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Symmetric subspaces of [; with large projection constants
by

BRUCE L. CHALMERS (Riverside, Calif.) and
GRZEGORZ LEWICKI (Krakéw)

Abstract. We construct k-dimensional (k > 3) subspaces V¥ of Iy, with a very simple
structure and with projection constant satisfying A(Vk) > MVE ) > .\(lgc)).

I. Introduction. Let X be a normed space and let V" be a linear sub-
space of X. Denote by P(X,V) the set of all projections from X onto V,
i.e., the set of all continucus extensions of id : V — V onto X. Let

(1.1) AV, X)=wf{|P||: PeP(X,V)}
and
(1.2) AMV) =sup{A\(V,X):V C X}.

We call A(V, X)) the relative projection constant of V in X and A(V) the ab-
solute projection constant of V. A projection P € P(X, V) is'called minimal
if ||P|| = A(V,X). In [HK] the constant

(1.3) A = sup{A(X): X is a real symmetric space of dimension k}

has been estimated in a very precise manner. It is known that Az = )\(lgz)) =
4/m. For the proof see [CHFG] or [HK]. The similar result for & > 3 is not

true. In fact, in {HK, Prop. 2] the existence of k-dimensional, k& > 3, real,
symmetric spaces X with

(1.4) AX) > M)

and

(L.5) hm A(Xx)/VE 2 (2 = v/2/7)
has been proved. Observe that

(1.6) lim A7)/ VE = v/2/7.
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Also in [PS] Marcinkiewicz spaces satisfying (1.4) and (1.5) (with equality)
have been constructed.

In this paper, for k > 3, we construct symmetric subspaces V* of {; {see
Th. 2.10), having a very simple structure, with A(V*, 1;) satisfying {1.4) and
{1.5). Our method of proof is very simple and quite different from that of
[HK] and [PS]. The main tool will be Theorem 3 of [CHM1].

Now we introduce some notation which will be of use later. We denote
by Sy the unit sphere in a normed space V. The symbol ext(Sy) stands
for the set of all extreme points of 8y. Note that if V is a k-dimensional
subspace of I{"™ then each P € P(I{™, V) has the form

k
(1.7) Pz = Z u(z ),
i=1
where v',...,v* is a fixed basis of V and u!,...,u* € I satisfy
i/
(1.8) wl (v?) = Z wjvf = 6.
=1
A point z € X is called a norming point for f € X* if
(19) ze8x and f(x)=|Ifll
DeFmITION 1.1. Let V be a finite-dimensional Banach space. V is sym-
metric if there exists a basis v', ..., ¢®* in V such that
E k
(1.10) ”ZIailvﬁ - H Za,rmu“H
i=]1 i=1

for any e, ..., 0 € R and any permutation 7 of indices.

Now let P =% wi(-)vf € P(I{™, V). Define

(1.11) crit(P) = {j € {1,...,n} : [| Pey|| = || P||},
where e; is the jth unit vector from R* and for j =1,...,n,
(1.12) Vi=(v},....vF), U;= (ug,..., uf).

THEOREM 1.2 [CHMI, Th. 3, p. 204]. Let P = S5 wi(- )t € P, V),
Then P is minimal if and only if there exists o nonzero k x k matriz M such
that for every j € crit(P),

(1.13) Uj = (u},...,u¥) = |P|ldf,

where o/ is o norming point Jor the functional on V associated with M Vi,
i.e., ’
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k
(1.14) (MV;)(2) = (MV;)imi.
=1

k n
Here x =%, 4 zvh

REMARK 1.3 (see e.g. [NT]). If V is a symmetric space then M is the
identity matrix.

REMARK 1.4. By [CHM2, Th. 1] it is easy to see that if M is invertible
and V; # 0 for j = 1,...,n, then crit(P) = {1,...,n} for any minimal
projection P.

II. The results. We start with

LeMma 2.1, Let V = Spanfv?,...,v*] be a k-dimensional subspoce of
z§”’. Then z = 2?:1 zsvt € ext(Sy) if and only if the matriz W consisting
of all vectors V; (see (1.12)) orthogonal to = has rank k — 1 and ||z| = 1.
We understand that V; is orthogonal to x if

k k
(2.1) Vilm) =Y (Vidimi =Y _ vhz; =0.
i=1 i=1

Proof If k = 1, the result is obvious. So suppose that k& > 2. Let
z € ext(Sy). Note that there is j € {1,...,n} such that z is orthogonal to
V;, i.e., the jth coordinate of z with respect to the canonical basis of R™ is
0: if not, modifying slightly z1,..., 2k, we can construct y, z € Sy different
from z such that z = (y +2)/2.

Now suppose that rank(W) < k£ — 1 and k > 2. Put

S={je{l,...,n}: z is orthogonal to V;}
and let [ = card(S). Set Z = V N (g ker(V;) (we can consider Z as a

subspace of lﬁ”_”). Sinece rank(W) < k — 1, dim(Z) > 2. Since z € ext(Sy)
and z € Z, z € ext(Sz). But by the previous part of the proof, V;(z) = 0
for some 7 & 8, a contradiction with the definition of W.

Now take z € Sy and suppose that rank(W) =k — 1. If z € ext(Sv),
then

(2.2) z = (z' +22)/2

for some z', 2% € Sy different from 2. Fix 0 < ¢ < 1 and define a norm || - .
on V by

(2-3) lylle = e Vi)l + D Vi)l

jes JEs
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(see (2.1)). Since rank(W) = k — 1, z' and z? are not orthogonal to all Vj
for 7 € §. Hence ||z]|c = 1 and ||z*]. < 1 for ¢ = 1,2, a contradiction with
(2.9).

LEMMA 2.2. Let || - || be a norm on R® satisfying
(2.4) @1, el = (@1, - -z |-
Let w = {u1,...,ux-1,0) € (BE |- I)*. IFfz = (21,...,2) 16 a norming

point for u then so is (zy,...,Tk—1,0).

Proof. Let z € Sy be a norining point for v. By (2.4), y = {z1,..., — &)
is also a norming point for u. Hence u((z-+y)/2) = ||u||- Since z is a norming
point,

(@2, 21,0} = [[(& +9)/2 = 1,
as required.

LEMMA 2.3, The following equalities are true for natural numbers k = 2:

(k=1)/2 (kY _ o (k /2 _
(2.5) =0 zk( 2( ) _ = gt ( )/2))r NGR
for k odd,
kI2 gy 0 /2
29) o (=20 _ gt 2 s
for k even.

Proof. For any k € N\ {0, 1} let [k/2] denote the largest natural number
less than or equal to k/2. Observe that

[k/2] k/2]
Z()(k 2l—k+z ( )(k 20)

:k(k—1+k/2]ﬂ"*1 z( —zz))

= 203

/3l 1 )
_ k- 1)(10 2+Z (k 5') _23))

Repeating this procedure, throwing outside the sum the factor (k—1+1)/1
fori=2,...,(k—1)/2 in the case of kodd and for I = 2,...,(k —2)/2 in
the case of k even, we get the proof of the first equalities in (2.5) and (2.6).

Now we prove the second equality in (2.5) by an induction argument.

Note that by Rutovitz [RU], A" = &I (k/2)/ (/7T ((k+1)/2)). For k = 8,
E(k —1)/4 = 3/2 = AUY).
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Observe that for any odd &,

L k—-n & IR0
26-1((k —1)/2)! ~ 2 2%- 3((k 3)/2)!

_ RISk~ 2~ 1)
ERCESVEEI (e 3)/2)'
= E—é-i»)\(lgkmz)) (by the induction hypothesis)
(k(k -2/ ((k~2)/2) _  kI'(k/2)

- = = A1),
Va(lk = 1/2)I((k-1)/2)  VrI((k+1)/2)

since I'(z + 1) = «I'(z) and I'(k) = (k- 1) for k € N.
To prove the second equality in (2.6), note that for any even k,
Motk — 1) _ iy "k —1-1)
2=1(g /2y 2k-1-1((f 1 —1)/2)!
LEMMA 2.4. Let k be an even number. Put
(2.7) A ={AC{1,...,k}: card(A) = k/2}.
For any A € Ag let z* € B* havex = 1 ifi ¢ A andm = —1 in the

opposite case. If y = (y1,...,yx) € R’“ satisfies v, iz = 0 for any
A€ Ap theny = ... = ¥

Prool Fix 4,7 € {1,...,n}, 1 # j. Take A € Ay such that ¢{ € A and
jd A Put Ay = (A\ {i}) U{s}. Note that

(2-8) Zyk—Zyk:-O

=01,

keA kZA
and
(2.9) > un— . ys=0.
keAq .’CEA1

Subtracting (2.9) from (2.8) we get 2y; — 2y; = 0, which proves the result.

Reasoning in the same manner as in Lemma 2.4, we can prove

LemMma 2.5, Let k be an odd number. Put

By, ={Bc{l,...,k}: card(B) = 2}.

For any i1 < iy ond B = {iy,i2} € By, let 2° € B havexf = -1, 25 =1
and zF =0 fori g B. fy = (y1,...,9) € R satisfies Efm yie? =0 for
any B € By then 1y =... = Yk,

DEFINITION 2.6a. Let & € N be odd and let & € [0,1]. Let A denote
the family of all subsets of {1,...,k} of cardinality < (k — 1)/2. With each
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A € A we associate a vector v € R* such that v = —1ifi € A and v{ =1
in the opposite cage. Let D be the k x (2’“_l + k) matrix having as columns
the previously defined vectors z# for A € A and the vectors ae;. Then we
denote by V} the k-dimensional subspace of l:(sz )
of D.

If k is even let B depote the family of all subsets of {1,...,k} of cardi-
nality < (k— 2)/2 plus all the subsets of {2,...,k} of cardinality k/2. With
each B € B we can asscciate the vector zZ such that ¥ = —~1if i € B and
zf = 1 in the opposite case. Let D be a k x (2*~1 + k) matrix having as

columns the vectors =2 for B € B and the vectors ae;. Then we denote by
_1+k)

spanned by the rows

k
Vk the k-dimensional subspace of zf‘ spanned by the rows of D.
If we denote by v* the rows of D, it is easy to see that for any k € N and

1k
+5 with respect to the basis

a €[0,1], V} is a symmetric subspace of lfk_
vhi=1,...,k.

DEFINITION 2.6b. Since the symmetric space Va;c in R* is completely
determined by specifying the columns of 2 in the region [z1 > ... =z > 0],
we will say that V* is generated by the two (column) vectors (1,1,...,1)
and ae;.

ExampLE 2.7. If £ = 3, then
o' =(1,-1,1,1,8,0,0), v*=(1,1,~1,1,0,a,0), v*=(1,1,1,—1,0,0,a).

THEOREM 2.8. Let V! be as in Definition 2.6. Then

. k-1 a -1
(2.10) Ve, h) = (Cﬁa,ﬂ + 2k—1+a) ’
where
{k—1)/2 ke
2.11 Gy = k-2l
(2.11) k ; (l)( )
Jor k odd, and
k/2-1 %
(2.12) Oy = g (z) (k — 21)

for k even.

Proof. First we consider the case of k even. Let P, = Ei-;l u'(-)vi be a
minimal projection onto V.¥. Since V¥ is finite-dimensional, such a projection
exists. To find F, effectively, by Theorem 1.2, Remarks 1.3 and 1.4, we
should find norming points for each functional V;. By the symmetry of V¥
it is only necessary to find norming poeints for (1,0,...,0) and (1,1,...,1).

icm
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For = (zy,...,7%) € R* put

Jall = | ;

By Lemma 2.2, (1,0,...,0)///(1,0,...,0)|| is a norming point for (1,0, ..., 0);
it is unique by the definition of V¥ and Lemma 2.1, By the symmetry of V.,
{1,1,...,1)/](1,1,...,1)|| is a norming point for (1,1,...,1); it is unique
by the definition of V*, Lemma 2.1 and Lemma 2.4. By Definition 2.6,
[v*l1 = 25=' + @ and || ELI v||1 = Cp + ak. By Theorem 1.2 and (1.8)
applied to ¢ = § = 1 (without loss we can choose ¢ = j = 1 by symmetry),
we have

1

gk—1 a -1
Pl =
1] (C’k Yok | oET + a) '
as required.

Now we consider the case of % odd. Since by Lemma 2.1, there is no
extreme point of Syx on the line through (1,...,1) and (0,...,0), the proof
will go in a slightly different manner. To apply the reasoning from the previ-
ous case, for any € > 0 we replace V* by a suitable space W2z, To define W¢
we add to the matrix D from Definition 2.6 (the case of & odd) as columns
the vectors £2®, where z® have been defined in Lemma 2.5, and x5 where
B € By and xg denotes the characteristic function of B. Denote by v%¢ the
ith row of the above constructed matrix and let

(2.13) Wi = spanfu™,..., 0],

If k=3, then
v = (1, -1, 1, 1, a O, 0, —& & 0, 0, —& &),
v3f = (1: 1, -1, 1, 0, a 0, £, & & & 0, 0)’
'US’E = (]-7 1, 17 ,..,.1’ O: 07 a, 01 05 &, E, & 5)'

Observe that W is a k-dimensional, symmetric subspace of ngk ) Now
we calculate A(WE,1;). As in the previous case, to find a minimal projection
onto W¢, we have to find norming points for (1,0,...,0), (1,1,0,...,0) and
(1,1,...,1). Define

k
(2.14) w1, @) = H S et
i=1

By Lemmas 2.1 and 2.2, (1,0,...,0)/[{1,0,...,0)||° is the only norming
point for (1,0,...,0). Analogously, (1,1,0,...,0)/|1(1,1,0,...,0}||° is the
only norming point for (1,1,0,...,0). By Lemmas 2.1 and 2.5, we have
(L, 1,...,1)/)(1,1,...,1)||° € ext(Sws). Hence, by symmetry, it follows that
(1,1,...,D/1(1,1,...,1)|]¢ is the only norming point for (1,1,...,1). After

1
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elementary but tedious calculations one gets

(2.15) [(1,0,...,0)||° =25 + @+ 2e(k - 1),
(2.16) 11,1, .., 1)||F = Cr + ka + ek(k — 1),
(217) L0, 0)J° =2((1 + 26)(— 1) +a-+ Dy,
where Dy, = }i;l)/z((kf) + (522)). By Theorem 1.2, (1.8) applied to
i=g=1and (2.15)—(2.17), we have
k-1 2e(k— 1)
9. 5 -1 _
(218) AW L™ = e Tt =D T NA 729k =1 + a5 D)
[4
...{_

21 4 a+ 2e(k — 1)
Taking the limit on both sides of (2.18) as £ — 0 we get

AVE 1) = ( DL L. )—1.
e Cp+ak  2%l4g
REMARK 2.9. By Theorem 2.8 and Lemma 2.3, A(VE, 1) = A(I5®) for &
odd and AV, 1) = A1) for k even.
THEOREM 2.10. For k > 2 put

\/Egk—l —Ch
ap =

————— and VF=V},
k—+vk o

Then for k > 3, k # 4, the relative projection constants AM(V®, 1;) satisfy
(1.4) and (1.5).

Proof Define g : BT — Rt by

k-1 a
2.1 = .
(2.19) 9(a) Cy +ak+2k—1+a
Observe that
1 k
2,20 (g) = 2k—1 - .
(2.20) g(a) ((2'=—1 R (e ka)Q)

Note that o is the only positive root of ¢'. By Lemma 2.3 and the Kadets—
Snobar theorem [KS], ¢’'(0) < 0 and by an easy calculation g'(2ag) > 0.
Hence g achieves a global minimum at ay. Consequently, by Remark 2.9,
AV 1) > A8 for k odd > 3.

Now we show (1.4) for even k > 4. By Theorem 2.8, Lemma 2.3 and easy
calculations

2 et N Tp (- A
2 2VE-1) - Cr 2k —1-A08Y)

(2.21) A(VF) =

icm
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Hence we need to prove that
k— A
2VE — 1 — A

for & > 4. By the properties of the function [, A(ng_l)))\(lgk)) = 2k/m.
Hence after an elementary calculation (2.22) is equivalent to

(2.22) > A

(2.23) k(1 +2/7) > A0 + (2vE — DA,
Noete that to prove (2.23) it is enough to show that
(2.24) VE(L +2/7) > 22 (1),

Now we show that if (2.24) holds for k then it holds for &+ 2. First, note
that by elementary calculations

AEY k42
O RLESY
Multiplying (2.24) by (k+ 2}/(k + 1), by (2.25), we get

(2.26) g\/ﬁ(l +2/m) = 2.
Hence, to show that (2.24) holds true for k + 2 it is enough to verify that

k42
m\/E(l +2/7) < VE -+ 2(1+2/7).

But the last inequality is equivalent to
Vik+2)k<k+1,
which is evidently true.

To end the proof we list below the necessary numerical results:

(2.25)

ko k(L+2/m) (@vVE~ DAY a0 avEaal?)
4 654643 6.59206 6.79062
(2.27) 6  0.81072 9.81704 9.98013
§  13.093 13,0206 13.1704
10 16.3662 16.235 16.361

By (2.27), (2.23) is not satisfied for k£ = 4 and it is satisfied for & = 6 and
k = 8. Note that (2.24) is satisfied for k¥ = 10. Consequently, A(V*,11) >

A for all k > 3, k5 4.
To prove (1.5) (we prove the existence of the limit), note that by (1.6),
k— A1) 1
VEQVE—1- @Yy 2—2/r

The proof of Thecrem 2.10 is complete.

1i£n)\(vk, L)/ VE =
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Since, by (2.27), A(V4,11) < )\g"), we must consider the case k = 4
separately. To do this, we need

DRFINITION 2.11. For 1 > b > 0, let D be the 4 x 48 matrix consisting
of the following blocks:

ro -1 1 1 1 1 -1 -1 & —-b b b b b —b  ~b"
1 1 -1 1 1 1 1 1 v b —-b b b b b b
(2'28) b & 5 -6 b b b —b 1 1 1 -1 1 -1 1 -1
Lh b b B =& —-b =-b b 1 1 1 T -1 -1 -1 1 ]
ri =1 1 1 1 1 -1 -1 & -b b b b b —b —=b7
b b 8 - B —=b b b 1 1 1 -1 1 -1 1 -1
(2'29) 1 1 -1 1 1 1 1 1 & b b & b b b b
i b b b b b -b -6 b 1 1 1 1 -1 -1 -1 1 ]
and
1 -1 1 1 1 1 -1 -1 b =-b b b b b b D
b b h -~ b ~b b -8 1 1 1 -1 1 1 1 -1
(2'30) b b b b -b =b ~b b 1 1 1 1 -1 -1 -1 1
1 1 -1 1 1 1 1 1 b b —-b b b b b b

Then we denote by Z”° the space spanned by the rows of D?. Observe that
Z? is a 4-dimensional, symmetric subspace of 15‘18).

THEOREM 2.12. Let by = /10 — 3 and let V* = Z%. Then
(2.31) 1.70724 = MV, 1) > A(@SY) = 16/(37) = 1.6977.

Proof Fix 1 > b > 0. Let o%, { = 1,2, 3,4, denote the ith row of D
For any © = (21,2, 23,24) € R? let

4
(2.32) li] = H > | .
i=1
Note that by elementary but tedious calculations for 1 > b > d > 0,
(2.33) 1(1,1,d,d)|| = 4(9 +2bd +3b+2d + |b+ d + bd — 1]).
Analogously, if 1 > d > b > 0, then
(2.34) (1,1, d,d}|| = 4(9 + 2bd + 2b 4 3d + |b+ d + bd — L|}.

Indeed, one can check that for any b,d € [0,1], the part of the i{;-norm
assoclated with (2.28) is equal to

2(4 + 2bd + 3b + 3d -+ [b — d]).

Analogously, the parts of the /)-norm associated with (2.29) and (2.30) are
each equal to

27T +b+d+bd+ |d-—b+bd— 1))
Let P° ¢ P(I", V%) be the projection defined by
(2.35) Uj = eVi/ [ Vill
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(see (1.12)), where ¢ > 0 is so chosen that the orthogonality conditions (1.8)
are satisfied. By Theorem 1.2, (1.8) applied to ¢ = j = 1, and (2.33) we have

9 + 5b + 2% + [b* + 2b — 1|

2.36 PY| =
(2.360) 17| ST 7
Now constider the function
b2 4 3b -+ 10
)= —mm—.
) 6(1+ v%)

It is easy to see that f/(b) = 0 if and only if —b?—6b--1 = 0. The last equation
has the only positive root by = +/10 — 3. By elementary considerations, f
has a global maximum at by and b3 + 2by — 1 = —4(+/10 ~ 3) < 0. Hence

by = 20 3VT0
%7 19010 — 34/10)

> AUYY = 16/(37) = 1.6977.
To finish the proof, we have to show that P% is a minimal projection onto
V4. To do this, by Theorem 1.2, Remarks 1.3, 1.4 and symmetry consider-
ations, it suffices to show that ag = (1,1,80,50)/]|(1,1, 80, bg)]| is the only
norming point for Vi = (1,1, by, by). By the symmetry of V%, there exists a
norming point ag for (1,1,bp,bg) of the form aq = (1,1,d,d}/||(1,1,d,d)||.
Note that, for d > by close to bp, Vi(ao) > Vi(aq) if and only if

14 bod < 1+ b%
10 +bod +2d +bg 10+ 3bo + b
and Vy(ap) > V1 (aq) for d < by close to bp if and only if
1+ bod 1+ 83

(2.37) | PR = £( = 1.70724

(2.38)

(2.39) 10+ bodtd+2by  10+30p+ 83
By elementary calculations, {2.38) is equivalent to
(2.40) b2+ 9k —2 <0

and (2.39) to

(2.41) 1 — Obg — b < 0.

Now, (2.40) and (2.41) are equivalent to

(2.42) (V83 — 9)/4 < by < (V89 ~ 9)/2,

which is true since 9.4 < /89 < 9.5. So we have proved that Vi(a4) <
Vi (ag) for d close to by. If Vi(aq) = Vi(bo) for some d # by, then Vi (cao +
(1 — a)ag) 2 Vilao), which for o close to 1 leads to a contradiction with
(2.38) or (2.39). Note that for any b € [0,1], (1,1,b,b) is orthogonal (see
(2.1)) to (=b, —b,1,1), (b,~b,1,—1) and (1,—1,b,~-b). It is easy to see that
the rank of the matrix formed by the above vectors is equal to 3. Hence, by
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Lemma 2.1, (1,1,5,8)/]|{1,1, b,b)|| € ext(Sy4). Thus, ap is the only norming
point for (1,1, by, bg). By Theorem 1.2, PP is a minimal projection onto V*,
The proof is complete.

The question arises whether the spaces V* above satisfy A(V*) =
MVE 1Y) for all k > 2. The answer is given in Theorem 2.14 below.

LEMMA 2.13. Let VF be as in Definition 2.6. Then, for k = 2,3,4, the
dual ball B of VF is the (closed) conves hull of the k-dimensional sym-
metric subset of BR* generated by (1,1,...,1)/k end a vector of the form
(1/b, ba,...,b), where

Cr + ka
2.4 - Crtka
( 3) b ak—1 +a

Furthermore V¥ is isometric to the k-dimensional symmetric subspace ka
of Lo generated by the k coordinate functions of Bf.

Proof. We only prove the case k = 3, since the proofs of the other cases
are similar.

For arbitrary a > 0, V3 is given in (21,23, ¥3)-space by the norm
(21, 72, 23) i = |21 + 22 + @3] + | —21 + 22 + 23]

+ |z — 22 + 23|+ |21 + 29 — 23] + a

-+ |£E2| -+ E$3J)

Thus the ball B(V) of the symmetric space V3 is determined by the corner
points (1,1, 0) /{4 + 2a) (set | —z1 + =z + 23| = 0 and |21 — 22 + 23] = 0) and
(1,0,0)/(4 + a) (set |zz] =0 and |z3] = 0) in the region 0 < z3 <z < a1
and Bj is the dual ball of V¥ provided that

1

E|($1,932,333)||z'{ = sup (21,32, 23) - (2], 23, T3).

’ ! 4 *
@1,2h,33 JEBY

Check that this will hold when

1 1 (1,1,0) 111
2.44 0,0 - { £,0,0 ) = =t [ 2 2 2
( ) (4+a ) (b ) 4+ 2a (3 3 3)’

where (solving (2.44) for b)

b 6+ 3a

4+a
That is, with this value of b and by = b3 = 0, B3 is the dual ball of Vf.
Note that (1,1,1)/]|(1,1,1)|f is the average of the three points symmetric to
(1,1,0)/{(1,1,0}] in the region z; > 0 (¢ = 1,2,3) and thus (2.44) can be

rewritten ‘
1 . 1 {1,1,1} 111
e 0,0} - [ £,0,0 ) =22 (2 2 ),
(4+a ) (b ) 6+ 3a (3 3’3)
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Finally, it is well known and immediate that V¥ is isometric to the
k-dimensional subspace Wf of Ly, with basis given by the % coordinate
functions of By. The proof is complete.

REMARK 2.13a. In the general case k > 2, for arbitrary @ > 0, V* is
given in {&y,...,T)-space by the norm

H(xl,...,a:k)||l§2k—1+k) = |z 4.+ @+ |~z T+

+allzy| + ...+ |ze]).

It follows that the ball B(VF) is determined by the corner points
(17170’SO)/“(]-’]-yO&)O)”a (1,1,1,1,0, :0)/”(1311111505 :0)”)
and (1,0,...,0)/|{1,0,...,0){, and B} is the dual ball of V¥ provided that

@1,y zu}ll aorimy = sup (21,5 20) - (21,00, ).
1 Ty JER)

We conjecture that, just as in the cases k& = 2, 3,4 {see Lemma 2.13), this
will hold when

1 1
(2.45) (mo 0) . (E,bg,,”,bk)
) (111
SOtk \BEE

WM.G;) b
T, o\ R

_ (1,1,1,1,0,...,0) .(3 b bk,) _
(1,1,1,1,0,...,0)]] \& = " ’

where (solving (2.45) for b and bg,. .., b)

_ Ck + ka

S 2l

and that, with these values of b and b; (i = 2,..., k), By, is the {closed} con-

vex hull of the k-dimensional symmetric set in R* generated by (1,1,...,1)/k
and (1/b, b3, ..., by).

THEOREM 2.14. For k > 2, let ai be as in Theorem 2.10. Then A(VE) =
)\(V,fk,ll) fork = 2,3, but )\(V;’;) > )\(ch;,ll).

b

Proof For k > 2, let U* be the symmetric subspace of zS,%.""l““’ gen-
erated by the two vectors (1,1,...,1) and Vk ey of equal Euclidean length.
As in (2.43) let
_ Cr tkaw

by, == kT BOk
BT Rl g,
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and note from (2.20) that by = +/k. Thus, since (recall (2.15) and (2.16))
1(1,0,...,0}] = 2871 + @, and ||(1,1,...,1)|| = C + kag, the adjoint
operator P = %  v*(-)u’ is a projection from 1277 onto the k-di-
mensional subspace Uf/E' But also since k/by = by, U\k/E is generated by
(1,1,...,1)/k and (1/b,0,...,0). Now note that, in the cases k = 2,3,
wE = Uf/z. But, by Lemma 2.13, W[ is isometric to V;%. Thus, since it
ig well known that isometric k-dimensional Banach spaces have the same

projection constants and that Ly is a “maximal overspace” (see e.g. [WO]),
we have, for k = 2,3, MVE) = AWE) = ’\(U\k/ié) = ||Pe |l = [Pl =

k‘l-l—k) —
)\( g ) - ’\(Vak: ll)
In the case k = 4, however, Wb]l # U\k/};' In fact Wﬁj = [wy,wa, ws, We) s

the 4-dimensional symmetric subspace of 132 generated by (1,1,1,1) and
(2,1/10,0,0), as is seen from Lemma 2.13. But now one can check (by use of
symmetry and minimizing over ¢ below, or by using the theory of [CHM2])
that the minimal projection from 182 ongo W4 isgiven by P = Z 28wt
where 21, 22, 23, 24 18 a basis for the 4~d1mensmna1 symmetric subspace of
1532) generated by «(1,1,1,1) and ¢(1,¢,0,0) where ¢ =0, o = 5/174, & =
19/232 and ||P| = 97/58 = 1.6724... > 5/3 = AV2,i'). The proof is
complete,

COROLLARY 2.15. For k > 2, let W* be the symmetric subspace of Leg
with basis given by the k coordinate functions of the dual ball Bf of vk
(It is conjectured in Remark 2.13a, and proved for k& = 2,3,4 in Lemma
2.13, that W* is generated by (1,1,...,1) and (vk, kbe,...,kbs), for some
bo,...,by.) Then for k > 3, k s 4, the projection constants M{WH) satisfy
(1.4) and (1.5).

NoTE 2.16. For k& = 2, 3 the operator P, = Ef:l u*{-)v* of Theorem 2.14
provides an example of a minimal projection whose adjoint is also minimal.
(This occurs because the Ly,-space [u?, ..., u*] is isometric to the Lj-space
[v%,...,v*] and Lo is a maximal overspace; cf. [CHPS].)

THBEOREM 2.17. Let V* be as in Theorem 2.12. Then (V%) = A(V4, ).

Proof. Consider the orthogonal projection P = Efﬂ ut{-}vt given by
(2.35) with b = bp. It is shown in the proof of Theorem 2.12 that P* is
minimal, Consider the adjoint projection (P*)* = 3% vi(-Ju’. As shown
in the proof of Theorem 2.12, (1,1, bg, b0)/||(1,1,b0, bg)|| is the only norming
point for Vi = (1,1, bg, bg), which is the only corner of the ball of V* in z; >
Ty > T3 > 4 2> 0. Thus, by symmetry, the Lo-subspace U? = [ul,...,u%
has as a basis the coordinate functions of the dual ball of V* and hence
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is isometric to the L;-subspace [v!,...,v%]. Thus the conclusion follows as
above, since A(V?) = A(U4) = ||(P)*|| = ||PY|| = AV, 114%).

COROLLARY 2.18. Let U* be the symmetric subspace of lé‘és) generated by
(1,1,bg,bq), where by = v/10—3 {(as in Definition 2.11). Then the projeciion
constant MU*) satisfies (1.4).
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