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The absence of real points of C at infinity can be ensured when almost
the whole B2 is attracted to the real foci F;, i.e. when b and ¢ are even (we
use the formula (4) for divergence).
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Asymptotic stability in the Schauder fixed point theorem
by
MAU-HSIANG SHIH and JINN-WEN WU (Chung-Li)

Abstract. This note presents a theorem which gives an answer to a conjecture which
appears in the book Matriz Norms and Their Applications by Belitskil and Lyubich and
concerns the global asymptotic stability in the Schauder fixed point theorem. This is
followed by a theorem which states a necessary and sufficient condition for the iterates of
a holomorphic function with a fixed point to converge pointwise to this point.

The object of this note is to settle a conjecture raised by Belitskii and
Lyubich in 1984 concerning the global asymptotic stability in the Schauder
fixed point theorem.

1. Conjecture of Belitskii and Lyubich. Let E be a (real or com-
plex) Banach space with a non-empty bounded convex open subset D, and
let f: D — D (D stands for the closure of D) be a compact continuous
map. The celebrated Schauder fixed point theorem {13], which is one of the
fundamental theorems in nonlinear functional analysis, asserts that there
exists a point & € D such that f(&) = Z. For z € E, denote by f'(z) the
Fréchet derivative of f evaluated at x. For a bounded linear operator A on
E, r(A) stands for the spectral radius of A. Under the assumption that f
is continuously Fréchet differentiable, Belitskil and Lyubich ([1], p. 41) pro-
posed the following conjecture in 1984 concerning the asymptotic behaviour
of the fixed point in the Schauder fixed point theorem.

CONJECTURE OF BELITSKIT AND LyurIcH. Let F be a (real or complex)
Banach space with an open subset (2 and f : {2 — E be compact and continu-
ously Fréchet differentiable in 2. Suppose D is o non-empty bounded convez
open subset of E such that f(D) ¢ D C 2 and Supmeﬁr(ff(:r)) < 1. Then
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f has a unigue fized point T € D and T is globally asymptotically stable, i.e.
the sequence {f*(z)} of iterates converges {o T for any v € D.

Let us remark that in the original formulation of the conjecture, the
space was R™ and the mapping f was given in a non-empty compact convex
subset K of R®. In the above formulation we suppose that f lives in a
wider open set £2 > K. This assumption does not affect the generality in
the finite-dimensional case because of Whitney's smooth extension theorem
(see, e.g., Federer [4], p. 225}. Since there is no infinite-dimensional version
of Whitney’s theorem, the infinite-dimensional version of the conjecture of
Belitskif and Lyubich could be formulated as above. Furthermore, in the
finite-dimensional case, the assumption K = intK (int K stands for the
interior of K) is not necessary; it is sufficient to pass to the affine hull of
K. Let us also remark that the local asymptotic stability problem of the
conjecture of Belitskil and Lyubich was considered by Kitchen [10].

The purpose of the present note is to settle this conjecture. We show that
the spectral condition “sup .57 (f'(2)) <17 does imply f has a unique fixed
point, but we give a disproof of the asymptotic stability part for the real
case and a proof of the asymptotic stability part for the complex case. The
method of proof employed involves Kellogg’s uniqueness theorem as well as
a normal family argument for holomorphic functions.

2. Solution of the conjecture. The following theorem solves the prob-
lem of Belitskii and Lyubich.

THEOREM 1. Let (B,]| - ||) be a (real or complez) Banach space, let §2
be an open subset of E and f : 2 — E be compact and continuously Fréchet
differentiable in (2. Suppose D is a non-empty bounded convezr open subset
of B such that f(D) C D C 2 and sup .5 r(f'(z)) <1. Then:

(i) f has a unique fized point & € D;
(i) T s not necessarily globally asymptotically stable when E is a real
Banach space;
(i) & is certainly globally asymptotically stable when E is a complez
Banach space.

To prove part (i) of Theorem 1, let us recall Kellogg’s unigueness theorem
[8]-

KeLLOGG'S UNIQUENESS THEOREM. Let D be a non-empty bounded
open connected subset of a Banach space and f: D — D be a compact map
such that f is continuously Fréchet differentiable in D and continuous in D.
Suppose that 1 is an eigenvalue of f'(x) for no x € D, and f is fized point
free on the boundary of D. Then f has ot most one fized point.
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T]:_le proof given by Kellogg [8] was based on a parity property for com-
pact linear f)perators and Leray-Schauder’s degree theory, especially Leray—
Schau?er’s index formula. A much simpler proof may be found in Berger [2,
p- 268].

We also need an elementary operator-theoretic result (see Holmes [7]):

Let A be ¢ bounded linear operator on a normed space E. Then for each

g > 0 there is a norm || - || on E eguivalent to the original norm such that
Al € r(A) +e.

Proof of Theorem 1. (i) Set Fix(f) := {z € D : f(z) = 2}. By Schauder’s
fixed point theorem, Fix(f) # (). To prove the uniqueness, we consider two
cases separately.

CasE 1: Fix(f) C D, i.e. f is fixed peint free on the boundary 8D. Since
for each z € D, f'(z} is a compact linear operator on E and r(f'(z)) < 1,
it follows that 1 is an eigenvalue of f'(z) for no z € D. Then Kellogg's
uniqueness theorem asserts that f has a unique fixed point.

Case 2: Fix(f) N 8D # 0. Suppose first that Fix(f) N 8D = {F}, a
singleton. By Fréchet differentiability of f at 7,

flz) =%+ f'(z){(z— %)+ N(z - %), where N{z—%) = of||lz — ).

Since r(f'(Z)) < 1, by Holmes’ theorem stated above there exists a norm
il ||| on E equivalent to | -|| and & > 0 such that the operator norm of f/(%)
satisfies ||| f/(Z)||] < € < 1. As N(z — Z) = o(||z — F||), there exists a § > 0
such that |[|N(z - Z)||| < (1 —&)|||z — 7]} whenever z € U C 2, where

U={zeE:|z-—z|| <d}
Then for each & € U, we have
[If (=) — Zh| < ez - Ef“, where a = |||/ @Y +1-e< 1.

Consequently, U is invariant gnder f. Since r(f'{Z)) < 1 and f' is contin-
uous, I/ can be chosen so that it containg no other fixed point of f and
r(f'(z)) < lforallz € U. Then f(DUU) c DUT and 1 is an eigenvalue
of f'(z) for no z € DUU. As D and U are open convex and DN # @, by
a convexity argument it is not difficult to prove that ADUl) =8(Dul)
(and hence Int(D U U) = D UU). Thus f is fixed point free on 8(D U T).
Since D U U/ is open connected, Kellogg’s uniqueness theorem implies that
f has a unique fixed point in D. By making use of the spectral condition
of the hypothesis and the inverse function theorem, we can see that each
fixed point on the boundary of D is isolated. Therefore, repeating the above
argument for the case of a single point on the boundary shows that the case
when there are more than one fixed point on the boundary of D cannot
occur. This proves (i).
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(i) Let | = 2. Define a C* real-valued function ¢ on [-1,1] by
p(@) =0 £ le] <1/2, (1) = 6(-1) =1,
el <1 (ol <D
Let D = {{z,y) € B? : |z| + |y| < 1} and {2 an open set containing D.
Define f: 2 — RZ by
Hz,v) = (e), () ((z,y)€)

Then D is invariant under f, (0,0) is the unique fixed point of f in D, and

=0 ) @ued)

¢'(z)
Tt is readily seen that 7(f(z,1)) = V/I¢' (z)¢'(¥)| = 0 (|z|+y| < 1). Hence
sup_(f'(z,4)) -—0
(=,9)€D

However, £(0,1) = (1,0) and f(1,0) = (0,1), so that {f¥(0,1)} cannot
converge to the fixed point (0,0). This proves (ii).
(ii) By (i), f has a unique fixed point % in D. Since 7(f'(Z)) < 1, by

the same argument as in the proof of (i) we can find a norm || - [fj on E
equivalent to || - || and an open ball

U={zekE:||le—dl<stcD
such that f is a strict contraction on U relative to the norm ||| - [||. Thus

there exists a positive number & < 1 such that
lilf(z) - Zl| < elllz -2l (=€)

Therefore
(*) ff(z) »% ask-—»ocoforanyzel.

Since D is bounded, {f¥? is uniformly bounded on D. Thus {#*} 15 equico_le-
tinuous on D (see, e.g., (9], p. 98). Since f is compact, by Arzela-Ascoli’s
theorem for compact maps (see, e.g., [3], p. 267), there exists a subsequence
{f*%} of {f*} such that { f*} converges uniformly on each compact subset
of D. Let _

gla) = lim f*(z) (s€D)

Then g is holomorphic on D (see, e.g., [5]; p- 99). By (x), g{w) = T for all
z € U. Since Iis open, g(z) = Z for all ¢ € D by the identity theorem. (In a
complex Banach space, the identity theorem can be proved, with no bubs'ta?n-
tial change, as in C".) Therefore we can associate to each x € D a positive
integer k(z) such that f%(*) € U7. Hence for each I = 1,2,..., by (*) we have

() = f( (@) = & asl—r oo (z€ D).
This proves (iii).
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This concludes the proof of Theorem 1.

Note that in the complex case, the spectral condition sup, .5 r(f(z)) <1
can be sharpened to r(f/(z)) < 1 for all = € Fix(f). We mention here that
part (iii) of Theorem 1 should be compared with the uniqueness theorem of
H. Cartan (sce [6]; see also [5], p. 75, [12], p. 23).

The following result is a converse of part (iii) of Theorem 1 and indicates
that the asymptotic behaviour of the iterates of a holomorphic function is
similar to that of the iterates of a bounded linear operator.

THEOREM 2. Let (2 be a non-empty bounded domain in a complea: Banach
space B, f : {2 — E be compact and holomorphic, and f(%) = T. Then % is
globally asymptotically stable if and only if r(f'(F)) < 1.

Proof. For “«=” see the proof of (iii) in Theorem 1. We prove “=”. Since
(2 is bounded and f is holomorphic, by the normal family theorem there
exists a subsequence {f*} of {#*} that converges uniformly to the constant
function g(z) = & on each compact subset of 2. Denote by A the open unit
disk in the complex plane. Fix zp € E. Then the map A — F(Z + Azp) is
holomorphic in A. Let 0 < § < 1 and A := f(Z). By Cauchy’s integral

formula,

d
Azy = —f(Z + Az) -
dA =g | 2Wd I\ A2

As f(&) = &, we have

H

d
LTI ki (5
A%z d)\‘f (Z+ Azg) .

so that
1 S 5 (3 + Az)

b, o
ATz = 5 32

dx  (i=1,2,...).
[A[=5

Since {Z 4 Az : |A| = &} is compact, we have

kil
lim Akizob*“}“‘.' S lim Md,\
100 27T?. i—00 2
IA|=
1 dAN
= (o | J)7=0 =12
[M|==4

Since zg € F was arbitrary, we conclude that lim;_ . A%z = 0 for all
z € E. Since f is compact, A = f'(%) is a compact linear operator. Hence
there exists a complex number A in the spectrum of A such that |A| = r(A)
and Av = M for some non-zero v € E. Then A%y = A%y — 0 as i — oo,
so that A = r(A4) < 1.
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This completes the proof.

Neither the sufficient condition nor the necessary condition are valid in
the real case, as the following one-dimensional examples show, respectively.

EXAMPLE 1. f(z) = 4z%(1 — 2%), |z] < 1.
ExaMPLE 2. f(z) =z —z*, |z] < 1.

Let us remark that the analogue of Theorem 2 for differential equations
was earlier proved by Yu. I. Lyubich [11] and the same method of proof is
applicable to iterations. The proof given in Theorem 2 is somewhat different
and, formally, Theorem 2 is an infinite-dimensional version.
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The uniform zero-two law for positive operators
in Banach lattices

by
MICHAEL LIN (Beer-Sheva)

Dedicated to Shaul Foguel upon his retirement

‘ A.bstracrti - Let T be a positive power-bounded operator on a Banach lattice. We prove:
(1) If infn |T™(T — T)|| < 2, then there is a k > 1 such that limp—ee [|T™(I — TF)|| = 0.
i) limn—co |71 = T)|| = 0 if (and only i) infy, [T — T)| < /3.

In their ground breaking paper [OSu], Ornstein and Sucheston proved
that if T' is a positive contraction of I, then Sup ¢, <1 limy [T — T) ]|
is 0 or 2, and coined the term zero-two law. Using their method, Foguel [F]
proved that if 7" is a positive contraction of Ly, then lim,, ||7(I —T)| is 0 or
2 (the uniform zero-two law). This easily implies that if T is a positive con-
traction of C'(K) with K compact Hausdorff, then lim,, ||77(I—T)|! is 0 or 2.

Using the regular norm (the norm of the modulus), Zaharopol [Z] re-
stated [F] as

*) inf [T = T, < 2= lim [T+ — 77| = 0.
™

He proved () for positive contractions of L, spaces (1 < p < o), p#£ 2.
Katzmelson and Tzafriri [KT] removed the restriction p # 2 of [2,], and
proved () for a larger class of Banach lattices. Finally, Schaefer [S;] proved
(*) for a positive contraction T in any Banach lattice.

The reverse implication in {x) is false: a positive contraction in Ly can
satisfy limy, |77} — T = 0 and inf, |77 ~ T%||. = 2 (see [W3]). For
certain Banach lattices, a stronger version of (#), in which the conclusion is
limy, | T+ — ™|, = 0, was later proved in [W3], [Z3], [Sc].

In this note we prove that for a power-bounded positive operator 7' in
a Banach lattice, inf,, |T™(I — T)|| < v/3 implies lim, o || T(I — T)|| = 0.
For contractions in L, this follows from [W1] (see alse [M]).
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