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The symmetric tensor product
of a direct sum of locally convex spaces

by

JOSE M. ANSEMIL (Madrid)
and KLAUS FLORET {Oldenburg and Campinas)

Abstract. An explicit representation of the n-fold symmetric tensor product
{equipped with a natural topology T such as the projective, injective or inductive one) of
the finite direct sum of locally convex spaces is presented. The formula for ®’T"’ S F1@F)
gives a direct proof of a recent result of Dfaz and Dineen (and generalizes it to other
topologies T) that the n-fold projective symmetric and the n-fold projective “full” tensor
product of a locally convex space E are isomorphic if ¥ is isomorphic o its square B2

1. Symmetric tensor products

1L1.If By, ..., By, B and F are vector spaces over K = R or C we denote
by L(E1, ..., En; F) the space of n-linear maps £y % ... x B, — F. We write
briefly L("E; F) := L(E,..., E;F) and L(™E; F) for the space of n-linear
symmetric maps E X ... x E — F; the space of n-homogeneous polynomials
E — F is denoted by P™(E; F) (they are the restrictions to the diagonal
of B x ... x E of elements in L("#; F)). The polarization formula gives a
natural isomorphism P™(E;F) = L,("E; F). If the underlying spaces are
locally convex we denote by L(Ey,...,En; F) or L("E;F)if B = E, =
.= By, Lo("E; F) and P*(E; F) the spaces of continuous n-linear, con-
tinuous n-linear symmetric mappings and continuous n-homogeneous poly-
nomials respectively. Moreover, we use L("E) := L("¥;K) and, similarly,
Ly("E), P"(E), L("E) , L;("E) and P™(E) in the case of F' =K. We shall
write F 2 F if the two locally convex spaces E and F are topologically
isormorphic.
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1.2. The n-fold tensor product @}, E; = E1 ® ... ® B, together with
the n-linear map ® @ By X ... x B, — ®?=1 E; is, up to isomorphism,
uniquely defined by the following universal property: For every vector space
F and every ¢ € L(By,...,En; F) there is a unique “linearization” ol ¢
L(®?=1 Ej; F) with ¢ = ¢l o @:

T
L(El,...,En;F):L(QEj;F), o~ o
J:
1.3.If E = E, = ... = E, and n € 5, (the group of permutations of

{1,...,n}) the n-linear map
EX...XEB(.T]_,..., €® E

has a linearization ®" E — ®" E which is denoted by z ~» 2". It is easy
to see that (27)7 = 27°7; this relation justifies the use of 7! instead of 5 in
the definition (see also [13]), but this definition will also be convenient for
our calculations in Section 3. The symmetrization map o : Q" E — Q" E

is defined by
== — Z zn

neSn
Using the polarization formula it is not difficult to see that

®: B = o3(®"E) = span{®@" ¢ = 2®...®z | v € B);

n times

L) Ly-1(1) @ . B By—1(p

moreover, an element z € @" F is in @, E if and only if z = 27 for all
7 € Sp. This is why the elements in Q) F may be called symmetric tensors.
The pair (G, o) = (QF F,0% o ®) has the universal mapping property
for symmetric n-linear maps: For every F and every ¢ € L,("FE; F) there
is a unique T € L{G; F) with v = T o . It follows tha.t for two such
pa.lI‘S (Gg,cpo) there is an isomorphism I : G; — Gy with @& = I o p} and
w§ = I o @¢. The pair (R E,c% o ®) is therefore called the symmetric
n-fold tensor product of E; the mapping o is a projection of the “full” n~fold
tensor product @™ E onto the symmetric n-fold tensor product @7 E. Note
that Q1 E=Q ' E=B.
1.4. The universal property of the symmetric tensor product gives

P™E; F) = L,("E; F) = I(®] B F),

and the map

g~ g~ (D er b

L("B; F) — L,("E; F),
is the symmetrization of n-linear maps.
1.5. If Ey,...,E, are locally convex, the projective {locally convex)

topology 7 on @7_; E; (notation: @7 ,_, E;) is uniquely determined by the

o~ pl oo,
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property that, for each locally convex space F, every ¢ € L(Ey,. ..
is continuous if and only if ¢ : @} jw1 B — F is continuous:

E(Ela-":ETL;F)=‘C(®w_7 IEJ‘JF)

IfE=E, =... = FE,, then each mapping z ~» 2" from 1.3 is continu-
ous with respect to the projective topology and hence so is the projection
o't onto Q) E It follows that @7 E equipped with the induced topology
(notation: @), , E} is a complemented topological subspace of @ E and
that

:EH;F)

PMEF) = L("E, F) = LIQ , E; F).
In Section 3 we shall investigate other topologies. Note that, if F is normed,
the “natural” norm on ®. E induces a norm on @7 F which is equivalent
(but in general not equal) to the “natural” projective norm on ®:‘ E. For
more details on symmetric tensor products see [16] and [9].

1.6. If F: @ 1 Ej, and I; and P; are the natural mjectlons and
projections then (see [5] [7] (3] and [1]}

n N o N
gy, 5 & B he Ol onp B QPP @ F N0 o p
i=

hence @7, B; is isomorphic to a complemented subspace of &7 F. In par-
ticular: If F is a locally convex space which is topologically isomorphic to
E™ then the projective full tensor product ®. F is topologically isomorphic
to a complemented subspace of the symmetric tensor product ®$, . B—and
the same holds for any symmetric n-tensor topology such as the injective
topology € or the hypocontinuous topologies of L. Schwartz such as the
inductive topology ¢ {see Section 3 for the definitions).

1.7. Tt follows from 1.5 and 1.6 that if F is isomorphic to £™ (or even
to E2), then the spaces @7 , F and ®;; F are isomorphic to complemented
subspaces of each other. If in particular, E is a Banach space, the same
happens for the Banach spaces ® E and ®2E (completions). Though
these two spaces are even isomorphic 1f E = E? (this is a result of Diaz and
Dineen [8] which we shall prove differently) it is in general not true that two
Banach spaces which are complemented in each other are isomorphic: this
follows from Gowers’ results in [12]. This observation is taken from [8]. The
case where F is only isomorphic to E™ (for n > 2—these spaces need not
be isomorphic to B% by Gowers' results) remains open.

2. A formula for the symmetric tensor product of a direct sum.
2.1. If A € L(E; F) and k € N we denote by ®" A the mapping
AR.. A QE-@"F
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‘We shall need for every k = 0,...,n the sets

Sk .= {n €8, | nig1,..x} 80d Nl{ry1, ) are increasing},
To = {f | f: {1:-'-1'"'} - {112}}1
TF .= {f € T, | card f~1(1) = k}.
Note that S8 = 7 = {id} and T (resp. Tj) consists just of the constant
mapping 2 (resp. 1).
2.2. Take B = F, ¢ Fy with projections P;
k=0,...,n,
k e .
Qkf®nE[® Pe® Py] [®kF1]®[®'n kF]

ok R —k
hedk S (@ A8 (@ R
with the obvious meaning for ¥ = 0 and k = n (i.e. just omit ® . Iy and

®° F;). Since [®F ]9[R " F] ¢ [@" F1]® [®"* Fa] ¢ @ E we can
make all calculations in Q™ E. Observe that

: B — F; and define for every

(*) Q(®" ) = [®" Pu(e)] ® [@" " Pa(a)].
It is clear that for every f € T¥ there is a unique n € S* with
(%) Pyz®...QP, x=[Qx(®"z)]"
for every z € E and vice versa. It follows that
"z = Q"[Pi(z) + Pa(w)]
i
E T ®. @ F, = Z Z [Qk(Q" z)]"
FET, k=0 ne gk
and hence

k=0

for every z € ®] E.

€5

EE

THEOREM. The linear mapping
Q:RQ(Fr o) —
defined by Q(z) == Qo(2) & ...

@ (oo oun) =3 I funl?

k=09c8h

n

E__B (®} 71l @ (@7 F]

D Qn(z) is an isomorphism; its inverse is

for wy € [QF F1) ® (@7 Fy).
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Proof. It follows from (***) that @ is injective. To show that it is onto

take wy, € [RF 1) ® R QR fork=0,. .,n and define
Z = z Z [we]" € @™ E;
k=0nesk

we have to show that (a) Qi(z) = w; for all [
symmetric, i.e. z € Q7 E
(a) Since for every k = 0,.

=0,...,n and (b) z is

..,m we have

[®* 1] & (@™ Py (wi) = wy
and P o Py = Py o Py = 0 it follows that
[® P& (@™ ] ([wi))
=®'Ple[®@" " RI(R" Pl Q"
- {w;u itk=1Ilandn=id
0

otherwise,
hence Qi(wl) = 0 if either k # [ or 7 # id and Q;(w;) = wy since of, ®
Opy Hawy) = wy.
{b) To show that z € @] E observe first that wo, wy, € ® E. Therefore

it is enough, by linearity, to prove that for each k = 1,...,n — 1 and each
x; € Fy,

Po] (w))"

= Y (@ 28 ® " a)= Y erme...

nesk FeTk

B Tt (n)

(by (*+)) is symmetric: For this take o € S, and § € TF; then

[Z501) ® - B Ty = Tpio101)) B+ - @ Tp(o—1(n));

since the mapping T — T defined by f ~+ f oo~ is clearly bijective we

obtain

W= Y Bpemi(a)) ® o BT p(amipn)) = Y 1)@ BTy = u
. ferh geTh
for all o € 8y, which proves u € @7 E (see 1.3). n
2.3. If we write the theorem as

QUL B F)= @ 8 [@ P ® (@ F)

an eagy induction gives
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CORCLLARY.
nr o o Iy
®s[® FJ]: @ ®[®5 E?]
=1 L4 tlp=n j=1
IjE{O,...,'ft}

2.4. Observing that dim ®i F= (”’i Y if dim F = k (this formula is
well known but also follows from Corollary 2.3 applied to F = EB =1 K) we

obtain for m,n, k1, ..., km € N and k =Y ,I~, k; the combinatorial formula

( k—1 )= Z H( k; _1 ;
Lyt Hgm=n j=1
1;€{0,0 m}

This can also be proved by looking at the coefficients of the power series
of

m

ko H(l - m)_k"

J=1

around 0 (we owe this remark to P. Brumatti, Campinas}.

(1-2)”

3. Tensor topologies

3.1. In order to see for which topologies the isomorphism in Theorem
2.2 is even topological we use the following definition (for n = 2 see [10]
and [11]): An n-tensor fopology v (for locally convex spaces) assigns to
each n-tuple (E,..., E,) of locally convex spaces a locally convex topol-
ogy 7(E1,...,B,) on the n-fold tensor product B ® ... ® E, (notation:
@7 ;o1 Bj or @ (i, ..., By)) such that

(1) The canonical mapping By x.. . x Ep — @..(E1, ...,
continuous.
(2) If D; C Ef are equicontinuous subsets then the set

{7m1® . ®@¢alw; €D} C(E1®...QE)

18 T-equicontinuous.
(3) (The mapping property) If T; € L(E;; Fy) then

T1®...®Tn:®T(E1,‘..,En)*--)®T(F1,...,Fn)

15 COntinuous.

Ey) is separately

For n = 1 we obtain ®i E = E topologically. Examples:

{a) The projective topology .
{b) The injective topology &.
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(¢) More general: If o is a tensor norm on n-fold tensor products of
normed spaces (i.e. £ < @ <« and the metric mapping property
”T1®®Tn : ®Q(E1,...,

n
Bo) = @u(Fr, - Fo)| =[] 1Ty : B — Fy|

J=1

holds) then one can define (as in the case of n = 2, see [6], §35) the locally
convex tensor norm topology associated with o; this is also an n-tensor
topology.

(d) The hypocontinuous topologies of L. Schwartz ((171, I, p. 18; for
n = 2 see also [10]): If o is a cover prescription of bounded sets (i.e. for each
locally convex space E the set a(E) is a filtrating set of bounded absolutely
convex sets with {ja(E) = E and T(A4) € a(F) for every A € a(E) and
Te L(E F))then o € L(Eh,..., Ey; F) is called a-hypocontinuous if for all
k=1,...,nandall A; € a{E;) the restriction of ¢ to Ay x...x Aj_1 X Ej x
Apg1 X ... X Ay is continuous. There is a unique locally convex topology

To(Ery..., By) on By ® ... ® E, such that
{1) the tensor map Fyx...x B, — K., (B, ..., B,)isa-hypocontinuous,
(2) @ € L(E1, ..., En; F) is a-hypocontinuous if and only if its lineariza-
tion o* : @, (By,..., E,) — F is continuous.

It is easy to see that 7, defines an n-tensor topology. The proofs of these
facts are straightforward generalizations of the case n = 2.

(e) In particular: the inductive topology ¢ of Grothendieck [14] (take
a{E) = {A C E | A bounded, absolutely convex, finite-dimensional}) which
gives separate continuity and the topology § where a(E) := {AC E | A
bounded, absolutely convex} are n-tensor topologies for all n > 2.

It is rather obvious that 7 is an n-tensor topology if and only ife C 7 C ¢
and 7 has the mapping property.

3.2. An n-tensor topology is called symmetric if for each locally convex
space E and each 7 € S, the mapping
X E— Q) E,
(see 1.3) is continuous. In this case the natural projection 0% onto the sym-
metric tensor product @ E is continuous. If one equips Q7 E with the
induced topology from @, E (notation: @7, E) then @, E is a topolog-
ically complemented subspace of @ E. The projective, injective and all
hypocontinuous n-tensor topologies are symmetric. It might be worth men-
tioning that symmetric n-tensor topologies 7 induce on @ E a topology
which has the following mapping property: If T € L(F; F) then @ T :
®”E - @ g o1& is continuous as well, This implies, for example, that
®T’ o F is topologically complemented in @ | s 42 if F C B is complemented.

z o~ 2
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3.3. A tensor topology for locally convex spaaes is a sequence T = (7, )nen
of n-tensor topologies 7, which is associative: For all n,k € N with k < n
and E; the equality

( é Ej)®"‘2( é

Tiesf=1 Tn—k-J=ht1

EJ) = ®:n,j=1Ej

holds topologically. Notation: @7 ;1 Bj := 7, ;=1 Ej-
Note that E®. K = E for all tensor topologies since this is true for & and
t. A tensor topology T = (75) is called symmetric if all 7, are symmetric,

PROPOSITION. g, 7 and + are symmetric tensor topologies.

Proof. It remains to show the associativity: For = this is rather straight-
forward, for ¢ it was proved in ([17], I, p. 38) and for « one uses the properties
of 3.1(d). =

We do not know whether the topology § of Schwartz (see 3.1(e)) is
associative, i.e. is a tensor topology. Note that 8 = m on @7, F; if all E;
are metrizable (by sequential continuity) or if all E; are gD F-spaces (by
[15], p. 335); in this case @ ;.; Fj is metrizable or gDF respectively.

3.4. Coming back to Theorem 2.1 we take a symmetric tensor topology
7 and see that Q and Q! are continuous; note that Q* factors through

(®F, A e, [®7," ;] — [®F Ai] @ [®FF R

< (@B % [Q) F E = QL E.
Therefore we obtain
THEOREM. If 1, ..., I}, are locally conver spaces then

m N m L
KD F= & R Q7 Fl
j=1 Li+...+Hp=n 7,j=1
L;e{0,...,n}
Jor all symmetric tensor topologies .

The isomorphism was described in 2.2 and 2.3, Note that for this theorem
it would be enough to have an associative tuple (73,...,7,) of symmetric
tensor topologies 7.

3.5. A first application of this formula (for m == 2) is the following: If B
is isomorphic to a proper complemented subspace (such as a hyperplane),
ie. E= E@®F (topologically) with F 3¢ {0} then Theorem 3.4 implies that
®f’s E is isomorphic to a topologically complemented subspace of ®:,SE
forallk =1,...,n~ 1 and oll symmetric tensor topologies . This result
is true, however, without the assumption F & F @ F: this was proved by
Blasco [3], [4] for the projective topology, but his proof can be easily adapted
to hold for arbitrary symmetric tensor topologies .
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4. Stable locally convex spaces

4.1. If the locally convex space & is stable, i.e. topologically isomorphic
to its square 1*, Dfaz and Dineen [8] showed that £,(™E) is isomorphic to
L("E) and deduced from this that the symmetric and full projective n-fold
tensor products are isomorphic. The formula in 3.4 gives this directly—and
for some other topologies as well.

THEOREM. If E is o stable locally conver space then

Q. E=Q B

for all symmetric tensor topologies T and all n € N.

Proof. We use ideas from [8]. Let E = Fy ® F» with F; = F. Then
using the properties of tensor topologies gives

Hy:=Q[E=(Q'E)e, (FL e F)
= (® "' B, A]o (@' E) . B = Hf
and hence Hy & ... 2 H. forall | € N,

As we have already noted, ®1 E=FE= @1,; B. We proceed by induc-

tion and assume that Gy, 1= ®f’ o B = Hy for all k < n. Then, by Theorem
3.4, we obtain

Gn = @7 (1 & F)

~ (@, Rl 8 [L@i(@ia R) 2. (@' B) o [@", Fl

n—1
=Ye XY &) (REE) @ (@7 E)=CGlaH ' ~G2 e H,.

Now H, = G, ®V (topologically, see 3.2), hence the two formulas H,, =
H! and G, = G2 ® H, give
H,=GroV=GoH, 8 VG, 0H: =G @ H = G2 ® Hy, =G,
which is the result. m

For the stable Banach spaces F = £, (with 1 < p < oo) and the projective

topology = this result was proved by Arias-Farmer (2] by using Pelczyniski’s
decomposition method.

4.2. Dually, it follows that L(®); E; F) and L(@) , E; F) are algebrai-
cally isomorphic whenever E and F are locally convex, F is stable and 7 is
a symmetric tensor topolegy. Taking 7 = ¢, m and & we obtain
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COROLLARY. If E and F are locolly convex spaces, and E is stable, then
there are algebraic isomorphisms
{@ € L("E;F) | sep. cont.} = {q € P"(E; F) | § sep. cont.},
L("E;F) =P"(E; F),
{p € L("E;F) | ¢* e-cont.} = {g € P"(E;F) | § e-cont.}.

Note that for F' = K the latter equality means that the spaces of integral
(in the sense of Grothendieck) n-linear forms and of integral n-homogeneous
polynomials are isomorphic.

4.3. Concerning topologies on L("E;F) and P"(E; F) note that for
stable locally convex spaces F the constructions in 2.2 and 4.1 give an
isomorphism 7 : @" E — ®| E with the property that for every A C E
bounded (resp. compact) there is a B C E bounded (resp. compact) such
that

I(®"4) c I(®; B)
where @, A :={®"a|ccAland @ " A:={a1®...® a, | a; € A} and
also that for every B C E bounded (resp. compact) there is such an A C E
with
Y@ B) c T(@" 4).

Denoting by b (resp. co) the topology of uniform convergence on all
bounded (resp. compact) sets we obtain (see also [8])

COROLLARY. If E and F are locally conver spaces, and E is stable, then

Lo("E;F) 2 PHEF), Lo("E;F)2PL(E;F).

4.4. If F and F are normed spaces, then the spaces

I("B;F) = L(Q; E; F), PI™E;F):=L(®, ,E;F)

of “integral” n-linear mappings and “integral” n-homogeneous polynomi-
als have natural norms (g, denotes the injective symmetric norm which is
equivalent to the induced e-norm, see [9]) as spaces of continuous mappings
between normed spaces. Obviously we have

COROLLARY. If E and F are normed spaces, and B is stable, then the
normed spaces Z("B; F) and PT™(E; F) are isomorphic.
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