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Fragmentability and compactness in C(K)~spaces

by

B, CASCALES (Mwein), G, MANJABACAS (Albacete) and
G. VERA (Mureia)

Abstract. Lot K De a compact Hausdor® space, w(K) the space of continuous
funetions on J& endowed with the pointwise convergence topology, D C K a dense subset
aund by (12} the topology in C(K) of pointwise convergence on D. It is proved that when
Gy (K) is Lindeldf the tp(D)-compact subsets of C'(K) are fragmented by the supremum
norm of C(K), As a consequence we obtain some Namioka type results and apply them
to prove that i K i separable and C,(K) is Lindeldf, then X is metrizable if, and only
if, there is & countable and dense subset I ¢ K such that (G(K), tp (D)) is analytic. We
also show that if I is a separable Rosenthal compact space, then K is metrizable if, and
ouly if, Cp (K7 I8 Lindeldf. We complete our study by showing that if X does not contain a
copy of AN, then convex &, (ID)-compact subsets of C{K) have the weak Radon-Nikodym
property.,

1. Introduction and results. Throughout, (X, | ||) will be a real Ba-
nach space, X* its duval and Bx (resp. Bx+) the unit ball of X (resp.
of X*). A subset B of the dual unit ball By« is said to be norming if
]| = sup{|z*(x)| : z* € B} for every z € X. K denotes a compact Haus-
dorff space and C'(K) the Banach space of continuous real-valued functions
on K endowed with the supremum norm. If F is a subset of K, we denote by
£, (F) the topology in C(K) of pointwise convergence on F. D will always be
a dense subset of K (in this case £, (D) is a Hausdorff locally convex topology
in C(K)). CL(K) stands for C(K) endowed with the topology t,(X).

The notion of fragmentability as stated below was introduced by Jayne
and Rogers.

Dganerron 1 ([20]). Let (X, 7) be a topological space and g a metric
on X. We say that (X, 7) is fragmented by ¢ (or g-fragmented) if for each
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non-empty subset A of X and for each £ > 0 there exists a non-cupty 7-open
subset U of X such that U N A # § and diam, (U N 4) e

The weak compact subsets of a Banach space are norm fragmented and
the weak* compact subsets of a dual Banach space X* are norm fragmented
if, and only if, X* has the Radon-Nikodym Property (briefly, RNP) [24].
A compact Hausdorff space is said to be Radon-Nikodym compact if it iy
homeomorphic to a weak* compact subset of a dual Banach space with the
RNP. The paper {24] is a good source of results about fragmented compact
spaces.

In this paper we go on with our previous work, [12, 11], about compact
subsets of Banach spaces X endowed with topologics of the kind o (X, B3),
where B is a norming subset of the dual unit ball Bx«, focusing now on
the norm fragmentability of o(X, B)-compact subsets and its conseguences.
A space of the kind (X, ¢{X, B)), B norming, can always be realized as a
subspace of a suitable space C(K) endowed with the topology ¢,(D) on a
dense subset D € K. Qur subsequent study will be done in the context of
C{K )-spaces.

Our main result is the following

TuEoREM A. Let K be a compact Hausdorff space such that Cp(K) is

Lindeléf, and D C K a dense subset. Then every tp(D)-compact subset of

C(K) s fragmenied by the supremum norm and s0 it is o Radon-Nikodym
compact 3pace.

In other words, as it is well known that pointwise compact subsets of
C(K) are “rather” good (they are Eberlein), we are saying that when C\, (K)
is Lindel6f, ¢, (D)-compact subsets of C(K) are not very “bad”. Indeed,
being Radon—Nikodym compact spaces they contain metrizable Gj-dense
subsets [24, Theorem 5.2] and so they are sequentially compact [24, Corol-
lary 5.4]. Moreover, combining Theorem A and Theorem 10 of [12], we de-
duce that when Cp,(K) is Lindeldf, £,(D)}-compact convex subsets of C'(K)
have the usual RNP,

Let us recall that an important class of compact spaces I for which
Cp(K) is Lindeldf (see [3]) is the class of Corson compact spaces, that is,
those compact spaces which are homeomorphic to pointwise compact subsets
of X-products of real lines. For Corson compact gpaces Theorem A was
proved in [12].

The Banach counterpart of Theorem A is

TuEOREM B. Let (X,| ||) be ¢ weakly Lindelsf Banach space and BB C

Bx+ a norming subset. Then every o(X, B)-compact subset of X is frag-
mented by the norm and so it is a Radon-Nikodym compact space.
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Ohserve that Theoremn B applied to a dual Banach space X = ¥'* and
B = By gived us the well-known result saying that Y* has the RNP when
it is weakly Lindelof [13].

Theorems A and B have some interesting consequences. As usual, given a
topological space T and a Banach space (X, || ||) we denote by By (T, X) the
space of Baire-1 funetions from T into X, that is, the space of functions f :
T s X which are the polntwise-norm limits of sequences of norm continuous
fanetions frow 7 into X.

sonoLLary G Let K be o compact Hausdorff space such that Cp, (K) s
Lindaldf, and 12 ¢ I a dense subset. If T is o complete metric space and
S s C(K) ds a f,(D)-continuous funetion, then f € B1(T, C(K)).

Let us romark here that for K metrizable this corollary was proved in
2]. For now-soparable Banach spaces it is known that if 7' is a metric space,
X* has the BNP and f : T — X" is a weak™ continuous function, then
fe BT, X*) [20, Theorew 8].

Cononrary . Let K be a separable compact Hevsdorff space such that
C,(K) is Lindelif. The following are equivalent:

(1) K is meirizable.
(il) For every countable dense subset D of K, the space C(K) is to(D)-
anabytic,
(iii) There is o countable dense subset D of K such that C(K) is t,(D)-
analytic.

Given a compact Hausdorff and separable space K such that Cp(K) is
Lindelsf it is undecidable whether K is metrizable or not. Indeed, Rezni-
chenko’s result [5, p. 32] states that under Martin’s Axiom and ~CH such a
compact K is metrizable, but under CH Kunen gave an example (5, p. 31]
of a non-metrizable compact space K such that K™ is hereditarily separable
for every n € N and Cy(K) is hereditarily Lindeléf. Observe that given K
such that (/) s Lindeldf if we take 2 ¢ K countable and dense then
(C(I), t,( D)) is always metrizable and separable and, as said before, we
cannob decide the metrizability of K. Bearing this in mind and by Corol-
laxy 1), wo ean say that the gap to get the metrizability of K appears as the
gap botween separable metrizable spaces and analytic spaces.

Frow a different point of view Corollary D is telling us that given a
compact space K such that Cp(K) is Lindeldf, separable compact subsets
of K are metrizable if, and only if, for every countable subset 4 C K the
space (C(A),t,(A)) is analytic.

A natural class to apply Corollary D is the class of Rosenthal compact
spaces, that is, the compact spaces which are homeomorphic to pointwise
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compact subsets of the space of Baire-1 functions on a Polish space (18], for
which we obtain

COROLLARY E. A separable Rosenthal compact space K is metrizable if
and only if, Cp(K) is Lindeldf.

This result improves a previous one of [16], where the metrizability of K
was obtained under the hypothesis of C(K) being weakly Lindeléf. Let us
mention that Corollary B that appears as a consequence of Theorein A is in
fact equivalent to it.

COROLLARY F. Let K be a compact Hausdorff space such that Cp,(K) is
Lindeldf, and D C K a dense subset. If T contains a dense Cech-complete
subspace and f : T — C(K) is a t,(D)-continuous function, then f is norm
continuous at each point of a dense G5 subset of T.

By a classical result by Namioka [23], when D = K in the previous
corollary the hypothesis Cp(K) Lindelof can be avoided.

The topological spaces which contain a dense Cech-complete subspace
are Baire spaces. For Corson compact spaces Corollary I is true for any
Baire space T° [9, Proposition 1.5]. In [1], the completely regular topological
spaces that contain a Gs dense Cech-complete subspace are called almaost
Cech-complete spaces. The class of almost Cech-complete spaces contains
the Baire spaces which are K-analytic or more generally the Baire spacos
which are Cech-analytic [10, Remarks 2.5].

2. Fragmentability. In this section we prove Theorems A and B. We
will use, among other things, the proposition below for which a proof can
be straightforwardly adapted from the one of Theorem 3.4 in [24] to which
we refer the interested reader.

ProroSITION 1. Let H be a t,{(D)-compact subset of C(K). Then
(H,ta(D)) is fragmented by the norm of C(K) if, and only if, for cach
countable subset A of D, the set Ry(H) = {f|3: f € H} of restrictions is
separable in the Banach space C'(A).

In view of this proposition our starting point to get fragmentability must
be the study of the case (C(K),t,(D)) where D C K is dense and count-
able. Observe that in this case if H C C(K) is a t,(D)-compact subset then
(H,t5(D)} is metrizable and so in particular H is £,(D)-separable. To got
the fragmentability of H we need to lift the ¢5(D)-separability of H to its
tp(K)-separability (« norm separability). So, our original fragmentability
problem can be reduced to the topological one of “lifting” the scparability
of a compact metrizable space, say (Z,7), to the separability of the space
endowed with a finer topology, say (Z, G), which is far from being obviouy
in the known positive cases and unfortunately not true in general: in this
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topological setting it is known that (Z, G) is separable when (Z, G) is count-
ably deterruined (27, Theorem 2.4, and that the separability is not lifted
even when (Z,G) is assamed to be Lindelsf,

As o consequence of these considerations, we can already conclude that
Theorem A casily follows from Proposition 1 and [27, Theorem 2.4] when
Cp (K} is assumed to be countably determined, and that the general Lindelsf
case stated there will have to involve some more intricate techniques.

Given a t,(02)-compact subsct H of C'(K) we will frequently look at
elements of K as functions on H: For cach point z in K we will denote by
Z the restriction to H of the “point mass” ab @, that is, Z(f) 1= f(z) for
avery f & H. T s clear that D = {J d € D} is a pointwise bounded set of
coutinnous functions on the compact space (H, t,(D)), and K = {Z: z € K}
is & pointwise boumded set of continuous functions on the topological space
(H,t,(K)). Obviously, the closure of D in R¥ is the compact set K.

The concept of an independent sequence of functions as appears below
was introduced by Rosenthal [25] (see also [7]).

DEFINITION 2. A sequence (fy,) of functions in R® is called independent
on A C £2if there are numbers s < ¢ such that for each pair of finite disjoint
subsets P, 2 C N we have

[ﬂw@/»l:fn(w)<s}ﬂ[ﬂweA:fn(w)>t} = .
i P neg

LeMMa 1. Let K be o separable compact Hausdorff space, D € K a
countable dense subsct and H a tp(D)-compact subset of C(K). If H is
b (K)-Lindelsf and D does not contain sequences independent on H, then
H ig norm fragmented (equivalently, norm separable).

Proof. As H = |J7., Hy, where H, = {h € H : {|h)] £ n} we can
and do assume that B s uniformly bounded. The proof will be done in two
steps,

STre 1. Borel(H, t,(D)) = Baire(H, 1,(K)).

Here, as nsmal, Borel and DBaire stand respectively for the o-algebras of
Borel ancd Baire sets, Since (H,1,(D)) 18 metrizable, it is clear that

Bovel( £, 1,( DY) = Baire(H, £,(D)) C Baire(H, #, (K)).
On the other hand, the fact that (H,4,(K)) is Lindelof allows us to obtain,
from & result of (22,
(1) Baive(H, ¢, (X)) = H N Baire(C (K ), t,(K)).
As Baive(C/(K), 1, (K)) is the o-algobra generated by the “point mass” func-
tionaly {8, & & K} (sec [13]), cquation (1) implies that Baire(H, ¢, (X)) is

2

the o-algebra generated by K = {J;|n 1 & € K}. On the other hand, the
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hypothesis that D ¢ C(H,1,(D)) does not contain independent sequences
on H implies, by [7, Theorem 2F and Proposition 1E], that D is relatively
compact in By (H,#,(D}) endowed with its pointwise convergence topology.
Thus B ¢ By(H,t,(D)) and hence Baire(H,t,(K)) C Baire(H, t,(D)),
which finishes this first step.

STEP 2. For every Radon probability p on (H,t,(D)) there is a norm
separable set S € Borel(H, t,(D)) with p(§) = 1.

By our first step we can look at u as a measure on Baire(H, t,,(K)). Being
a Baire measure on the Lindeldf space (H, t,{K)), u is 7-smooth 132, Cor. 4,
p. 175], and s0 it has a canonical Borel extension that has 8 b, (K )-closed
non-empty support § C H (see [13]). The map

$ : (Ks,t(5)) = (L), [l 1)y

is a homeomorphism onto its image. Indeed, since (I? lg, 8 (5)) is compact
and ¢ is injective it suffices to prove that ¢ is continuous, that is, that
for every A C K if &g is tp(S)-adherent to Alg, then & is || [l1-adherent
to A. Given &|g, t,({5)-adherent to Els, the compactness of K allows us to
assurne that T is in fact t,(H )-adherent to A. As said before, K is a compact
subset of the space B (H,t,{D)) endowed with the pointwise convergence
topology, which is an angelic space [7]. So, there exists a sequence (a,) C A
such that (k) = lim,,—.e0 Gn (h) for every h € H and now the boundedness
of H allows us to use the Lebesgue Convergence Theorem to deduce that
limy o0 [[@n — Z||1 = 0, which implies that Z is || {[1-adherent to A and
the proof of the continuity of ¢ is finished. Since ¢ is a homeomorphism,
(Klg,t,(S)) is metrizable, which implies that 5 is £, (K )-separable and hence
norm separable. As S is both norm closed and norm separable, S is actually
a Borel set for (H,t,(D)) because

o o0
§= U B{Fm1/mnH)
n=1 m=1
where B(f,r) stands for the norm closed (t,(D)-closed!) ball centered at f
with radius r, and (f,,) is a dense sequence in . It is clear that ;(8) = 1
and this second step is finished.

STeP 3. (H,t,(D)) is norm fragmented.

The proof is by contradiction. Suppose (H,1,(D)) is not [ragmented by
the norm. Then by [18] there is a ty(D)-compact subset ¢ of H and a
continuous map p from ¢ onto 2N and € > 0 such that whenever o, o’ € 2N,
o # o', then p~ (o) # p~'(o’) are separated by the norm distance > &.
Since (C,tp(D)) is Polish, by [31, Theorem 1.3.6] there is a subset A < C
homeomorphic to the Cantor space such that pl 4 is a homeomorphism from

Tlg — &,
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A outo p(A). Binee A s 4, (K )-closed in H, 4 is tp (K )-Lindelsf and D does
nob contain sequences indopendent on A, So we can assume that H = A in
what follows,

Let e be the Haar measure of 21 transforred onto H via p. Let § < H be
the norm separable set ensured by our seeond step. Since the elements of H
are separaled by ab least @ in norm, § wmust be countable. Hence p(S) = 0,
a contradiction that finishes the proof. w

In the next leonuna we establish a useful relation between bounded inde-
pendentt sequences of coutivnons funetions defined on a compact space and
the Stone Coel compaetification of the natural numbers, SN, We will look
at SN as the sel of all witrafilters in N endowed with the topology whose
open sets are {V(H) « 1 ¢ N} where V(E) = {« € 8N : E € a}. The
injoction of M i AN s given by

i N - N,

o= Ci,

where ey, consists of all subsets of N that contain n. Given a compact space
K and a mapping £ N - K its continuous extension f : fN — K is simply
obtained by taking lmits along ultrafilters, that is,

flar) = a-lim Fn).

LeMMA 2. Let K be a compact Housdorff space, D C K a dense subset,
H a t,(D)-compact subset of C(K) and (dn)nen @ sequence in D, If the
AOqHEnCe {dAﬂ :n € N} s independent on H, then the closure of {d, : n € N}
in K is homeomorphic to N,

Proof. If we consider the map
f:N-—-K,

then its continuous extonsion J : AN — K satisfles f(AN) = {d, : n € N}.
We prove that F is actually a homeomorphism onto F. To show this it
is enough to check thab 7 is injective, and this last fact follows from the
independence of {d,, : n € N} on H. Indeed, the 'tp(D)mgmpa,ctness of H
and the independenee of the ¢, (12)~continwous functions {dy, : n € N} imply
the existeee of real munbers & < ¢ such that for every pair of disjoint subsets
P and ¢ of W we have

(2) [ () (e 12 hdn) < s}-] 2 [ M {he i :hid) > ] # 0.

ned? el

7l — dy,

Given two difforent ultrafilters o, § € SN there are two disjoint subsets
P ¢ N such that P € « and @ € §. Applying (2) to P &1:1(7]. @ we get a
function i ¢ H such that for the limits along the corresponding ultrafilters
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we have

(3) o-limh(d,) <s and f-limh(d,) >t
i ()

Since h is continuous on K and
flo) = a-limd, and f(B) = f-limd,

(3) gives us
R(f(e)Y<s and h{f(3) >t,

which implies that f{(a) # f(8) and the proof is finished. m

A glance at the above lemnma is enough to convince oneself that if H is
a compact space and (f,) ¢ C(H) is a pomtmse bounded sequence which

is independent on H, then {f,:n € N} is homeomorphic to SN; see [33]
for a different proof of this fact and some applications.

AN is a “big” compact space which is not sequentially compact [14,
Cor. 3.6.15], which has cardinality 2° [14, Cor. 3.6.12] and its tightness
and weight are ¢ [6, p. 222]. Consequently, sequentially compact spaces,
compact spaces of weight less than ¢ and compact spaces with countable
tightness do not contain a copy of SN. Those compact spaces K for which
(C(K),tp(K)) is Lindeldf have countable tightness [27, Prop. 6.3], and so
we finally proceed to

Proof of Theorem A. As quoted before, the hypothesis C,(K) Lindelsf
implies that K does not contain homeomorphic copies of SN, To prove that
a tp(D)-compact subset H of C(K) is fragmented it will be enough to prove,
by Proposition 1, that for any countable subset A C I) the set of restrictions

R(H) ={flz: f € H)

is separable in the Banach space C(A). To prove this last fact, observe that
A does not contain sequences independent on Ry(H) because otherwise A,
and therefore X, would contain a copy of AN by Lemma 2. Moreover, Rz(H)
is t,(A)-Lindelsf and Lemma 1 can be applied to show that R+ +(H) is norm
separable and the proof is done. The fact that H is a Radon—leodym
compact space follows from [24, Corollary 6.7] if we bear in mind that the
supremum norm of C(K} is t,(D)-lower semicontinuous. =

Proof of Theorem B. To prove this theorem it is not restrictive to assume
that B is absolutely convex because we can, and do, replace B3 by its abso-
lutely convex hull. For B absolutely convex, the hypothesis B norming im-
plies that B is weak* dense in By.. The hypothesis X weakly Lindel&f tells
us that £ cannot be a quotient of X whence we conclude that (Bx-+,weak™)
does not contain a copy of SN (see [29]). Now, keeping in mind the natural
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inclusion

(X, weak)} — Cp(Bx+)
we can finish this proof combining Lemmas 2, 1 and Proposition 1 as we did
in the previous procf. m

3. Applications and concluding remarks. We devote this section to
proving the consequences of Theorems A and B that we presented in the
introduction as well as to showing some other applications.

Proof of Corollary C. To prove that f € By(T,C{K)) it is enough to
prove that for cvery compact subset W of T the restriction f|w has a
point of norm continuity [26]. Given a compact W C T, the image f(W) is
tp{D)-compact and so norm fragmented by Theorem A. According to [24,
Lemma 1.1] the identity map

id: (f(W), (D)) — (FW). || i)

has a point of coutinuity and thus we see that f|w has a point of norm
continuity and the proof is finished.

Proof of Corollary D. ()=(ii). If K is metrizable then (C(K),| ||) is a
Polish space and thus its continuous image (C(K),1,(D)) is analytic.

(ii)=>(iii). This is obvious.

(iil)=»(1). If (iil) holds, there is a Polish space P and a continucus onto
map [: P — (C(K),t,(D)). Corollary C applied to f ensures the existence
of a sequence fp, : P — C(K) of norm continuous functions such that
f() = || |[Fim,, fn(p) for each p € P. Every fn(P) is norm separable in
C(K) and s0

I

C(K)=§(P)= | fulP

is norm separable, which implies the metrizability of K. m

Proof of Corollary E. If K is metrizable then Cp(K) is Lindelof. Con-
versely, if X is a separable Rosenthal coropact space, then for every dense
and countable subset D C K the space (C(K),t,(D)) is analytic by [15,
Théortme 4] and so Corollary D can be applied to conclude that K is metriz-
able. m

Proof of Corollary F. First assume that T'is Cech-complete. Define

d(z,y) := [[f (@) ~ F(¥)lloo
for every =,y € T'. Then d is a lower semicontinuous pseudometric for which
the compact subsets for the original topology of T are fragmented. Indeed,
d is lower semicontinuoug with respect to the topology of T because D is
a dense subset of K and f is ¢,(D)-continuous. On the other hand, if H
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is a compact subset of T, then f{H) is a t,(D)-compact subset of C{K)
which is || ||o-fragmented by Theorem A, which means exactly that H is
d-fragmented. Now, the proof of 4.1 in [20] can be followed for the pseudo-
metric d and the Cech-analytic space T to deduce the following

CrAIM 1. For every € > O there is a sequence (Ty,) of subsets of T such
that

() T = Ufj:l T,
(B) for everyn € N, if C is a non-empty subset of T, then there is an
open set V C T such that C NV #0 and || ||-diam(f(C'NV)) < &.

Now we make another claim:

CLAIM 2. For every € > 0 and for every non-empty open subset W of T
there is a non-empty open subset V of W such that || ||-diam{f(V)) <e.

Indeed, if we assume that Claim 2 does not held then there are € > O
and an open subset W ¢ T such that

(4) | |-diam(f(V)) >& for every non-empty open subset V' C W.
For this € > 0 take the sequence (T},) ensured by Claim 1. As W = | oo, T'n

W and W is a Baire space, there are n € N and a non-empty open set U
such that U < T, N W. We can apply property (8) in Claim 1 to the
non-empty set I/ N Ty, to get an open set V such that UNT, NV # § and
| FAlam{f(UNT,NV}) <& Now UNV is a non-empty open subset of W
that satisfies

FUNV) = fUNTNV) C {TATan V) C FONTan v) .
(D)

Clearly, f(UNT,NV})and f(UNT,NV)
and so

have the same || ||-diameter

| -diam(f (U N V}) <e,

which contradicts (4) and finishes the proof of the claim.
Now,

O.(f):={V CT:Visopen and || |-diam{f(V)) < 1/n}

is a dense open subset of T by Claim 2, and thus the set of points of norm
continuity of f, (", On(f), is a dense Gs-set because T is a Baire space.

We now turn to the general case: T contains o dense Cech-complete
subspace. Let us prove that f satisfies Claim 2. Take a dense and Cech-
complete subspace Ty ¢ T We can use Claim 2 for f|m, and so, givenne > 0
and a non-empty open set W C T there is a non-empty open set V ¢ W
such that

I |-diam(f(V 0 Tp)) <e.
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As F(V) € f(VATH) c FIV A Te) " D) we have || [-diam(F(V)) < €, which

means that f satisfies Claim 2. Now, as T is a Baire space, because it contains
a dense Baire subspace, the proof can be concluded as in the previous case. w

The condition that K does not contain homeomorphic copies of SN has
played an important role, through Lemma 2, for the results in this paper.
As a consequence of Lemma 2 and [7, Theorem 2F] we readily obtain

ProrosiTIoN 2. Let K be a compact space, I C K a dense subset and
H o t,(D)-compact subset of C(K). Then the following are equivalent:

(i} For every sequence (dy) in D there is o subsequence (d.,) such that
h{dn,;) converges for every h in H.

(ii) For every sequence (dn) in D there is a subsequence (dpn;) such that
—eeeet, (H)
{dn; 1 J € N} r is not homeomorphic to BN.

~

(iil) For every sequence (d,) in D, (d,) is not independent on H.

The bounded t,(D)-compact subsets of C(K) with property (i) of this
proposition have been called P(D)-sets in our paper [12]. In that paper we
proved some results for P{D)-sets that can now be specified for C'(K')-spaces
as follows:

PROPOSITION 3. Let K be a compact space, and D C K a dense subset

such that for every countable subset C C D the closure C is not homeomor-
phic to BN. Then

(i) The Krein-Shmul’yan theorem holds for each norm bounded t,(D)-
compact subset H of C(K), i.e., co(H)tP(D)
co(H)" I -% H)

(ii) Every norm bounded t,(D)-compact convez subset H of C(K) is the
norm closed convez hull of its extreme points, that is, H = co(Ext(H ))“ I

(iii) Bvery t,(D)-compact subset H of C(K) is weakly fragmented, i.c.,
Jor every non-empty t,(D)-closed subset B of H and o* € C(K)* the re-
striction of «* to (F,t,(D)) has a point of continuity.

(iv) Ewvery norm bounded t,(D)-compact convex subset of C(K) has the
weak Radon-Nikodym property.

is tp(D)-compact and

Proof, Lemma 2 implies that I satisfies the equivalent conditions in
Proposition 2. Properties (1), (i) and (iv) follow now from Corollaries 5.2
and 5.3 and Theorems 7 and 8 of [12].

Let us prove (iii). D C C(H) satisfies any of the equivalent conditions
in [7, Theorem 2F]. By [7, Proposition 5I] the absolutely convex hull of D,
I'{D), also satisfies all the equivalent conditions in [7, Theorem 2F], which
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means by [7, Lemma 1C] that Be k- |# is made up of functions which have
to(D)-points of continuity on every closed subset F' of (H,t,(D)). w

Observe that the previous proposition can be applied to compact spaces
K not containing homeomorphic copies of AN. Property (i) in the former
proposition has been proved in [11] when C'(K) does not contain an isomor-
phic copy of £*(¢). Combining [17, Lemma 1.1] with [21, Theorem 2, p. 111]
one can convince oneself that the hypothesis that K does not contain a copy
of BN is equivalent to C'(K) not containing an isometric copy of £!(c). Un-
der Martin’s Axiom there are compact spaces K such that C(K) does not
contain isometric copies of £ (¢) but does contain isomorphic copies of £2(c)
(see [28]) and thus Proposition 3 cannot be derived from the results of [12]
proved for Banach spaces not containing isomorphic copies of £1(c).

Let us also remark that there are compact spaces X with a dense subset
D C K such that for every countable subset C C D the closure C' # 8N but
K does contain a copy of SN. Indeed, take a set I" with the cardinality of
the real numbers and K := [0,1]". The set

D= {(zy) € K:{vy€I':z, #0}is countable}

is demnse in K, every countable subset of [ has a closure in K which is
metrizable, and so it is not homeomorphic to SN, but K contains a copy of
AN by [29].

REMARK 1. Tt is natural to ask if we can replace in Theorem A our ag
sumption on C,(K) by an assumption on H and still get its fragmentability.
We are able to do this in the following cases:

(i) K does not contain homeomorphic copies of BN and H is t,(K)-
Lindeldf. Under this hypothesis the fragmentability of H is obtained as a
combination of Proposition 1, Lemma 1 and Lemma 2.

(i) H is convex and t,(K)-Lindeldf. To prove that H is fragmented it
is enough to prove that D does not have sequences independent on H and
then apply Proposition 1 and Lemma 1. Let us prove that D does not have
sequences independent on H. Indeed, if (d,) is a sequence in D such that
(dn) is independent on H, then the map

¢ H—=L2(=CBN),  f— (f(da)),

is £, (K)-tp(BN)-continuous and arguments similar to those in [30, 7-3-5]
yield & > 0 such that [—,]" C ¢(H). This implies that (C'(3N),,(8N))
is Lindeldf, which contradicts the fact that SN does not have countable
tightness.

{iii) H is weakly Lindelsf. As in the previous case, to prove the frag-
mentability of H, it is enough to prove that there is no sequence (d,,) in D
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such that (Eﬂ;) is independent on H. If there is such a (d,) we can apply
[11, Lemma B] to ensure that H contains a family (24)ae. equivalent to
the usual basis of £1(c). Define ¥ := span{a, : o € ¢} in O(K) and for any
A C ¢ countable, consider

Ra={o=3 Aawa €HNY:3 Aa=1, Ay =0forally € A}.

=134 age

The sets K4 are non-void, weakly closed, have the countable intersection
property, but have void intersection, which contradicts the fact that H NY
is weakly Lindeldt.

This result applied to dual Banach spaces tells us that weakly Lindeldf
wealk* compact convex subsets have the RNP, a result that can be found
in [8].

We naturally arrive at the following

PROBLEM 1. Let H be a t,(D)-compact subset of C(K). If H is t,{K)-
Lindelsf, is H fragmented by the norm of C(K)?

Observe that we always have D ¢ K < C(H, to(K)). A glance at the
proof of Lemma 2 allows us to conclude that if we assume that there is a
sequence (d,) C D such that (dn) is independent on H then K contains
a copy of AN and hence so does C(H,t,(K)). So, by Lemma 1, Problem 1
will have an affrmative solution if the problem below has an affirmative
solution.

PROBLEM 2. Is it true that BN cannot be embedded as o subspace of some
Cp(T) for T Lindeldf?

Topologists use the term “co-Lindeldf spaces” for those topological spaces
Y for which there is a Lindeldf space T' such that ¥ is homeomorphic to
a subspace of C,(T). With this terminclogy we are asking if SN is not a
co-Lindeldf space. If the Proper Forcing Axiom holds then every co-Lindelsf
compact space has countable tightness [4], and so, in this cage, SN is not a
co-Lindelsf space and both Problems 1 and 2 have affirmative answers. As
the Proper Forcing Axiom is consistent with the axioms in ZF we conclude
that there are no counterexamples to Problems 1 and 2 in ZF. =
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