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The minimum diagonal element of a positive matrix
by

M RF SMYTH {RBelfast) and T.T. WEST (Dublin)

Abstract. Properties of the minimum diagonal element of a positive matrix are ex-
ploited to obtain new bounds on the eigenvalues thus exhibiting a spectral bias along the
positive real axis familiar in Perron-Frobenius theory.

The (i, j)th entry of an n x n matrix T" is written [17;;. The matrix T
is positive (T = 0) if [T]y; > 0 (¥4, 7) while T is strictly positive (T > 0) if
[T];; > 0 (V%,7)- The spectrum, or set of eigenvalues of T, is denoted o(T'),
the spectral radiug (") and the peripheral spectrum

Pero(T) = {) € C: A€ o(T), [\ =r(T)}
The trace of 7' will be written tr(T'), and the complex field C.
This paper combines properties of the minimum diagonal element e(T)
of a pogitive matrix T,
E(T) = 11%‘21%111[11]5@, ’
with elementary spectral theory to show that o (T'} lies inside the disc centred
at ((T),0) with radius r{T")—&(T) (Proposition 6 and Figure 1) generalising
a result known for stochastic matrices ([2], I11.3.4.1). Various improvements
of this result are then considered.
We start with the elementary properties of £(T") for positive T, and we
note that § > T = 0 implies that r(5) = r(T).
LeMMa 1. (i) IFT > 0 then s(T) < n~ " tr(T) < r(T).
() If 8,7 > 0 then e(ST) = &(8)e(T).
Proof Property (i) follows from the fact that the trace of T’ is the sum
of the eigenvalues of 7' repeated. according to multiplicity. For (ii) we have
n
(9T = [SToelTles = 180l Tl (V2),
k=1
hence [8Ty > &(S)e(T), giving £(ST) 2 e(8)e(T).
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PROPOSITION 2. If T > 0 and s(T) > 0 then r(T) > 0 and
Pero(T) = {r{T)}.
Proof Put (T) =¢ > 0. Then r(T) 2 e>0and T' 2T —¢el 2 0.
Hence r(T) = »(T' — &I, therefore

{1 ol -el)c{reC: A <r(T)}
But, by the spectral mapping theorem,
ol —el)=0(T)—=.

Now suppose 7/2 < # < 37/2 and that u = e??r(T) € o(T"). The point
u — € les strictly outside the disc {A € C : |A| £ (T} contradicting (1). It
follows that

arc{e®r(T) : 7/2 <0 < 3n/2}no(T) = 0.
If now || = r(T) but g # r(T) then for some positive integer m,
u™ € arc{er(T™) : /2 < 0 < 37 /2}.
But T™ > () and, by Lemma 1,
e(T™) > e(T)™ > 0.

Hence p™ & o (T™), therefore p & o(T), which completes the proof.
COROLLARY 3. If T' > 0 then Pero(T) = {»(IT)}.
COROLLARY 4. If T' > 0 then r(T') € Pero(T).

Proof Suppose that T > 0 and § > 0. Then
e(T+80)>d>0,

hence, by Proposition 2,

Pera (T +61) = {r(T + 1)}

and r{T +6I) > r(T). Thus T+ &I has a real eigenvalue not less than r(T7),
hence T" has a real eigenvalue not less than #(7") — § for 0 < ¢ < r(T"). Since
¢ is arbitrary, r(1") € Per o{1").

It is now clear that if 7> 0 and § > (O then r(T + 6I) = r(T) + §. This
result can be extended.

LemMa 5. If T' > 0 then (T +6I) = r(T) + & for § > —e(T).

Proof T +4I > 0 for § > —&(T") so, by Corollary 4, v(T - §I) is the
maximum point on the real axis in o (7" + §I) for this range of values of 4.
Similarly (") is the maximum point on the real axis in o(T). But now

r(T)+8€a(T)+ 6 =c(T+61).
Thus r(T) + § is the maximum point on the real axis in o(T + 6I). Hence
r{T+0I) =r(TV+¢é for § > —e(T).
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The next proposition establishes the existence of an eccentric spectral
disc (Figure 1) for a positive matrix T which, if e(T") > 0, is strictly contained
in the spectral disc {A € C: |A| < r(T)}. This generalises a result known
for stochastic matrices ([2], TI1.3.4.1).

PrOPOSITION 6. If T > 0 then
oM c{heC: | A—eM <r(T) -}
Proof Let T > 0 and p € o(T). Then if &(T") = ¢,
p—eca(l) —e=c(T-el),
hence | —¢g| < r(T"—el) = r(T"} — ¢ by Lemma &.

(1)~ &(T)

0 e(T) (T

Fig. 1

This result can often be improved upon. Consider the positive matrix
1 0
T = { L
Since £(T") = 0 the two spectral discs of Figure 1 coincide giving nothing new.

Ohbserve however that, by the invariance of the trace and of the determinant
mnder similarity, 7' is similar to the positive matrix

., _|a b
g = [c: 1~ a] ’
where 0 < a < 1,0 < b, ¢ and be = (1 — a); and that all positive matrices

similar to 7" have this form. Further

e(8) = Oglausll{a, 1-a},
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and the maximum value which £(S) can take is 1/2. Since the spectrum is
invariant under similarity we see that for each 5§ > 0 and similar to T we
can replace e{T') by () in Propositicn 6 and Figure 1.

This suggests that, for T > 0, we introduce the subset of the positive
real axis

A(T) = {&(8) : § > 0 and similar to T’}
and put n(7) = supA(T). Note that since the trace is invariant under
similarity it follows from Lemma 1 that

B(T) < n~ L tr(T).
Observe that, in the previous example,

Our improved eccentric disc theorem states that (1) can be replaced
by n(T) in Proposition 6 and Figure 1.

PropositioNn 7. If T > 0 then
o) CH{AEC: A= n(T)] < r(T) = n(T)}-
Proof. Let i € o(T), and suppose that
lu—n(T)| > r{T) —n(T).
Then there exists 6 > 0 such that

(2) | —n(T)| = r(T) —n(T) + 4.
Choose § > 0 and similar to T such that
3 n(T) —e(8) < &/3.

Then, by Proposition 6,
= n(T)] < |u—e(S) + In(T) — e(S)| < 7(8) ~e(8) +6/3
=r(T) = n(T) +n(T) —e(S) +8/3 < r(T) — n(T) +26/3

by (3). This contradicts equation (2), therefore our original assumption is
false.

CoORrOLLARY 8. If T' > 0 and Per o{(T) contains two distinct eigenvalues
of T then

e(Ty=n(T) = 0.

It is easy to see that the converse of Corollary 8 is false. Consider the
positive matrix

T=

(A
O
O =

Then tr(1T) = 050 n(T") = 0 but o(T") = {-1, 2}.
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If § is a positive matrix we know that n(S) < n™*tr(5). The next
example shows that this inequality may be strict. Consider

0 10
S=11 0 0
0 01

Then Pero(8) = {—1, 1}, thus, by Corollary 8, n{S) = 0. But tr(5) = 1 so
n(S) # 5 tr(S).

ProBLEM. For T > 0 is A(T") a closed subinterval of the positive real
axis?

REMARK. The minimum diagonal element of a real matrix is an object
which hitherto seems to have attracted surprisingly little attention. The
class K, introduced by Fiedler and Ptak [1], consists of matrices whose off-
diagonal elements are negative (< 0) and whose real eigenvalues are strictly
positive; their inverses lie within the class of positive matrices ([1], 4.2).

Let A denote the class of negative inverses matrices (N € A &< [Ny
< 0 V4,7). Then a strong duality exists between classes N and K based
on shifts {adding real multiples of the identity). When a sufficiently large
positive shift is added to a matrix in A the sum is in K. Conversely, a big
enough negative shift added to a member of X yields a member of N. More
precisely, for real A,

() if T € N then T+ A € K & A > r(T'); while
(ii) HTekKthenT - A eN & A > IIla.XIS,;Sn[T}ﬁ.

Now Perron-Frobenius theory for positive matrices may be employed to
derive results for matrices in class K. For example our Proposition 6 quickly
leads to 4.8 of [1].
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