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Functions with derivatives in spaces of Morrey type
and elliptic equations in unbounded domains

by

ANNA CANALE, PATRIZIA DI GIRONIMO and
ANTONIO VITOLO (Salerno}

Abstract. We introduce a sort of “local” Morrey spaces and show an existence and
uniqueness theorem for the Dirichlet problem in unbounded domains for linear second
order elliptic partial differential equations with principal coefficients “close” to functions
having derivatives in such spaces.

Introduction. In [TTV] the space MP*(12) = M?*(12,1) was intro-
duced, for an open subset {2 of R, with p € [1,00] and A € [0, n], where
MpA (.Q t}, t € Ry, is defined as the space of functions g € L?,_({2) such
that

loc

1/r
sTp A K |g|p) < oo.

0t
T:Eﬂ 2NB(x,7)

We observe that, when {2 is a bounded set, the space M®*((2) reduces to
the classical Morrey space, denoted by L x(Q) (see [KIF}) or LP*(£2) (see
[CF), [CFR]).
Subsequently in [V] the subspace W!MP*(2) of the functions g €
Wil (§2) such that g, g, € MP(£2), equipped with the norm

(1) lollaercne =

(2) (9llwiarer 2y = 119llaarr 2y + 19zl ager (),
hag been defined, where

Bz, = %; G = (zn:ggi)llz'
* i=1

It turns out (see Theorem 4.1 and Corollary 4.2 of [V]) that, if 2 is suffi-
ciently regular, then there exists a bounded linear extension operator

p: WIMPAN0) — WIMPARY).
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200 A. Canale, P. Di Gironimo and A. Vitolo

Here we define more general spaces denoted by WA f;’c (12}, whose func-
tions are required to be in W' M?*(£2) only when multiplied by functions
of a suitable sequence in C§°(R"), as specified in Section 1.

Actually, the extension operator p can be defined on Lloc(.Q): in Section 2
we show that
p(W* M2

loc

() ¢ wipe

loc (Rn)
and that, if g € L], .(f?) satisfies certain bounds in {2, then the same bounds
hold for p(g) in a suitable neighbourhood of 12.

Then, for n > 3, we consider the Dirichlet problem
0 e WHR) WD), Iu=1,
for the linear operator L : W2(£2) — LZ(Q) defined as

(4) Z Bij U,y Z aitg, + au,

t,j=1

where a;; = aj; € L*(£2), a; belongs to My™ *(12), the closure of C§°(f2)
in M*"=*(£2), for some s € ]2,n), and a belongs to M?({2), the closure of
Lee(12) in MPP(2) for a suitable p € R,

We recall that, when {2 is bounded, problem (3) has been dealt with by
F. Chiarenza~M. Franciosi in [CF] under the following assumption, which is
a generalization of the classical one due to C. Miranda [M]:

(aij)e € VLS"2(2) for some s €]2,n], 4,7=1,...,n,
where VL*"~%((2) is the subspace of L%~ (2) of functions g such that
”g“Mp,A(Q,t) —0Oast— 0.

Successively the problem has been studied when 2 is unbounded: 1) in
[CLM;] with

(Gij)e € MZ™%(2) forsome s €]2,n], 4,5=1,...,n;
2) in [CLMy] with
aij € W1i\4f°1m;rL *(f2) for some s € ]2,n],
‘1|1m a,”(:r:)_ma,g, hi=1,...,n,
€T|—
where WM™ ~*({2) is a suitable subspace of WM™~ (£2) which will be
specified in the next section.

In this paper we are concerned with problem (3) when {2 is an unbounded
open set, and with more general assumptions on the coefficients a;; of the
operator L in comparison to [CLM;] and [CLM,].

We suppose that the coefficients a;; are sufficiently close to uniformly
elliptic coefficients e;;, belonging to WXMS"*(2) for some s € |2, 7], and

loc

that both a;; and e;; are convergent at infinity.

icm
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We use the extension operator in order to get an approximation of the
functions a;; by means of regular coefficients a,ij, which we take to define,
according to (4), a sequence of operators Ly, k € N.

‘We obtain an a-priori bound for the operators L and Ly. By using such
hounds and a classical method due to M. Chicco (see [C1], [C2]) and applied
in other papers (see [TTs], [TT3]), and assuming that

essinfa > 0
fe)

we find a solution u of (3) as limit of solutions wy of related Dirichlet prob-
lems for L.
By Fredholm theory and compactness results for the multiplication op-
erator
u € W) - gu e L*(Q),

when g belongs to M*"™(2) for some s € |2, n|, we finally prove an exis-
tence and uniqueness theorem for (3).

1. The spaces M2 (2) and W ME)(12). Let £ be an open subset
in R™. We denote by X({2) the o-algebra of Lebesgue measurable subsets
of £2 and, for every E € Z{R"), by |E| the Lebesgue measure of E and by
xg the characteristic function of E. For every t € B, and z € R", we let
B{z,t) be the open sphere centred at = with radius ¢, and for B € Z(R")
we put E(z,t) = E N B(z,t), also setting E(z) = E(z,1).

IfE e X(2), pcil,oc] and g € LP(E), we put

19lp,5 = llg)lz=(E)-

We denote by L? ({2) the class of measurable functions g on {2 such that
(g € LP(12) for every ¢ € C§°(R™), and by VVIOP ((2) the subspace of func-
tions g € LY _({2) such that g., € I (), i =1,.

For each p € [1,00[ and A € [0,n], with the above notations, we recall
that MP>(£2,t) is the space of functions g € LY ({2) such that

loc
(1.1) lgllareriag = sup 7 7lglp, n(zr) < 0,
T€]0,8]
zef?
and

MPA2) = MPM02,1).
We also set MP:0(2) = MP(£2). '
We recall that g € MP’A(Q) if and only if there exists a function o :
R, — R, convergent to zero as § — 0, such that

(1.2) X9l apea(2) < o(4)
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for each E' € X(2) such that sup,c | F(x)}| < 6. Such a function will be
called a modulus of continuity of g and denoted by o|g, 2].

For r € Ry, we set B, = B(0,r) and denote by ¢, a function of class
Cg°(R") such that

supp C'r C BZ’N 0 S Cr' S 17 C'r'jB.. = 1: (C’r)m S 2/"'
‘We also recall that

(1.3) MEN2) = {g € MPM0) 1 lim [|(1 - ¢ )gllaecey = O},

also setting MZ°(£2) = ME(12).
We shall employ results about the multiplication operator

(1.4) u € W) — gu € L*(2)

with g belonging to some of the spaces defined above, which have been
proved in [TTV], [TTy], [GTT].

LEMMA 1.1. Let n > 2 and (2 be an open subset of R™ with the cone
property.

If g € M*™2(0) with 5 € 12,0, then gu € L*(2) for any u € W),
and the operator (1.4) 1s bounded.

If g € M*™=*(£2), then there exists c(c) € Ry such that
lgul2,0 < eluale,n +e(e)|ulz,n  Yu € WHA).

If g € My 7*(42), then there exist c(e) € Ry and a bounded open subset
R(e) of 2 such that

lgulz,e < ellullwie) +ce)iulzne  Yue W),
and the operator (1.4) is compact,

LemMa 1.2, Let 12 be an open subset of R™ with the cone property. Let
k €N and p € 2, o0[ be such that

p=2 ifn<2k p>2 ifn=2k p=n/k ifn>2k

If g € MP(Q), then for any u € W*(2) we have gu € L2(R2), and the
operator

(1.5) u € WH(2) = gu e I*(12)
is bounded. _
If g € MP(12), then there ezists c(e) € R, such that

lguize <& > 1D%|pp +elelulg  Yu e WHR).
)=k
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If g € MF{12), then there ezist c(c) € Ry and o bounded open subset
2(e) of 12 such that

lgulz,2 < effullwr oy + cl€)lulz,ae  Yuc WHR);
in this case the operator (1.5) is compact.

REMARK 1.3. We recall (see [TTV]) that g € MP*(f2) if and only if
g € MPA((2) and

i llglareacen =0, lim |glp,ne =0.

(=]
We also remark that, if 2 is bounded, then M3 = MP*(12).

Now, we introduce (see [CLM;]) a more general class of spaces by setting

(1.6) MEN) = {g € Lo () : rg € MPA () Wr € Ry },

(1.7) MEND) ={g € Ljo(2) : (g € MP(2) Wr € R, ).
The spaces

(1.8) WEMPH () = {g € Wi, (D) : 9,92 € MPA (D)},

defined in [V], can in turn be generalized by letting

(19) WMEN (2) = {g € Wil () : 9,9 € MEN(D)),

(1.10) WIMES (@) = {g € Wil (D) : 9,90 € MEX ()}

2. The extension operator p € B(WMPX(2), WIMP*(R")). We
shall consider an open subset 2 of R" with the following regularity property
(see [AD]):

(#) there exist a locally finite open covering {Up }ren of 302 and homeo-
morphismos @y = (Pr1,...,Ppm) : Up — Bi, h € N, with constants
5, M e Ry, N € N, such that _

21 | JsMB(0,1/4)) > 25 = {z € 2 : dist(e,80) < 5}
heN
(2.2) every » € R" belongs to at most N of the Uy’s;
(2.3) forevery h €N,
Pp(UnN 2) = Bf = {z € By : 3, >0},
&, (U, NON2) = {z € By : zp, = O};
(2.4) forevery h € N, (B r)r € L®(Un), @Z,}c)z’ e L®(B1),k=1,...,n,
and
@k lizoo ) 1B oo B1)s 1@,k Y 2w () (@ ) oo () < M,
fori=1,...,n.
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In [V] (Theorem 3.3) the following extension result is proved, where
Yi{®,...,zn) ER® — (z1,...,~z,) €R",
and p € [1,00[, A & [0, n)].

THEOREM 2.1. Let {2 be an open subset of R® with property ($). Let
Ee Z(R"), By = ENQ, and By, = (ENUL) IS (v(Bn(EN TR N2,
h € N, where {Up}nen and &y, : Up — B, h € N, are respectively the
open covering of 02 and the homeomorphisms of (®), satisfying (2.1)-(2.4).
Then there exists o linear extension cperator

P i Lioe(2) = Ligo(R")

loc

such that p(Wye (1)) € Wb (R™), and

(A) if X
XEoh XBn9 € M™ ('Q): he Na
then
(2.5) ”XEP(Q)”MPs’\(Rﬂj < ¢ sup ||XE},Q'”MP»’~{.Q)1
h&Ny

with ¢ € Ry depending only on n and on the constants implied in ($);
(B) if alse
XEoGa, X9z € MPM2), REN,
then

(26} lxe(P(@)elrersmey .
< e(sup Xz, glaen o) + sUD ||IXE, G2 | area (@)
help heRy

with ¢ € R, depending on n and on the constants implied by ().

The extension operator p maps W'MP*(£2) into W!MPA(R?), as a
consequence of the following

COROLLARY 2.2. Let {2 be an open subset of R™ with property (). Then

(A) g € MPA02) = p(g) € MPA(R),

and we have

(27) Ip(9)]|ate @0y < ellgllaesa)-
Moreover,

(B) g W MPNQ) = (p(9))s € M7 (&),

and we have

(2'8) ’ '“(p(g))m”MP')\(R") < C||g||W1Mp,xm),

whence, by (A), p(g) € W MPR™) and

(2.9) : (@Ml arer gny < 2¢l|gllwangrr 0y,

with ¢ € Ry depending on n and on the constants implied by (®).
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COROLLARY 2.3. Let {2 be an open subset of R™ with property (). Then
(4) 9 € L=(2) = p(g) € L™(R"),

and we have

(2.10) () | Loe mmy < ellgl] poe (-
Moreover,

(B) g € Wh(2) = p(g) € WH=(R™),
and we have

(2.11) (2{g))e|l oo amy < ellgllwioe(a),
whence, by (A), p(g) € WHe(R") and

(2.12) p(@ w00 mny < 2¢llgllwr ooy,

with ¢ € Ry depending on n and on the constants implied in (&).

Proof. (A) If g € L*(12), then g € MP*(£2) for every p € [1,c0] and
A € [0,n]. By using Corollary 2.2(A) with p = 1, A = n, for every x € R®
and t € ]0,1] we have
W,
—n < () < cwnllglleec o
|B('.L‘, t)l B(Sw 5 |p(g)l = c”g”Mll (£2,t) = CW ”gHL (2)
with w, = |Bi]|, whence (2.10) follows as { — 0 by the Lebesgue Theorem.
(B) The proof of (2.11) is similar, with (p(g)), instead of p(g), applying
(B) of Corollary 2.2 instead of (A). =

REMARK 2.4. By construction of the extension p (see the proof of The-
orem 3.3 of [V]}, there exists € R, such that certain bounds, if satisfied

by g € L (£2) on (2, hold for the extended function p(g) on

(2.13) 2(n) ={z e R" : dist(z, 2) < n}.

Indeed, if z € £2(n) \ {2, then there exist z1 € Up, N2, ..., 25 € Up, N 12,
with b & {1,..., N}, such that for every g € L1 _(12),

loc
plg)(z) = s, (2)g(z1) + ... + O, (x)g(2n),
where Oy, ,...,0, € CF(R") and 8k, (z) + ... 4 Op, (z) = 1.
Moreover, since the U;’s are uniformly bounded, there exists ¥ € R,
such that, for r > 7,
Zlzr=|z2r—F, k=1,...h,

for every @ € 2(n) \ 2.

Reciprocally, every y € 2 occurs, with its image g(y), in at most N of
the values p(g)(z), & € 2(n) \ £2.

We also remark that, if supp g is bounded, then supp p(g) is compact.
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COROLLARY 2.5. Let 2 be an open subset of R with property ($). Let
we R If

g=p (resp.g<p) inf2,
then

plg) 2 p  (resp. plg) < p)  in £{n),
with (2(n) given by Remark 2.4.

Proof. Let z € 2(n) \ {2. Then
Plg)(z) = Ok, (2)g(z1) + ... + B (z)g(zmn) 2 (Bry () + ... + Ok (2)) o = iy
if g > pin £2; and analogously p(g)(z) < pifg<puin 2. w
COROLLARY 2.6. Let 2 be an open subset of R™ with property ($). If
9o = lim g(z)

jor|—oo
rc2

then
Goo =, lim p(g)(x).

|2|—o0

=€ (n}

Proof. We prove the result when g, € R, the other cases being similar.
We fix ¢ € Ry. Then there exists r. > 7 such that

Joo — € X g(2) < goo +E

for every = € {2 such that |x| > r, ~ 7. By reasoning as in Corollary 2.5, and
observing that

e\ Qand |z|>r. +7 5z, € Qand |z 27, k=1,...,A,

we obtain
9o —£ 5 p(g)(®) £ gt 6

for each = € £2(n) such that |z| > r.. =

COROLLARY 2.7. Let £2 be an open subset of R™ with property (). Then
(A) € MED () = plg) € MEZ(R™);
(B) g€ WleQ’? (2) = plg) € W' MES (R™).

Proof. (A) Let g € MPM). Let r € R, F € 5(R") and set E =
By, N F in Theorem 2.1.

Since the Ej’s, j € Ny, are bounded (because of (2.4) of property (&)
and of the definition of ), for every h € Ny there exists 7, € Ry such that
XE, < {r,, and therefore

 XE.9 € MPMD), heN,.

icm
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Hence we can apply Theorem 2.1{A) to get
(2.14) ixEP(g)|lager (mry < ¢ sup X, 8l ar2r(2)
0

Since, by property (®), Bg, intersects a finite number of Uy, (see [V]), there
exists N, € N such that

(2.15) lIxep(g)lsrrme) < € ||XE,,9E|M:=JL (-

b 0 1
We observe that

Ey = (Bax N F)N 2 = Bo. N (F N 2) = By, N Fy,

and that, since Uy are bounded, there exists ¥ € B, such that By, U
(Ui, Uy) € B and

By = [(ENU») VS (v(@n(ENTR))IN Q2

Nr
c [32,.u U Uh} ol
h=1
C Bz Fy.
Therefore, from (2.15) we deduce that

FNUR) Uy (@u(FOTULNIN 2

(2.16) |Ixr&p(Dprr@ey € 1XPXB2.P(9) || 2192 @) = || XEP(G) || naess (memy

se, Jax X2, gllage )

<¢ poald X 2:X £ 9l a0y

Sc, loax ||CrXFh9|iMw(n)

for any F € X(R™). Applying (2.16) with F = R™, we obtain (,p(g) €
MPA(R™),

(B) If we agsume that also g, & MfZ’C (£2), then by the same argument,

but using {B) instead of {A) of Theorem 2.1, we get the inequality

(217)  lxerGe(p{g))ellprs@n)

Sﬂ(h gfl'f’*x, |G xFr gl agm n)+h 51}

which, applied with F' = R", yields ¢, {p(g))z € MP*(E"). m

COROLLARY 2.8. Let {2 be an open subset of R™ with property (). Then
(A) g € MEXN(2) = plg) € MED(R™);
(B) g€ WMED () = p(g) € W' MEL (R).

Proof. (A) Suppose g€ Mloc (f2). From Corollary 2.7(A), we deduce
that p(g) € MR™). Let § € Ry Since the U; are uniformly bounded, by

”CTXF;.Q:c“MP A2

loc



icm

208 A. Canale, P. Di Gironimo and A. Vitolo

reasoning as in [V], Corollary 4.3, there exists £ = £(n, M) € Ry such that
sup |Fr(z)| < &6, heNg,
xE 2

for any F' € D(R") with sup,e |[F(2)| < 6, and a fortiori if sup, cgn |F(z)]
<4é.

Therefore, by (2.16) we get
(218)  olep(0) RI(6) < coltrg, AUED) =0 as 50,

whence ¢-p(g) € MPA(R").
(B) If we also assume that g, € HP”\(.(_Z), then by Corollary 2.7(B),

loc

p(g) € WIME2(R™), By proceeding as in case (A), from (2.17) we obtain

loc

(2.19) oG (p(9)a: R*](6)
< ¢(o[Crg, 2HED) + 0 l(rgs, D)(€6)) = 0 as 6 — 0,

whence ((p(g))s € MP(R).

3. A-priori bounds. Denote by E(v, 2), for any v € R, the class of
n X n real matrix-valued functions ({e;;)) such that

€ij = €5; € LW(Q), (e,-j)w S Ms’n_a(ﬁ), 4Li=1,...,n,

loc
for some s € ]2, 7], and

k]

Z eiibil; > v/€]* V€ €R" ae. in f2.

4,5=1
Moreover, we set

G(2)y={ge L*(): essinf g > 0}.

Cousider the operator L defined by (4) with real coefficients satisfying
(3.1) aij =a; € L), 4,7=1,...,n,
(3.2) a; € My" () i=1,...,n, for some s €]2,n),
(3.3) a=a +d" € MY, o €M), essninfa” >0,

where t=2ifn=3,t>2if n=4, and t =n/2 if n > 4.
We also set

L[)'U_: = - Z aijumim,-a LS W2(Q)'

=1

Furthermeore, suppose that ((a;)) satisfies the following condition:

Spaces of Morrey type 209

(o) there exist v € Ry and ({ei;)) € E(v, 2) such that
4= 223:1 ez‘jgz‘j
Ez’,j:l Q3
We also need a non-negative function
(3.4) G € MY2) suchthat B, <fGv,
where v € M*"~%(12) for some s € ]2, 7).

n
€ G(02), ess Sup Z {ei; — gaij)? <12

i,j=1

THEOREM 3.1. Suppose that 2 has property () with the homeomor-
phisms &y, of class C*, the coefficients of the operator L satisfy (3.1)—(3.3)
and 3 is given by (3.4). Also assume that ((ai;)) satisfies condition () with

(eij)e € MEDIT(), 45=1,...,n,

lo¢

and
lim a;(z)=af; €R, 4ji=1,...,n,

|@|—o0
(8.5) 1 0 .
m Eij(x)zez-jER, Lwi=1,...,m.

Moreover, set
go = lim g(z)

fa|—o0

and denote by ¢ a non-negotive function on Ry such that

ess sup Z lgai; — gﬂa?j[ <olr) VreRy,
(36) {\B. ij=1

and by o the modulus of continuity of {, 377 ;1 (eij)2- Then there exist a
bounded open subset 2y of £2 and a constant ¢ depending only on 02, a;, o,
a’, n, v, B, afy, edy, laijllzeoay, liesllzony, 0 o such thet
(B.7)  lullwse) < c(|Lu+ rg™ Bula,n + tuls,a,)
Yu € W2(2) NW}{(£2), YA > 0.
Proof. We proceed as in [CLMp], Theorem 4.1, remarking that property
(®) implies the existence of a 7 € Ry such that, for any z € R®, either
Bz, 7)N8N =0 or B(z,7)N 02 # 0 and B(z,7) C Uy for some h € N.
We consider a function ¢ € C§°(R") such that
<P|Bl/a =1, suppyp C By,
and, for z € 12,
T n T—Yy
Y=y iy ERY — | —

where 7 is defined above.
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So, if u € W2(2) N W (£2), then v = ¢hu € W2(2) N W} (£2) and either
supp v € {2 or suppv < Up, for some h € N,

As a consequence of the results in Section 7 of [CLM;] (see (7.5)-(7.7),
(7.9), (7.10), Lemmas 7.1 and 7.2 in [CLM;]), for any A > 0 we get

n 2
07~ ) aslho < § (= Y eisvom; + M)+ c1(e)lFvali o,
n ig=1

where
™
f=1+v+ Z (&i5)a-
ij=1
So, if we set
n 1/2
h = ess sup Z les; — gaijiz ,
” [i.j=1 }
for e < v — h we have
(v~ €)|ugz|2,n < I Z (€ij — 905 )V, ~ gLov + Aﬁv’z L, i’ (e) fuala,n
i,5=1 !
< hlvgg|a,2 + |9l zee (| Lov + Ag ™ Bulz,0 + t"?(e)| Fual2,0s
from which, by condition (),
aslz,e < ca(|Lov + Ag™ Bvls,0 + | Fusl2,0)-

Fix » € Ry and set w = {,u. Then, by applying the above inequality
with v = w, we get

(3.8) [(Ww)az2,0 < ca(|Lo(Yw) + Ag™' BYwlz,n + | f(dw)e|z,0)-
The first term of the right hand side can be bounded as follows:
|Lo(vw) + Mg Brywls,a < |v(Low + Ag™*Bw)|z,n
+ 2 aijll zoo @y [P2Wal2,@ + llais]| Lo @) [Peuwl2,0
< e3(|Low + Ag ™ Bwla (e, + [Wela,00,r) + iWlz,00)-

The second term can be estimated by means of Lemma 1.1.
Hence from (3.8) we deduce the inequality

[z 2, (ur/2) < callLow + Ag ™ 8|2, 0ge,r) + Wol2,02(0,m) -+ [Wl2,0(2m))-
Therefore, applying Lemma 1.1 of [CLM;], we obtain
{Gwzzllz, 0 < es(iLo(Cr) + Mg Blula 0 + [(Gu)el2,0 + |Grutl2,n)
from which, since a € Mt(!)), by Lemma 1.2, we get
(3-9) ”Cr'”‘“WQ(Q) < CG(|LO(C‘PU) + (a,” + Ag_lﬁ)Cruh,Q + K’r”’]?,ﬂ)-
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On the other hand, by Theorem 4.2 of [CLMs), there exists a bounded
open subset 12 of {2 such that

(1= ¢ )ullwan

< 67(| ~ g0 ¥ 6% ((1 = {)asz; + (98" +AB) (1 — Gohu vo

1,5=1

+1(1 = ¢ uls,a )
< er(e(r)I(( = G )u)as 2,2 + lgll 2=

x Lo((1 — ¢ )u) + (@ + Ag7 B)(1 — G hula, 0 + {ul2,02).
We deduce, by (3.6), that there exists rp € Ry such that
(3.10) (1 = Gro)ullwea)
< ea(|Zo((1 = GroJu) + (@ + Ag 71 0)(1 — Gro)utla, + [ulz,a)-
From (3.9) and (3.10) we get
lellwz(ay < collZou+ (@ + Xg™B)ulz,n + |ul2,ny),
with 2§ = 25U (Br, N 12).
By using Lemmas 1.1 and 1.2, the result follows. =
From Theorem 3.1, proceeding as in [TT1], Corollary 4.2, we have

COROLLARY 3.2. Under the hypotheses of Theorem 3.1, if 371 € L& (),
there exist hg,c € Ry such that

lullwzn) < elLu+ Mg~ Bulze  Yu € W2(02) NWH(12), YA € [Ag, 00|,
with ¢ a constant depending on 2, as;, o', a”, n, v, B, oy, €2;, |ail|p=(a),
lless HL°°{J‘.?): 0 Tp.

4. Regularization of coefficients. Let {J;}ren be a sequence of mol-
lifiers, i.e.

Je € Cg°(R™), Jp =0, suppJx C By, Sszl.
For k € N we set
{4.1) ai-"'j = Jyxplgay), i=1,...,n,
(4.2) 6?_1- =Jpxpley), 4,i=1,...,n

LEMMA 4.1. Let 12 be an open subset of R™ with property (). If ({e1;)) €
E(v, 12) for some v € Ry, then

((pleis))) € B(v, £2(n)),
where (2(n) is given by Remark 2.4.
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Proof. Let ((ei;)) € E(v,£2). From Remark 2.4 we deduce that for
almost every x € (2(n) \ {2 there exist z1 € Uy, N 12,..., 2y € Uk, N 2, with
he{l,...,N}, such that

p(eij)(m) = B, (:c)eij(m) +...+ 8’% (:c)e,;j(mh) fori,j=1,..., n,

where e;;(21),...,e;(zs) are symmetric and positive with lower bound .
Then

(43)  pley)(®) = On (2ejilma) + .. + Op, (B)esi(zn) = plesi) (=),
i.e. ({pes;))} is symmetric a.e. in £2(n), and

44 D7 pley)(z)es;
i,=1

=0, (@) Y e(@)éls + . 4 0k (2) Y eii(zn)Eig;

i,5=1 i, 5=1
2 (9*-1(37) +.o..+ Qkh(m))y|£|2 = Ul‘flz’

i-e. ((p(ei;))) is uniformly positive definite a.e. in £2(n) with lower bound v.
From Corollary 2.3 we know that

e € L™(02) = plei;) € L°(R"),
and moreover
(4.5) [p(ei )l Loogrmy < elleislzo=a)
for i, = 1,...,n, with ¢ € Ry depending only on n and the constants
implied in (F).
From Corollary 2.7 we deduce that
(46) ey € L7(R), (&)= € ML (2) = (p(esy))e € ML " (R™).
The result follows from (4.3)~(4.6). m

LEMMA 4.2. Let §2 be an open subset of R™ with property (), and ((as;))
satisfy condition (o) with associated ((e;;)) € E(v,2). Then there exists
ki € N such that, for every k > ki, ((of))) satisfies condition (c) with
associated ((ef;)) € E(v, 2).

Proof Let ((e;;)) € B(v, 2); s0 by Lemma 4.1, ((p(es;))) € E(v, 2(n)).
Let k1 = k1(n) € N be such that

z €,y € By, =z —y € N(n).
Suppose k > k;. From the properties of ple;;) stated in Lemma 4.1, we have
(4.7) e_f,fi = Jx *p(esi) = Jo * pleg;) = efj,

Spaces of Morrey type 213

and so ((ef_.,-)) is symmetric. Moreover,

(48) 3 ety = dox (Y plen)éts) 2 (Jun Lvlg? = viel,
£,0=1 2,5=1

whence ((efj)) is uniformly positive definite with lower bound ».
From (4.5) we get

(4.9) efillneo () < Ipless) o=@y < cllesllzoe,
and so ef; € L°?(f2). For any r € Ry it turns out that
(4.10) Gr(elj)z € O (R™),
and a fortiori C,(efj)m € M2 (02) for any s € ]2,n).

By collecting (4.7)—(4.10) we can conclude that

((e5) € B, ) for k> k.

Suppose that ({a;)) satisfies condition (a) with associated ((es;)) €

B(v, 2). For = € {2 we have
efi(z) ~ afi(z) = | Te(u)pley; ~ gai;)(@ —y) dy
En

and so, if k& > ky,

" /2 n

hj=1

1/2

By proceeding as in Corollary 2.5 and applying the triangle inequality, we
get

i 5\ 1/2 n S\ 172 )
( D Ipley — gay)| ) < s sup ( > lei; — gaij] ) a.e. in £2(n),

ij=1 1, f=1
and s0
n 1/2 L 1/2
(411)  sup ( 3 [k — o 2) < esssup ( > leis—ga?) <.

=1 i, f=l
From (4.9) and (4.11) we deduce that

(4.12) llak |l oo 2y < llefsllomqa) + v < cliesslieoe) + v
Setting
n 1/2
1y = I/ — esssup ( Z |lesj ~ gaij|2) >0,
f =1
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from (4.8) and (4.11) we have

n n ™

(4.13) > alitity =Y et~ > (ef — af)eg

i,j=1 i,5=1 i,i=1
2 vIg|* = (v — )l = mléf?,

and so ((af;)) is uniformly positive definite a.e. in {2 with lower bound v,
independent of k.
From (4.9), (4.12}, (4.13), it follows that

En.s' 165} of;
Zz j—"l( )

Furthermore, by (4.11), we obtain

> (el + (aky)? — 2efyaly) <02,

ij=1
whence, by (4.8) and (4.13),

(4.14) g = e L™(Q).

n

Ze a, >§(i(eiﬁj)2+y2(ab)2—-vz)

i,i=1 1,j=1 4,5=1

—

> S (v 4+ nwf ~v?) >0,

»o

which, together with (4.14), yields
(4.15) g% € G(12).

Finally, since

n
Z (eiFj - gka“tj E (ez_'i 1_7 '-!

iyj=1 ig=1
from (4.11) we have
n
(4.16) : Z (efj - gkafj)z <v?,
i,5=1
whence we can conclude that ((af;)) satisfies (@) with associated ((ef)). m

Below and in the sequel we assume that the hypotheses of Lemma 4.2
are satisfied.

REMARK 4.3. If (3.5) holds, then
(4.17) lim eU (z) = €2 i

|2|—
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Proof From the second equality of (3.5) and Corollary 2.6 we deduce
that

(4.18) o p(ey)(e) = e
T€R(n)
Then, if k > ki, for any € > 0 there exists r. € R, such that
lef; () — e | < | Julz — v)lples;)(v) — e | dy
Rn

€ S Je(z—yldy=¢ VzeRand|z|>r. =

Rn
From (3.5) we also deduce that
(4.19) lmlllgl p(gaij)(z) = gga?j.
nE ()
If we set
n
(4.20) o(r) = z esssup |p(gai;) — goal;|, T ERy,

hi=1 2LNB
then (3.6) is satisfied.
By reasconing as in Remark 4.3, we obtain the following

LemMmaA 4.4. If (3.5) holds, then for any k > k1 we have

ess gup Z |a” - gOa,U| <o(r), reRy.

NBryr g =1
Let 7,7 € Ry. be such that
rlz+y) <Golz) VoeR', yebB

and let ¥ € Ry be as in Corollary 2.7.
Let £ € R{ be as in the proof of Corollary 2.8 and define

T

(4.21) or(8) = 3 (olGress, 2)(£6) + o [Crlers ) 2)(E6)).

1, 7=l
Since ey; € L®(2) € M*"=2(02), if (ei5)a € M7*({7), then

loc

LEMMA 4.5. If (e5), € M2™° (Q) Bh,j=1,...

loc
(el )m Q1(6) < con(d), SERL, FERL, i,j=1,...,n

where ¢ is a constant depending only on n and on the constanis appearing
in ($).

.1, then for eny & 2 Kk,
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Proof. Let E be a measurable subset of {2 such that |E(z)| < § for any
z € §2. Setting p = 8, A =n — s, for any @y € R* and ¢ €]0,1], we have -
1 ip
iV e@GE) (o) dz)
B(xg,t)N12

;1(5

s (a)te(e) | ) ples)ela — ) o aw)

Y
B(zg,t)N12 By
1 /e
<o VRO T he@a@me):E-nra) " g
Bl B(“"Ust)nn
1 1/p
<aplaw( 1 eGblen)drds) dy
B1 B{zo—y,t)N{2~y)

< sup X8y Cr(P(€i5))all a2 (g—p)-
yEB) |

Then, by proceeding as in Corollary 2.8, we get the inequality
I (z)C(z) (e )zl e a) < eloGress, R](€8) + oC{eis)as 21(£6)),

from which we have the assertion. =

5. Existence and uniqueness theorem. In this section we shall give
an existence and uniqueness theorem for the solution of the problem

(51) weWADNWH®), Lu=/, fel¥(®),
for the operator L defined in (4).

THEOREM 5.1. Suppose that 2 has property ($) with the homeomor-
phisms $y, of class C?, and the coefficients of the operator L satisfy the
assumptions of Theoremn 3.1. Then the operator

L:uwe WHQ)NWEH(2) — Lu € L3(12)
is a Fredholm operator with index zero. Furthermore, if

(5.2) ap = essninfa >0,

then problem (5.1) is uniquely solvable.
Proof. Set, for each &k > &y,

n n
Lpu=— E a?j“wmj + Zga’iumi - gou.
iyj=1 #=1
From {3.5) we have &
lim (a‘ij)mh (m) =0

|#|— oo

and s0, by Remark 1.3, (a¥;), € Mg °(12).
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Since Ly satisfies the hypotheses of Theorem 6.2 of [CLM]], there exists
a unique solution uy of the problem

(5.3) we W )NWHD), Lyu=gf fc LA().
Furthermore, by (4.13), (4.17), {4.12), {4.9) and Lemmas 4.4-4.5, the

operator Ly satisfies the hypotheses of Theorem 3.1 uniformly with respect
to k. Then there exists a constant ¢ independent of &k such that

lurllweqa) < ellgfla,m + lurlz,00)-

Suppose that f € L?(£2) N L*=(§2). As above, the operator L satisfies
the hypotheses of Theorem 2.1 of [CLMjy], and so u, € L%°(f2) with

lurllzee(ay < ap {91l oo ()
whence
(5.4) llwllweoy < erllflae + Hflln=(m)
where ¢; is a constant independent of k.

From (5.4) it follows that there exists a subsequence (ug, Jxexn of (uk)ren
weakly convergent in W2(£2) to a function u € W2(2) "W (£2), and there-
fore also Lguy, — gLu in the sense of distributions. It follows that u is a
solution of problem (5.1) if f € L2(§2) N L*°(£2).

Denote by R(L) the range of the operator

L:ueW¥2)nWe(2) — Lu e L*(2).
Then L*(2)NL*(2) C R(L). On the other hand, as a consequence of (3.7)
and known results, R(L) is a closed subspace of L2(12); but L?(£2) N L>{2)
is dense in L*(2), and so R(L) = L2({2). Hence it is sufficient to show that

L is a Fredholm operator with index zero.
For this purpose we cousider the problem

Lou+ 3 _aiug, + (0" + \g " Blu=f, feIP(Q),
=]

u € W2(2) N WE{12),

with A > 0 and B(z) = (L + [z]*) 7,z € R™.

By means of the same technique used above for problem (5.1), we can
show the existence of solutions for problem (5.5), as a” + Ag~18 > 0. More-
over, since [ satisfies (3.4) and B € L2, (12), from Corollary 3.2 we deduce
that the solution is unique, provided that A is large enough.

So the operator Lo+t i ; 6;0/8z+(a""+ Mg~ 8) is a Fredholm operator
with index zero.

Finally, since o', 3 € M{(2), by Lemma 1.2 the operator

ue W) - (¢ - Ag~'Bu € I*()

is compact, and from known results we have the assertion. m

(5.5)
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Maximal functions and smoothness spaces in L,(R¢)
by

G. C. KYRIAZIS (Nicosia)

Abstract. We study smoothness spaces generated by maximal functions related to
the local approximation errors of integral operators. Tt turns out that in certain cases these
smoothness classes coincide with the spaces Cf (B, 0 < p € o0, introduced by DeVore
and Sharpley [DS] by means of the so-called sharp maximal functions of Calderén and
Scott. As an application we characterize the Cf' (Rd) spaces in terms of the coefficients of
wavelet decompositions.

1. Introduction. Maximal operators play an important role in various
aspects of harmenic analysis and approximation theory, such as interpolation
and differentiation. A paradigm is the so-called sharp mazimal function, of
Calderén and Scott [CS], given by

1
1.1 gw:zsu———mm — , 0<a<l,
( ) b ( ) QBI::I]: |Qi1+a/d§2ff fQi
where fp = |Q|! SQ f is the average of f over @, and @ ranges over all

cubes containing z. When a > 0, f! is related to classical differentiation;
for instance it is well known that

(1.2) f € Lip, (RY) & fl € Lo (RY),

where Lip,, is the Lipschitz space of smoothness c.

The extension of (1.1} to functions of higher smoothness was given by
DeVore and Sharpley [DS]. For every o > 1 they replaced the average fg
by a best polynomial approximation from ITj,) (the space of polynomials of
degree at most [o]) and they introduced the spaces ' = CZ (R?).

For 0 < p < 0o and « > 0, C is defined to be the collection of all
functions f € Ly := L,(R?) such that

O<a<l,

1991 Mathematics Subject Classification: 41A35, 41A63, 42B25, 46E30, 46E35.
Key words gnd phroses: maximal functions, approximation by operators, wavelets,
smoothness spaces.
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