy(zi) — Fi(yi) and A} = Fy(z}) — Fi{y;). By the convexity of N; we have
|A;l < 2F;(J@; — yi]), therefore

ZNl(Al/Q )< ZN e

For a s1m11ar reason we have

> Nj(Aj/2) < 36s.

1

= Zmin(!zil, z7) < 36s.
i

Hence
| S 6y AF YY) (Zai,jF;(y;))bi ST Ni(e) < 363}
t,d J i

: ZH(Z% 500y 00

Therefore by (4) we have
SesFiw)| .,
288s

o | Desamw]s TS
< ~——Cym, for 36s > p.
Y

In a similar way we prove

(28) ‘ Z @i,j %)A,

< ———Cgmp for 36s > p.
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We also have _
|ZG¢JA,;A;> S 4:811}){2&-,;,3'6.,;6_7‘ : Zﬁ:(bz), Zf\};(cg) S 363}
i, i,f : i

= 4||(a‘i,j)||N,N’,365-
So by (5) we get, for 36s > p,

365\ 365\
) | Tauas|<a(22) ey < 4(2) m,

- p
tﬂj

By (27)—(29) and the definition of the set A we get

288 365’
]Zai,jFi(xi)F;(m;-) S (2+2 p303+4(?5) )mp
i

2
<y (;) myp fors>p.

Therefore for s > p,

(gl >al5) )

&4
2
= )\2“((:0,:(:') € ]Rzn : }Eai,jFi(mi)F;(a:})l > 04(2) mp)
¥ P

<1 =2 (A4 V,) < de”®.

Hence integration by parts gives

o0
»
E| E ai,jYiY_,,-’I < sz§(1+4 S mp“le“pﬂdm) < CPmd.
Bd ) 1

Theorem 1 is proved.
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