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On. the representation of functions
by orthogonal series in weighted L? spaces

by
M. G. GRIGORIAN (Yerevan)

Abstract. It is proved that if {yn} i 2 complete orthonormal system of bounded
functions and ¢ > 0, then there exists a measwable set B C [0, 1] with measure |[E| > 1-&,
a meagsurable funetion p(z), 0 < plz) € 1, plz) = 1 on E, and a series of the form
o001 cnien (), where {cx} € Iy for all ¢ > 2, with the following properties:

1
1. For any p € [1,2) and f & LL0,1] = {f : So |f)Pu(z)dz < oo} there are
mambers £, k = 1,2,..., & = 1 or 0, such that
1 n
P
tim |5 ewenen(a) - £(e)| () dz =0.
T OQ
0 k=l
2. For every p € {1,2) and f & LE[0, 1] there are a function g € LY[0,1] with g(z) =

f(z) on F and numbers 85, k=1,2,..., fp=T1or 0, such that
1

L n
i §| 7 deenn(e) - ofo)[ @) do =0, where Sun = | alt)en(t) bt
0 k=l 0

In 1932 M. Riesz proved the existence of a function fo € L[0, 27} whose
trigonometric Fourier series diverges in the i [O,ZW].metric (see (1], pp-
599--602). From this result it follows that it is impossible to find for every
integrable function on [0,2r] a trigonometric series that converges to the
function in the L! metric.

In this paper we prove the following result.

TuzorEMm 1. For any £ > 0 there exists a measurable function p,(;.v),
0< plz) <1, [{zel0,2n]: pz) =1} >2r—¢, such thn':w for any.functtton
fe Li[(),?w] ={f: Sg" |f (@) |p(z) dz < oo} there is a frigonometric series

o0

(1) Z Ckeikm

with the properties:

1991 Mathematics Subject Classification: Primary 42B25; Secondary 26D15.

[207]



208 M. G. Grigorian

(a) the series (1) converges to f(z) in LL[0,2n], i.c.

2w
lim S ‘ Z epe™ — f(z)|u(z) dz = 0,
n—oa b lkien

(b) Sohe o lekl¥ < o for all ¢ > 2.

Theorem 1 follows from the more general Theorem 2, whose statement
is as follows.

THEOREM 2. For any complete orthonormal system {wn} of bounded
functions in L2[0,1], and £ > 0, there ezists o meosurable set B ¢ [0, 1] with
meagure |B| > 1 — &, a measurable function ple), 0 < p(x) <1, ule) =1
on E, and a series of the form Y07, cripr (), where {cp} € ly for all g > 2,
with the following properties:

1. For any p € [1,2) and f € L3[0,1] = {f : Sfl}if(m)|p,u(w) de < oo}

there are numbers ey, k=1,2,..., 8, = 1 or 0, such that
1 n
) P
nli'r%og} S Excrpn(T) — f(m)‘ w(z) de = 0.

k=1

2. For every p € [1,2) and f € LE[0,1] there are a function g & LY0,1]
with g(z) = f(#) on E and numbers 6, k = L2,...,0, =1 or0, such that
1

n 1
. P
nh_):rrolox ' S Orcriop(z) — g(m)‘ wa)dz =0, where Bycp = Sg(t)(p;c(t) dt.
0 k=1 0

It should be noted in connection with the second part of this theorem
that in 1912 N. N. Luzin [5] proved that for any measurable function f that
is finite almost everywhere on [0,1] and any £ > 0 there exist a measurable
set B with [E] > 1 — & and a function g that is continuous on [0,1] and
coincides with f on . This idea of Luzin’s of correcting a function with a
view to improving its properties was subsequently developed very strongly
(see [2]-[4], [6)).

The following lemma is the basic tool in the proof of Theorem 2.

LEMMA. Let {¢n} be a complete orthonormal system in L2[0, 1] consist-
tng of bounded functions. Then for any e >0, f € L2[0,1], and Ny > 1 there
ezists a measurable set B C [0,1], o function g9 € L2[0,1], and o polynomial
P(z) = Ef:; No @nPn(Z) satisfying the following conditions:

D g@)=f@a), seB, |B>1-¢

1 1 )
2) Vlo@)dz <4{lf(@)lde, |g(z) > If(=),  =<o,1],
0 Q

icm

Representation by orthogonal series 209

3) IP(@) ~ g(=)*dz < £,

’ N
4 > |ml*e<e,
k=Ng
1 m 1
5)  mmax, ( § I ;2;: akcpk(w)| dw) < 4§ |f(2)| dz,

6) 14X (S l i ak(pk(m)’p dm) e <&+ B(S |f(z)f? da:)l/p,

1gmev Aol L )

Jor all p € [1,2) and every measurable subset e of E.
Proof Thig is proved analogously to Lemma 2 of [4] (see pp. 80-84).

Proof of Theorem 2. Let F = {f,}%, be a countable dense subset of
L20,1] and & > 0. By successive application of the Lemma we can define
sequences of functions g, sets £,, and polynomials

Np—1
(2) Poz)= Y oVeila), No=1,
k=Nymy
satisfying the conditions
(B) Folz) =falz), =€ E, c 0,1],
4)  |Bs|>1—g- 27273
1 1
) {17, @) de < 4{|fs(@)lde,  [g.(2)l 2 [fulm)l, = e€[01],
0 0
1
©)  [IPu(z) - g, ()" do < 27404,
° 1 ™m 1
(8) do
¢ z)| de < 4\ |fs(2)| de,
(1) N«mﬁﬁsmg‘k%_l o L §,
Nyl . .
8 > | <e 27,
kmaNy.y l/p
lidd 1/p
) o ()] de) <220 (| fo(@)P dz)
O o (1] 3 de)]w) < (1@ o)

e k=Ni e
for all p & [1,2) and every measurable subset ¢ of ;. We set

(10) 2, = ﬁ B, B= G Q=M U (gz(ﬂn\ﬁn_l)), 2y = 0.

k=n n=1
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It is obvious (cf. {4)) that |B| = 1.

We now define the set E, the function u and the series 305 . epop () as
follows:

(11) BE=0 = F]Ek,
- Mlnml for x € EU([0, 1]\ B),
(12) ple) = {pm for z € O\ 2oy, > 2,
where
g -1
(2271, H hk) ,
k==
(13) !
hi =121;22(§J [T ()P de +N,.,,.?15?—.}1{<N } ~§; :: Vs m)' dw) +1,
0 (=] Ny-1
(14 Zcm(w =3P =3 ( X dn)

3=1 8=l =Ny

with e, = ¢ for N,y Sk < N,, s = 1,2,.

By {4), (8), (11)-(14) we have |E| > 1 —& 0 < ple) £ 1, ple) is
measurable, and 3 |ex|% < oo for all ¢o > 2.

From {10), (12), (13) we have for all k > 1 and all p € 1, 2),

) | mePueie= 3 (] Geumd)

[0,1]\#25, kb1 Qn\ﬂn_
2*2:’; p d h-— . 2—~2k:.
MEH (é (G ()] “‘) 3

Analogously for all k > 1 and all p € [1,2),

m
> Poito)| ey de <

0,1\ 2y d=Nyy

(16) max

L9 -2k
Np—1<m< Ny )

Cﬂs!—‘

It follows from conditions (3), (5), (6), (10) and (15) that
1

7 {15, ()Pu(e) de =

) FlelPu@ide+ | |5,@)Pu() de

e [0,1]\12,

< {1f(@)Pu(z) do + 2-2,

SR D
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1.

19 ([P - o) ute) da)
0
1

< (S (Po(x) — g, (2) [P (z) dx)lfp+

0

‘ : 1/p
(§18.(2) - fo(2) Pula) do)
0

‘ 1/p 1 —9s
< me( § [7.(2) P ulz) dw) S -
{2,

Taking account of (9), (13) and (18), we have for all m € [Np_1,Ny),
k=1,2,...,and all p € [1,2},

A
wli—‘
S
N
=
_{_
[ )

i ;e
< L +E 9—2{k+1) +( S ful)? dm) } "
’ n=l 2a\2n—1
1 k “ul/‘P L/ P
= _.2—2’“4_2 221@ +( S lfk($)|p,u.nd9:) }
3 n=l" ‘Q“\Qn—l
k r 1fp . Us]?
1. o )
= § -2 2k + E 22(11:4.1) + ( S |fic(m)| Lom, d;r;) :\
n=1 "~ w\ 21 .
1 - : Hn P
32 D Zp[zzp(k+'1) + @) dm}
‘ =l 2\ Zer
k k
=g 22BN S ) (o) () do
n=l n=1 Ik

1
< 4] 17u(@)Puz) ot 37
i}

Let p € [1,2) and let f € (0,1, ie. §o | f(a)Pu(x) dz < oo.

. = Nyp—1 (u )
Now assume that polynomials Py, (@) = 35,2, " @i © pilz), v1 <.



icm

212 M. G. Grigorian

.. < Vg1, have been defined satisfying the conditiong

Ifm) ZP% m)‘ g)dr <27, 1<K <k-1,
(20) =t
o, T H S o) uie)as < 27
-1 yn "-:Nun—-l

Choose the function f,, € F = {f,}52, such that

(21) (5

It follows from (20) and (21) that

Fui () — [m) ZPuﬂ m)H,u dm) < 9 2lkt2)

1
(22) (Jlfon@)Pulz) o) " < 272000 4 g,
]

Taking account of (2), (18), (19) and (21), (22) we have

(23) (’f(m)—ZPun(m| a:)da:)l/p

< (§|13“k(m) — Fo ()P () dm)lfp

1 k—1 _ v 1/p
+ ((SJ - ;l P, (7:)} ’ i) cl.o;)

< 2% 4 9=k o 92k
1 " P
(24) va—?iaﬂ?l{<Nuk S ‘ Z C,(;vk)tpi(-’r)| u(w) dz < 2mk'
. 0

'5=th-—1

Faulo) = [£(a)

It is clear that we can define by induction polynomials

Ny, -1
Pulzy= 3 ™pe), k=12,

i:Nyk—l
satisfying conditions (23), (24) for all k > 1. We set

(25) Eiz. 1 fOI'th__ls'i,< 'u;,,,k——lz...
) otherwise.
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By (14), (23)-(25) we have

hm lZE'LCz(Pz(w

i.e., the first part of Theorem 2 is proved.
We now prove the second part. Let f € LE[0,1], p € {1,2), and

(20 fo={§ et

It is easy to see that one can choose a subsequence {fx, } of F = {f,} such
that

£ u(z) dz =

1 N 1
llmoos ’ kan(m)—f(m)!pdm =0, S |fr (@)|Pdz < 275", n>2.
0

==l 0

Assume that functions {f,, }n_1 and {gn} and polynomials
Ny, -1

(28) Po (@)= 3 ™pilx), n=1,.,0-1,

i=Nyp -1
have been defined satisfying the conditions

(29) gn(@) = fru(z), zEE,

1 1 1/p
60 {on@ldr <27, ({loa@Pute)dz) " <27,

'i[:ﬁuk(a)) — Qk(m)]ipdm < 2—21)11,,
k=1

S O

(31) 1 m p
I 3 d™@)] nla)de <27,

v .
"0 I:N-un—l

max 1<n<gq.
Nu“,~15m<N

We now choose f,, € F such that

1 g—1
@) |fle) = {fu@) - 0P (w)—gi(m)]}‘pdm<2_391’.
0 fom
Since (cf. (27) and (31)) ¢ 1fk, (@) — 27 [Pu(z) — gi(@)]|P de < 2739 it

follows from (32) that

1
(33) g |fu, (@) [Pdz < 277295
0
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We set
(34) gq(@) = fr, (@) + [ﬁu,, (z) = qu(")]-
Taking account of (2)-(6), (17), (18), (27), (28), (31) (34) we have
(38)  gg(z) = f,(z) forzek,
1
(36) S |gq(z)| de
o)
S|Qu (= |d~L+S Ju, () {fk,, Z[fu ) = il )}}ldm
g—1
|Z i ( 33) Q"t ]l dx
0 =]
<277
67 (loatoPate)ds)”
2
1 ¢-1 )
(§|g1, @Fate)ds) "+ (§ SrPute) - it )"
0 i=1
1 a1
+ (lfnto) = {7 = DiPute) a1} aa)
<27
1 ¢
63) (1| S1Puia) - ey e) "
0 4=l
H- m_ 1/p
< (11Poy (=) - 3y, (m) P do)
0
R g : P81
+ (S fug () ~ {fkq () — Z[Pw(-’“) - gi(:z;)]}‘ dw)
0 fezl
<277, '
(39) Nﬂq_1<m<N (” Z o ‘ wz) dn:)lfp
"-_“Nuq—-l

1
27+ (S | Fo, () [P i) d:c) e
0
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It is clear that we can define by induction sequences {gg} of functions
and {P, } of polynomials satisfying conditions (35)-(39) for all ¢ > 1. It
follows from (36) that S [ ey 94(2)] dz < o0

‘We define the function g and the numbers &; as follows:

(40) g(z) = Z 9q(2)

1 for N, .1 <i< N, 1,2,...
41 ;= g —1 vy 4= )
(41) ¢ 0 otherw1se )

By (29), (30) and (40) we obtain ¢ € L{0,1], g(z) = f(z) = f(z) on E.
Let n be an arbitrary natural number. Then for some natural ¢ we have

(42) N’Uq—l <n < N'uq+1~1-
It follows from (14), (26), (28), (35)-(42) that

(i ’ i ficipi(z) — g(m)}pﬂ(m)dw)lfp
0 de=l
< ~

‘ [?v,-( ) 91($) | ) +Z (S th E)Ipu(m)dm) 1/p
+

o]

D ey 2

i=1

i

‘ i C«EUQ)%(w)}p[.&(m)dm)lmSzuq—t-z_

1
N«;,l-«:&Sm<Nug 0 i=Ny 1
-

It can be proved similarly that

1 n
| 125564%(5) - g(:c)lda: <274
0 i=l1

It follows that
1

dic; =\ g(t)pi(z) de,
0
Theorem 2 is now proved.

i=12,...
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The Conley index in Hilbert spaces and its applications
by

K. GEBA, M. IZYDOREK and A. PRUSZKO (Sopot)

Abstract. We present a generalization of the classical Conley index defined for flows
on locally compact spaces to flows on an infinite-dimensional real Hilbert space H gener-
ated by vector fields of the form f : H — H, f(z) = Lz + K(z), where L : H — H is
a bounded linear operator satisfying some technical assumptions and K is a completely
continuous perturbation. Simple examples are presented to show how this new invari-
ant can be applied in searching critical points of strongly indefinite functionals having
asymptotically linear gradient.

1. Introduction. The purpose of this paper is to present a new general-
ization of the classical Conley index theory. The standard reference for that
theory, developed by Charles Conley in the 70’s, is his monograph Isolated
Invariant Sets and the Morse Index [5]. Referring for all technical details to
[5] and the recent paper of Mischaikow [12], we recall that in Conley index
theory, with any compact isolated invariant set S of a flow p: RX Z — Z on
a locally compact metric space Z one can associate an index h(5), which is
the homotopy type of a compact pointed space. Instead of isolated invariant
sets one can equivalently consider (compact) isolating neighbourhoods for
flows as pointed out by Mischaikow [12]. Since our construction of Conley
index is analogous to the construction of the Leray—Schauder degree it seems
more convenient to work with isolating neighbourhoods than directly with
isolated invariant sets.

The aim of this paper is to extend the ideas of Conley to the case where
Z is replaced by an infinite-dimensional Hilbert space. To be more precise,
we assumme that we are given an infinite-dimensional real Hilbert space H
together with a bounded linear operator L : H — H such that H and L
satisfy conditions (H.1), (H.2) and (H.3) below. We will be concerned with
local flows on H generated by L£S-vector fields, i.e. maps f : H — H which
can be written in the form f(x) = Lz + K(z), where K : H — H is a suffi-
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