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Two-sided estimates for the approximation numbers
of Hardy-type operators in L* and I}
by
W. D. EVANS, D, J HARRIS and J. LANG (Cardiff)

Abstract. In [2] and [3] upper and lower estimates and asymptotic results were
obtained for the approximation numbers of the operator T : LP(RT) — LP(R") defined
by (T'f)(2) = v(a} S:o u(t)f{t) dt when 1 < p < oo. Analogous results are given in this
paper for the cases p = 1, oo not included in [2] and [8].

1. Introduction. In [2] and [3] the operator T : LP(R*) — LP(R*)
defined by

(11)

4
TF(z) = v{z) { u(t) f(t) dt

0
was st}ldied in the case 1 < p < oo, with u,v real-valued functicns and
we LY (R™), v € LP(R*), p' = p/(p — 1). Estimates for the approximation
numbers o, (T) of T' were obtained in [2], but the procedure for extracting
the upper and lower bounds from the results is rather cumbersome to apply.
This deficiency was overcome in [3] where asymptotic bounds for the ap-
proximation numbers which are easy to check in practice were determined.
Specifically, it was proved that

(1.2) wlim ey, (T') &= '-Tlu(t)v(tﬂdt
) =b O3 0

3§y

when p = 2; and when p 5 2,

o0

1
1. - Vo (8| dt < lim in
(1.3) 7% 5] Jut)u(t)] dt < liminf nan (T) _
< limsup nan (T) < oy S |u(t)u(t)| dt
im0 0

for some constant o, depending on p. Further in [3], two-sided estimates
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are given for the I* and weak [* norms of {a,(T)} when o > 1; in the case
p = 2, these results recover those in [5].

The analysis in [3] is no longer valid when p = oo or 1, and, indeed,
the result itself has to be meodified in the following way: when p = oo, the
function v in the integrals in (1.2), (1.3) is replaced by

Vg (t) = Eg%l_{ ”v”LW(ﬁ—E,t-F-E):

while if p = 1, then wu is replaced by ws. Three critical ingredients of the
proof in [2] and [3] are no longer available in these cages. The first is that
the operator P defined by the integral mean over an interval I ¢ RT, namely

1
= | fdz,

H ;
where || denotes the length of I, is such that the distance from T to the one-
dimensional operators on LP(I) is comparable to [T — P |LP(I) — LP(I)|.
The second concerns the basic strategy which relies on a partition of Rt
into intervals I which are defined by means of a continuous set function
L(I) which, with I = (¢, d), is decreasing as ¢ increases and increasing as d
increases. In the L* and L' cases the analogue of L is no longer continuous
and an alternative function, and technique, have to be found. Finally, the
fact that the step functions are not dense in L™ causes difficulties, and
indeed, it is this which dictates the form of the result noted above.

It is just as easy to consider a general interval (a,b) instead of RT, so
that in this paper

Pf

b

Tf(z) = v(x) | u(t) f(2) dt,

a

(1.4) a<z<h
this simple extension will have a useful consequence when T is considered
as an operator on L!, as we can then simply translate the dual of the L™
result. Also, as was observed in [3], the condition on v assumed there, namely
v € LP(R"), can be weakened to v € LP(z,00) for all & > 0, and we
incorporate this fact in the present paper.

Finally, to give some insight into the significance of the function v, in
the L°°(a, b) case, we show that, with the operator in (1.4) denoted by Ty,
the following is possible:

“TU,U” = HTu,va[l = ”Tu,v - Tu,v-«nga
b b

§lu(®)o)| d # § (ol 1) de,

a aQ
lim sup naq (Ty,.) < Hmsup nan Ty, ),
lim inf nan (Ty,y) = liminf nan Ty o, ),
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where the symbeol = indicates that the quotient of the two sides is bounded
above and below by positive constants. Analogous possibilities exist in the
LY(a,d) case.

2. Preliminaries. In most of the paper we shall be concerned with
the operator T' defined in (1.4) as a map from L*(a,b) into itself. The
assumptions made on u, v in this case are that, for all z € (a,b),

(2.1) u e Ll(a,x),

(2.2) v € L™(z,b).

The results for T" acting between L'(a,b) will follow on taking duals, and
for this part of the paper alternative conditions to (2.1} and (2.2) will be
required.

For I = {¢,d) C {(a,b), define

4

(2.3) T1) = J(e,d) = up { | (0] oo o

where x5 denotes the characteristic function of the set §, and ||« || denotes
the norm on L (a,b); we shall write || - ||p.r for the usual norm on LP(I),
1<p< oo, but use || - ||, when I = (a,b). It is easy to see that

(24) J(1) = esssup { S Jut) dt Jo(z)]]}.

We also have

LEmMA 2.1. Suppose that (2.1) and (2.2) are satisfied. Then the function
J(-,d) is continuous and non-increasing on (a,d), for any d < b.

Proof Given z € (a,b) and & > 0, there exists
h=h(z,&) € (0,min{1(z +a),b—z})

such that
aieh ]
S lu(t)| dt < min (_.’m_____._u’g)'
ety ”UH»O,((m-r-a)/z,d)
Then
(25)  J(w,d) £ J(z~ hyd)
Ed
= maxq Su w(t)| dt |v]|oo,(z.a) | »
{gm [ ] moNatl e
x z
swp [(§ +1) o)l delolln o) }
mCa<d BN T, L

< max{e, e+ J(z,d)} = & + J{z,d)
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and so 0 < J{z ~h,a) — J(@,d) < e. Similarly, 0 < J(z) = J(z+h) < e and
the continuity is established. It is obvious that J{-, d) is non-increasing and
hence the lemma is proved. =

The following result is known (see [4] and [6]):

ProroOSITION 2.2. The operator T' in (1.4), with w,v sotisfying (2.1)
and (2.2), is bounded as o map from L™(a,b) into L*(a,b) if and only if
J{a,b) < co. It is compact if and only if lit,..q, J{a,¢) = lmy.,_ J(d,b)
= (],

In [2], the analogue of the function J in (2.3) could have been used
to construct the partition of (a,b) into the intervals I; which feature so
prominently in the analysis; see the Remark at the end of §4 in [2]. However,
in the L°° case, for the reason given in the introduction, we need to use
directly the function

sup inf |T7f — auw if (I > 0,
(26)  A() = {feme’f#O aem” f lloo, 1/l Fllow,r  if w(J)
0 ifv(I) = 0,

where v(I) := {;v(t)dt. If v is continuous, it cen be shown that A(-,b) is
continuous, but in general, this is not so. For, consider the example

_J1 forze(0,1)U (200
'u(a:)m{o otherwifge, )93 e0) () = x(1,2)(2),

with (a,b) = (0, 00). Then A(z,00) =0 for z > 1, but for z < 1,

—

00, (m,00) = cirelfmmax{ml: |1 - C\:'} = -,

o) 2 g | [uee~ ot

L]

It is oflinterc-;\:st to note that if (2;1) and (2.2) are satisfied and v & L*(a,b),
then, since §,u(t)f(t) = 0asz — ay for every f € L (a,b), we must have,
fa#0, |TFf- || eo (a,c) = 00 for ¢ € (a,b]. Hence, with I = {a, ¢},

2]

Al,0) = stp |ITf]oe,r = ess g}lplv(w)!s |u(t)] dt = J(a,¢)

1llos,2=1
by (2.4).
We now define, for any interval I C (a, b)and £ > 0,
Vi
(2.7) M(Le)=in {n: I = | J I, AL) < ).
g ]

Observe that if I C (a,b), then we have M(J, g) < 0. For, since J(c,d) <
[ulls,ce.llvllo,z for any (e,d) < I and | - ||y is absolutely continuous, it
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follows that the number
{2.8) N(I,e) :=in‘f{m:[=LWJL;1 J(I) SE}
is finite, and =

1T flloo,r

2.9 AN < BT
(@9) AN B e THlont
N (IO
FEL= (D), f£0 I 10,1
by (24); thus M({l,e) < N({l,e) < oo. If I = (a,b), we still have
M({I,e) < oo if

< J()

1ir£1 J{z,b) = lixy J(a,2) =0
ot B b ).
since N{I,&) < oo and (2.9) remains valid.

LEMMA 2.3. Suppose that (2.1) and (2.2) are sotisfied and let M (1) =
m < oo for I C{a,b) and & > 0. Then we have:

(i) if m = 2n, there ewist intervals Jy,i=1,...,n, such that I = | Ji., Ji
and A(J;) > &

(i) if m = 2n - 1, there emist intervals J;, ¢ = 1,...,n + 1, such that
I= Mg, Al) > e, i=1,...,n, and A(Jny1) <e.

Proof. From the definition of M (I, €) in (2.7) there exist [;,1=1,...,m,
such that A(L) < € and A(L U L) > & Now set J1 = I U I,
Jo=I3 ULy, ..., with Joq = I, in case (ii). w

The final preliminary result is the following critical lemma which will
vield a one-dimensional approximation to T on I.

LEMMA 2.4. There exists wy € {L°(I)}* such that wy(1)=1, ||wr/(zwe))-
=1 and, for oll f & L*>(I),

210) ik (F = @)olloe,r € (F = wr(elloe,r € 2 30E [ ~ 00l
Proof. For 0 € v < |[ufless and Ay = {2 : v(z) > v}, define wy €

{Z*=(D}* by
1

wn(f) i e | fw)de, £ e LD,
ks Ay
Then wy (1) = 1, [lwy|l{zeo(ry = 1 and
(211) lwn(£)] < #vallm,z-

The set W = {Ws : 0 < 8 < |v|loo.s}, where Wg = {wy : v > B}, is
a filter base whose members Wy are subsets of the unit ball in {L%°(I)}*.
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Hence, by the weak* compactness of this unit ball, W has an adherent point,
wr say. 1t follows that wr(1) =1, lwrll{ze=(n)- = 1 and, from (2.11), for all
B € (0, |[vleo,r}, ,

lwr(f)l £ EHf“vHoo,h fer=().

Consequently, for any ¢ € R,
inf |(f ~ a)vfleer < 1(f = wr(f))vlloo,r

S I(f = dYolloo,r + wr (S = 6)viloor
<10 - {1+ Dot
Since § € R and 8 € (0, ||v]/o0,z) 2re arbitrary, the lemma follows. w

3. Bounds for the approximation numbers. We recall that, given
any m € N, the mth approximation number of a bounded operator T am (1),
is defined by

am (T) = inf ||T — F||,
where the infimum is taken over all bounded linear maps £ : L*(a,b) —
L*(a, b) with rank less than m. General information on approximation num-
bers may be found in [3]. Since L (a, b) has the approximation property, T
is compact if and only if @, (T') — 0 as m — 00,

The first two lemmas of this section give estimates for am (1") which are
the analogues of those obtained in [2]. Hereafter, until §7, we shall always
assume (2.1) and (2.2).

LEMMA 3.1. Suppose that T : L*°(a,b) — L*(a,b) is bounded. Let ¢ > 0
and suppose that there exist N € N and numbers ¢k, k = 0,1,..., N, with
a=cy<ey <...<en=b, such that A(lx) < e fork=10,1,...,N-1
where I, = (ck, ckr). Then an41(T) € 2.

Proof. Let f € L*®(a,b) be suck that ||f|e = 1, and write

N1
Pf o= z Py f

i==0
where the Py, are the one-dimensional operators

i

Pka(m) = Xl'k(m)v(a")ah (Sufdt): k=0,1,..., N —1,

-3

and @ c_,‘, @
mfk(gufdt) = gufdt+w1,,( | ufdt),
a a Eh

with wy, € {L>°(I;)}* the functionals in Lemma 2.4.

icm
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It is obvious that Py, k = 1,...,N - 2, are bounded. With k = 0 or
N —1we have on I = (a,¢;) or (e, b),

&

wdor (§ ufat)] < orlligm-lo@)] | (o) de [ £ ons

Chy ey
and hence F is bounded in view of Proposition 2.2 and (2.4). We have
11f — Pflloo = sup Tf Py f
o hye{(,},],,..].:,N-m]} “ f L f“oo,lk
o ®
= Hup W { wf df — o f ot H
reton 1) H () cs,, of dt - wy, (}k ufdf)} .
=2 sup AL Flleo,r < 2] Flleo,s

RE{0, L, N1}
by Lemma 2.4. Since rank P < N, the lemma follows. m

LEMMA 3.2. Suppose that T': L™{a,b) — L>(a, b) is bounded. Let ¢ > 0
and suppose that there exist N € N and numbers dy, k = 0,1,..., K, with
a=dy <di <...<dg &b such that A(Iy) > ¢ fork = 0,1 ’ féwl
where Iy = (dg, diy1). Then ag(T) > e. B ’

Proof. Let A € (0,1). From the definition of A(I
‘ 0, k) we see that there
exists dp € L% (1)) with ||ég] oo, = 1 and such that

(3.1) ;IEI%& T 1 = avllao, 1, > MNATL) = Ae.

Set ¢x(z) = 0 for @ & I. Let P : L®(a,b) — L°{a,b) be bounded and
Lﬁ;niqP < K — 1. Then there are constants Ay, .. s An—1, DOL all zero, such
a
K1

P(E:U )\k.fif'k) = (),

Put ¢ = 2,{,&;},1 Aitr. Then

1T% ~ Pbjoc
= || T¢l{ oo
> - ¢ Iy
0l [) (S n(ehut) de+ | (6 ). .
ke{o,f&?;;ml} ARl T by + civlloo,s,  where a = A" " p(tyu(t) dt,
> 4 : > ’
= reton ey inf [kl 1Ty ~ v lloo, 1,
2 ol Ale = efl¢los

REL0,1y0 K ~2}
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by (3.1). This fmplies that ax (1) > Ae, whence the result since A € (0,1)
is arbitrary. m

COROLLARY 3.3. Suppose that T is compact (see Proposition 2.2). Then,
for € € (0, A(a, b)),
apey+1(T) €26, apg(e)z-1(T) > &,
where M, = M((a,b),¢) is defined in (2.7) and || denotes integer part,

Proof. This is an immediate consequence of Lemmas 3.1 and 3.2,

4. Local asymptotic results. We need some preliminary results and
the functions v, mentioned in §1, namely

(@) 1= 10 0], amse

for z € {a,b).

LEMMA 4.1. For any I C (a,b), we have J(I;u,v) = J(I;u,vs) and
A(Lyu,v) = A(Lu,v,), where J{I;u,v) and A{l;u,v) are the functlions
defined in (2.3) and (2.6) respectively.

Proof. For any continuous function ¢, it is readily shown that ||v;¢) e,z
= ||vgl cc,z, and this fact yields the lemma. w

LEMMA 4.2. Let I C (a,b), and let 9, {I”}l(”) be o partition of I by
intervals IT such that each I (n+1) ¢ Un41 i85 o subinterval of some I () ¢ Pn,
and |I}| — 0 as n — oc. Deﬁne

I(n)
v {E) =Y xan ()],
i=1

Then for a.e. t € I,

(1) flvslloe,r = v7 (1) 2 vs(2),
(i) vR(t) \ vs(t) as n — oo,
(i) Limn oo §; w{t}Ul(t) — ve(8)] dt =
Proof. Since v, is upper semi-continuous and bounded, it is known

that it can be approximated from above by a decreasing sequence of step

functions. However, we shall give a proof of the lemma for completeness and
subsequent reference.

I € int I?, the interior of I}, then v?(£) = ||v,||oo sr satisfies
va(t) S 03 (E) < [lus]oo, 1.

This establishes (i), the exceptional set being 9 = U, en Sn, where S, is the
set of end-points of the intervals I € 9,,. If t € int If"'l +y C int I

¢ = |[vsloo, 2

in) S3Y, We
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have ¢l (n+1} < Cfimy and so vpth(t) < uf(t) for t € I\ S. Also, if t € int I,

vy (8) = [slloo,zz = [Wlico,zz , 2 v(E)

as observed in the proof of Lemma 4.1. Moreover, given § > 0 there exists
£o > 0 such that

Uﬂ(t) > “v”m,(f—stnt+eo) -4
Now choose N such. that for all n > N,

t € int I,y C (¢
Then we have, for all n > N,
0<vl(t) ~valt) <&

and hence v7(t) — v,(t) for allt € I'\ S.

Finally, (iii) follows by the dominated convergence theorem since u €
LM(1) and [[vF [leo,r = [[Wslloo,s = [[P]lce,r <00 m

LEMMA 4.3. Let u,v be constant on I CC (a,b). Then
(4.1) A(I) = lu] [] |1].

Proof. We have, if I = (¢, d),
A(D) 2 [l [olinf |1z — ¢~ efloe,r = Jul o] fjo — e - 3d=0)| oz

Let f € L*°(I) and set F(x)
such that

- EO:t + EO)'

= glu/ [v] |7)-
= S: f dt. Then there exist zp,21 € [c,d]
F(EO) < F(:}:) < F(ml): TE [aa b]:
and hence

inf | F ~ alo,r < [tF = 5(F(0) + F(1))|

oo, l

z

- %(F(wl) — F(zo)) = % | 7at.

xg
This yields
1Y 1
A< s {5 {ratr <51
“f||00,1=1 @0
and the lemma is proved. =

LeMMA 4.4. Let T €C (a,b) and uy,ug € L*(I). Then

(42) (A, 0) — AT )] < s — gl ol
Proof. We have
JA(T; ug,v) — A(T; uz, )|
< sup |inf v(m)(sulfdt-"a)n I—iﬂf @(m)(smfdt—a)HmJ-
17 oor=2 | @ 2 o a ’
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Suppose f is such that

(43)  inf ||v(a:)(§u1f d—o| | zinf e ( wfdt~a) Hm,l.
Given € > 0 there exists ¢y € R such that
o) (fuasae-a)], > oo (Juasee-on)| -

o<t o - )] it ()|

oo, oa,

m)(iuzfdt—ao)H g

oo, J ” oo, I

< ot (fuaf e = o)

< Hfu(m)i(ul —ug)f clt“mJ +e

S MJv@) oo, llur = wzlly,z[|f |loo,r + -
This remains valid if the inequality (4.3) is reversed, and so
[A(T;u1,v) — AL uz,v)] < [lv(z) oo, rllua

Since ¢ is arbitrary, the lemma is proved. =

In the next lemma g* denotes the non-increasing rearrangement of a
function g on an interval I': g* is the generalised inverse of the non-increasing
distribution function g, of g, namely

(4.4) g*(z) .= inf{t : g.(t) = z}
where
(4.5) 9u(t) = |{z € I+ g(z) 2 t}].

Note that since we have > in the definitions above, g. and g* are left-
continuous functions.

LemMa 4.5. Let I CC (a,b) and v, 6 € R with § > vs(t) 2 0 on I. Then

(4.6) A(L; 7,8y 2 A(Tiv,04) 2 5191 | (9ax2)* (8)¢| oo, (0,171 -
Proof. The first inequality in (4.8) is obvious. The set
Mp={y e l:v(y) > 8}
is relatively closed in I. For if {y,} C M and y, — y € I as n — oo, then

icm
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given £ > O there exists IV such that (y —e,y + ) 2 (yn
n > N. Hence

— 36,9 + 3¢) for
“'U”oc,(y—s,y-l—e) 2 “U||oo,(yn—§.s,yn+§e) Z s (yn) >p

whence v, (y) > 8 and y € Mp. From the observed left continuity of (4.4)
and (4.5), we have

pax |(vexz)" (£}t = | (vsxr)* (o )to!

for some tg € (0,|[]], and there exists 8 > 0 such that |Mp| = ;. Choose
the optimal cg, dy such that Mg C [co,dp] € I. Then, with I = (¢, d),

l(waxr)" ()t oo, 0,21y =

A(L; v, us) 2 || inf

%@mgﬁ-gu

2 7| inf [|Bxaz, )y — ¢ ~ @)lloo.s
=Bl |ly — ¢ — 3(co +do — 20)||, ar,

= 3B|7i(do — co) 2 357} | Mgl
= 517l [(wax2)* (to)tol = 31| Il{waxr)*(t

The lemma is therefore proved. =

oo,l

)t e, t0,17)) -

LEMMA 4.6. Let I CC (a,b) and v,6 € R with § > v,(t) > 0 on I. Then,
forany a > 1,

é|lI
(@7 A7,8) - Al < 2l — v (@) + L
1
Proof. We first observe that
Va
(4-8). (vaxr)*(t) = vo(t) = (5 - W) X(0,|1|-111/2)
where V' = || §,(8 — v,(t)) dt. For, with § := {2 : vs(z) <5 ~Ve/(|7||1])},

Vv
2 §(‘5 5+ i) = pr

which implies that

Hw:va(m)>6—ﬁ%}‘>| |_.L{l

and hence (4.8). Note that (4.8) is trivially true if § — Ve/(lv| [I]} < 0. On
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using (4.1) and (4.6),

- A(IJ Ys U-S) S

0< A(I37,6) 1] = S Cesxr) Ol o,

< bl -  max(evo(t)
= Shielzl - i (5

I
_av e _v

“arm) (-2
T2 20 2

o |
<3 § 71(6 = vs(£)) dt + |71,

which is {4.7). =
THEOREM 4.7. For any I CC (a,b),

(49) = {ju(®lva(t) dt < liminfeM(I,e)
2 I e—04.

< limsoupsM(I, g) < S |ult)jvg (t) dt
el I

Proof On using Lemma 4.2, we infer that for each n > 0 there exist
step functions u,, v, on I such that

@) (v (8) - vs(8)) dt < 1
I

[l = |1, <,

and

[Vslice,r 2 vy (t) 2 va(2)
on I. We may assume that

m m
Uy =Y Exwyy,  Up = anxW(j),
i=1 =1
where the W (5) are disjoint subintervals of I, and 7y = 0.

Lete >0, M = M(I,s), and let ¢y = cx(e), k= 1,..., M-+1, be the end-
points of the intervals in (2.7): with I = [¢,d] and Iy = Ix(e) = [ck, ek,
wehave c=¢; < ... < epmy1 =d and

A(Ik)-EA(Ik;u:U)SE} k":]'?"‘!Mi
A(IkUIk+1)>E, k=1,...,M -1
Then
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(410)  |§ falt)wa(e) - §|u,,(t)|vn(t) |
I

< § ()| (wn(t) = ve(8)) dt + § lu(t) — uy () vy (8) dt

I I
< (1 + [|oglloo,r) € 71 + [[Vsilco,1)-

Next, let K := {k : there exist j such that Iz U Izx4y C W(j)}. Then
#K > [M/2]~2m = M/2 — 1~ 2m, and, by Lemmas 4.4 and 4.6,

(_ﬂ:{ -1 2m)a < Z Ay U Ingya; u, v)
2 keX

< Z{A(ka U Iog+1; Un, Un)
keK
+ (A{T2p U Toppin; s vs) — A(J2k U Top15 Uy Us))
+ (A2 U o415 iy Va) — Al2k U T2k1s tgy Ug))

< 5 T I&ln W)
J

s {uu — tnlluw [0slloe i)
i
o 131/, Ta—

P2 Il - S

Wi

MIT—‘

S {ti Uy dE + [Ju — Un]|1,7l[vs 00,2
I

o 1
+ 2 S iy | (v — va) dt + o § {1t [
|t | g dt+K(a'q+ )

<

L\D}:—l Lolp—\

I

{ lua(t) s (2) dt + K(an 3 - )

I

by (4.10), for some constant K independent of . We therefore conclude that

llmsup eM(I,g) < S | (t)|vs(t) dt + K(Cﬂ? + )

E—-P.]. I

and the right-hand 1nequa,11ty in (4.9) follows since n > 0 and o > 1 are
arbitrary.
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For the left-hand inequality in (4.9), we add the end-points of the inter-
vals W(j), j = 1,...,m, to the cg, k =1,..., M — 1, to form the partition
c=e; < ... < ey = d say, where n < M + 1 +m. Note that each interval
Ji 1= [es, ez+1] is a subinterval of some W (j) and hence u,, v, have constant
values on each J;. We again use Lemmas 4.3, 4.4 and 4.6 to get

%S|un|vndt Z Z AT U, V)

I =1 J,CW(5)

<3 {A(J,-;u,vs) T = gl oo

i=1

o’ 1
+3 S |ty | (v — vs) dE + o S LT [P dt}
Ji Ji

1
< (M+1+m)e+K(an+ E{)'
Hence, from {4.10),

% Vlu()os(t) dt < (M + 1+ m)e + K(an + %)
I

and the left-hand inequality in (4.9) follows. m

5. The main result. With U(z) := {. [u(f)] dt, we define & € RT by

(5.1) U(ge) = 2%

ifu ¢ L(a,b), then k may be any integer, but ifu € L*(a, b), then 2% < |Jul);.
For each admissible & we set

(5.2) or = (lles,zer  Zk = (Eks Errr)s
so that
(5.3) 25|l co,20 < 0 £ 250l c0,2, -

For non-admissible & we set o = 0. The sequence {0} is the analogue of
that defined in {3, §3], which in turn was motivated by a similar sequence
introduced in [5].

The following technical lemma has a central role in this section.

LEMMA 5.1. Let ko, ki, ks € Z with ko < ki < ko, and let I; = (a;,b;)
(7 =0,1,...,1) be intervals in (a,b) which are non-overlapping and such
that Ij C Zg, (F=1,...,1), a0 € By, bop € Zy,. Let z; € I; (=0,1,...,1)
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and zo € Z, - Then, if a>1,

(54) 5= Z ( 5

G-

{dt) ||?‘;||go,(mj,bj) S (2a+1) D]gl,{aéckzo- .

Proof. On using Jensen’s inequality, we have

Ehy+1
s<( | i) 4|v\|m,(ek1,gh,,+l)+z(s|u(t|dt) lell%,
ko S|
S{(Qkﬁ—l 2k0)k1<n<kz ;’n} +( { |u(t)|dt) lol%.z, by (5.3),

kg
Tk o
o Ji:z 2
<{2 hrg.axk ont® + {2 2)@} ,
whence (5.4). »

LEMMA 5.2, The quantity J(a,b) defined in (2.3) satisfies
(5'5) %"J(a) b) < SUpg Tk < 2J(a1 b)

Proof. From (2.4) and Lemma 5.1,
J{a,b) < 3supop.
k

Also,

€k
o < 24 [0]|oo, 2, £ 2 § [w(t)] dE [V]]oe,p) < 27(a, D). m

COROLLARY 5.3. The operator T : L°°(a,b) — L™(a,b) is bounded if
and only if the sequence {ox} is bounded, in which case their norms are
equivalent:

(5.6) 71 = {oHlco-
Also, T' is compact if and only if limy.soc o = 0.

Proof. The first part is an immediate consequence of Proposition 2.2

and Lemma 5.2. We also have from Lemma 5.2, as in its proof,

%J(a, gkg) < 71?53;3,( On, S 2J(CL, §k2+1)
and
3T (£ky, 0} < max o < 2 (Exp—1,b)-

Since £, — a if and only if ks — —oc, and £, tends to b if and only if ko
tends to o in the case u € L'(a, b) and otherwise to the largest admissible
value of k in the definition of o, the corollary follows. m
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The main result is
THEOREM 5.4. Suppose that (2.1) and (2.2) are satisfied, T is compact,
and that 3, -5 o is convergent. Then

b
X lu(t)|vs(t) dt < lﬁﬂﬁf nan (1)

a

(5.7)

=

b
< limsup nan(T) < 2| [u(t)]va(t) dt

n—+0< a

Proof. Let I = [¢,d] C
d € [EkysEro1). With Iie), 1 =1,...,

(a,b} and suppose that ¢ € [£x,,&rys1] and
M (g), the covering of (a,b) in (2.7),

where M (e) = M{(a,b), ), let
mole) = #{j : I;(e) Clacdt,  male) =#{s: Li(e) Cla,dl}-
Then
mi(e) — mole) < M(1,e) + 1
and

~(M(e) — M(L,e) - 9)
< elfma(e)/2) + [M(e)/2] ~ ma(€)/2] - 2)

[mo(e) /2] [M(e) /2]
E A(Izj..]_ U Izj;'u,, 'U) -+ Z A.(Igj_l U Izj; U, U)
g=1 J=lmi(e)/2]+2
[mo(e)/2] [M(e)/2]
< Z J(Igju1 UIzj;’u.,'U) + Z J(Izj_.1 Ufgj;u,'u)
g=1 J=lmale)/2]+2
<3y o +3) on
n<ko n>ky
on using (2.9) and (5.5).
It follows from Theorem 4.7 that
iy 41
limsupeM (g} < S |u(t) v, (t) dt + 3( Z On + Z crn),
g0+ Eng n<ko n>ky
which ylelds

b

limsupeM(c) < S | () |ve(t) dt.

e—0. 2
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M(e) + 1 in Corollary 3.3, we get £ > 2a,(T"} and hence
b

< 2§ [u(t) s (t) di.

a

On setting n =

lim sup na, (T

-+ 00

Similarly, from Theorem 4.7,
b

S |u(t)l”s(T) dt

@

liminfeM(e) >

€—VU+

bo[—

and from Corollary 3.3,

o

§|u(t);u,, (T)dt. m

r&l'—‘

liminf na,(T) >

71—+ 00

6. [ and weak-/¥ estimates. In this section we show that the sequences
{an(T)}nen and {op }nez belong to 19 and weak-1? sequence spaces with the
same exponent ¢, and have equivalent norms. We first need some preparatory
results.

LEMMA 6.1. Let I =[e,d] C (a;b) and, for £ > 0, suppose that
oe)={ke€Z:2Z,Cl, ag>e}
has at least 4 distinct elements. Then A(I) > &/8.

Proof Let Zi,, Ziy, Ty, Zky, With k1 < ko < ka < k4, be distinct
members of o(e), and set Iy = (€&, &ks), T2 = (Erat1,Eky)- Then, with
fo= X1, + X1,

A(D) > int H ( fu(t) fo(t) dt — ) ||m,1
> igfmﬂ{llvllm,zkz § lu(e)ld - efillolon,z,| § lutldt~of}
n nulL
= inf max{}|v| oo, z,, |2** ~ ok _ g;
o
0]} 00, 2, [ 2% = 25 + 27 — 2F2+E — o]}
> il;fmax{ : _I_l|2'°2 s e +1 12k 2’“1+2k4—2’°2+1—~a[}
E_ Lok _okatly s €
S e 4 2 >
= 2k 41 2(2 2 ) 8
LEMMA 6.2. Let € > 0 and M (¢) = M((a,b),€). Then
(6.1) #{k€Z:op > 8} <BM(E)+3.
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Proof. Clearly, with I; = (ci, ¢;+1) the intervals in (2.7) when I' = (a,b),
#{ke€Z:c € Zy for some s € {1,...,M(e)}} < 2M(e).
Also, for every k € Z not included in the above set, we have Zy C I, for
some i € {1,...,M(c)}. Hence, by Lemma 6.1,
#{k€l:op>8) <2M(e) +3(M(s) +1) = 5M(e)+3. m

LEMMA 6.3, Forall t > 0,
(6.2) #{keZ:og >t} <10#{k e N:ay(T) > t/8} +23.

Proof By Corollary 3.3,

M(z—:)

#{lheN:a(T) >e} > —— -2

Hence, by Lemma 6.2,
H{kEZL: oy >ty <BM(E/8)+3 < #{keN:a(T)>1/8}+23 n
LEMMA 6.4, For all g > 0,

(6.3) o iz < 20 8%{ar (T iy + 281H{on e z)-

Proof. Let A = {|{ox}||;(z). Then, by Lemma 6.3,

A
”{Uk}”?q(z) = Qstqtl#{k €Z:0p>t}dt
0

A
< 10g { #7714 {k € N : 0y (T) > t/8} dt + 23X
0

<10+ 89{an(T)}f gy + 2300 m

COROLLARY 6.5. For any g > 0 there exists a constant C > 0 such that
(6.4) [{ox}Hlazy < Cll{ar(T)H e -

Proof. By (5.6),

H{ow}Hles @) < ClIT|l = Car(T) < C|l{ar(T) Hirego

The result then follows from Lemma 6.4. m

THEOREM 6.6. For ¢ € (1,00), we have {a,(T)} € 19(N) if and only if
{on} € 19(Z), and

[{oxHlisz) = {au(T) Hlm -

Proof. Let I;, i =1,..., N(¢), be the intervals in (2.8) with I = (a,b)
and N{e) = N({a,b),¢); note that in view of Lemma 2.1, we have J{I;) == ¢.
We group the intervals I; into families F';, j = 1,2,..., such that each F;

consists of the maximal number of those intervals satisfying the hypothesis of
Lemma 5.1; they lie within (£, , £k, +1) for some ko, k2, and the next interval
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I, intersects Zj,+1- Hence, by Lemma 5.1, there is a positive constant ¢ such
that

e#F; <c max o, = cok,,
# ko<n<ks

say. It follows that, with n; = [coy, /€],

(6.5) Z#F <ZZl—Z X1

j n=1 n=ljm;>n

= Z #{j:cop, /e zn} £ Z#{k 1ok > nefct.
n=1 n=1

Thus, if {o%} € I%(Z) for some ¢ € (1, 00), then

(6.6) g\t Nt dt <q | D 197 4 {k s ox > nt/c} dt
1] 0 n=1

= gcf S Zn"qsq_l#{k top > stds

< lor} ey

where < stands for less than or equal to a constant multiple of what follows.
From Corollary 3.3, aar(e)+1{T) < 2¢ and so

#{k € N:ap(T) >t} < M(t/2) +1 < N(#/2) + 1
This yields '

Her (D iy = § 7 #{k € N: ai(T) > 1} dt

Iz
<q | 0N (/2) + 1t

0
< ot + 1712 < o} lb e

by (6.6) and since ||T|| = {[{oa{T)} |12y < I{on}Hl1s(z), by (5.6). The the-
orem follows from (6.4). =

The final result in this section concerns the weak 9 spaces, which we
denote by 1% {9 in the Lorentz scale). Recall that IZ(Z) is the space of
sequences & = {x} such that

lllig 2 = sup{tl#{k € 2 : 2] > £}]*/9} < oo,

The space I3 (N} is defined analogously.
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THEOREM 6.7. For ¢ € (1,00), we have {ax(T)} € IZ(N) if and only if
{O'k} & l&’, (Z), and
{2y = [H{aw(T) Hiz o -
Proof. Suppose {ox} € 14(Z). From Corollary 3.3 and (6.5),

Haw (T g =2 sup{th(t)} < sup{th )} < Zt‘l#{k ok > nt/c}

7=zl

< Z {orHi& gy (e/n)® 2 HowHif gy

Now suppose that {ak(T)} € 14(N). From Lemma 6.3,
sup(tigH{k € Z : o > t}) = sup(t?(#{k e N: ap(T) > t/8} +1)).
>0 >0
Since
( /8)
#{keN:ap(T)>1/8} 2 2 —2>1
for sufficiently small ¢, we conclude that
sup(t?#{k € Z: op > t}) 2 sup(ti{k € N: a(T) > ¢/8}).
>0 >0

This implies that {ox} € IZ(Z) and |{ox}llizzy = [{ox(T)} @ The

theorem is therefore proved.

7. The operator T on L'. In this case the assumptions (2.1) and (2.2)
on % and v are replaced by
(7.1) u € L%(a, z),
(7.2) v € L*(z, b),

for all z € (a,b). On setting @ = —B, b= —A, f(z) = f(-
for u,v in {1.4), we see that

z), and similarly

B
TF{x) = (=) { 2(t) F(£) dt,
r
But this is the adjoint of the map § : L°°(A, B) — L*(A, B) defined by
€T
Sg(a) = =) § 9
_ A
Hence, 7" and S have the same norms and their approximation numbers are
equal if one, and hence both, are compact (see [1; Proposition 11.2.5]). The
results for 7' : L*(a,b) — L*(a,b) therefore follow from those proved for the
L™ (a,b) case on interchanging u and v. Before stating the results, we need
some new terminology.

A<z < B

Hg(t)dt, A<z<B.
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Let nr € RT be defined by
b

(7.3) V(z) = | jo(t)| dt,

3

where k € Z if v € L*(a, b}, but otherwise 2¥ < ||u||1. Set
Ck = HUUHOG:WM Wy, = (’?k;"?lc+1),
with ¢, = 0 if v € L*(a,b) and 2° > ||v|;.
THEOREM 7.1. Suppose that (7.1) and (7.2) are satisfied. Then
(i) T in (1.4), as a map from L*(a,b) into L*{a,b), is bounded if and
only if {{x} € 1°°(Z), in whick case
1T = [i{CrHlzoe 23

(i) T is compact if and only if Hmg_ o0 Cx = 0

i) if {Ck} € 1(Z) then

b b

(i

-}1 S (B u(d) dt < lim mfnan(T) < hisolip nan (T) < 2Su5(t)|v(t)| dt;
(i
d

Vink) = 2%,

v) for g € (1,00), we have {ax(T)} € 18(N) if and only if {(x} € 14(Z)

[{¢k Hlzczy =< [{an(T)} a3
(v) for g € (1,00), we have {ax(T)} € 1§ (N) if and only if {C} € 13(Z)
and

I{CkHleg zy = I{ar(T)Hig
REMARK 7.2. Let M be a dense subset of (0, 1) W1th measure |M|=a<1

and let u =1, v = xas. Then v, =1, (v—~,)s =1 on (0,1) and s0
||'UHOO,(-'D,1) = ”TJSHOO;(“}:]-) = ”U - ’U8“°°1(m!1)

for any = € (0,1). Since
x
oQ o0 e
s | 20,1 = 220l = s {] etlvllonen }

(see [6]), where Ty, » denotes the operator in (1.4}, it follows that
[ Tu0ll = 1T, § = (1T =

for the operator norms from L*(0,1} to L°°(0,1). Also,
1 1
V(@) dt = M) < 1= { ju(®)vs(t) dt.
0 0

The choice % = Y37, v = 1 gives an analogous example in the L1(0,1) case.

'LL'U 'Un“
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Corrigendum and addendum:
“On the axiomatic theory of spectrum II”

by

J. J. KOLIHA (Melbourne, Vic.), M. MBEKHTA (Lille),
V. MULLER (Praha)and PAK WAI POON (Melbourne, Vic.)

Abstract. The main purpose of this paper is to correct the proof of Theorem 15 of
[4], concerned with the stability of the class of quasi-Fredholm operators under finite rank
perturbations, and to answer some open questions raised there.

Recall some notations and terminology from [4].

For closed subspaces M, L of a Banach space X we write M L (M is
essentially contained in L) if there is a finite-dimensional subspace F C X
such that M C L+ F. Equivalently, dim M /(M NL) = dim{(M+L)/L < oo.

Similarly we write M = Lif M C L and L & M.

For a (bounded linear) operator T' € £(X) write R®(T") =,—, R(T™)
and N°(T) = n_q N(T™).

An operator T € £{X) is called semiregular {essentially semiregular) if
R(T) is closed and N (T) C R™(T") (N(T) C R%(T), respectively). Further,
T is called quasi-Fredholm if there exists d > 0 such that R(T?+?) is closed
and R(T)+ N(T%) = R(T)+ N*°(T) {equivalently, N(T)NR(T?) = N(T)n
R>=(T)).

The proof of Theorem 15 of [4] relies on the following statement (where
d is the integer whose existence is postulated in the definition of quasi-
Fredholm operators):

If T is quasi-Fredholm and F of rank 1 then N(T)NR(T?) C R®(T+F).
This, however, need not be satisfied.

COUNTEREXAMPLE. Let H be the Hilbert space with an orthonormal
basis {e1,ea,...}. Define T, F € L{H) by

Tey =0, Te,=en1 (n>2), Fey=—e1, Fea=0 (n#2).
1991 Mathematics Subject Classification: 4TAL0, 47AB3.
Key words and phrases: quasi-Fredholm operators, ascent, deacent.



