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Maximal functions and smoothness spaces in L,(R¢)
by

G. C. KYRIAZIS (Nicosia)

Abstract. We study smoothness spaces generated by maximal functions related to
the local approximation errors of integral operators. Tt turns out that in certain cases these
smoothness classes coincide with the spaces Cf (B, 0 < p € o0, introduced by DeVore
and Sharpley [DS] by means of the so-called sharp maximal functions of Calderén and
Scott. As an application we characterize the Cf' (Rd) spaces in terms of the coefficients of
wavelet decompositions.

1. Introduction. Maximal operators play an important role in various
aspects of harmenic analysis and approximation theory, such as interpolation
and differentiation. A paradigm is the so-called sharp mazimal function, of
Calderén and Scott [CS], given by

1
1.1 gw:zsu———mm — , 0<a<l,
( ) b ( ) QBI::I]: |Qi1+a/d§2ff fQi
where fp = |Q|! SQ f is the average of f over @, and @ ranges over all

cubes containing z. When a > 0, f! is related to classical differentiation;
for instance it is well known that

(1.2) f € Lip, (RY) & fl € Lo (RY),

where Lip,, is the Lipschitz space of smoothness c.

The extension of (1.1} to functions of higher smoothness was given by
DeVore and Sharpley [DS]. For every o > 1 they replaced the average fg
by a best polynomial approximation from ITj,) (the space of polynomials of
degree at most [o]) and they introduced the spaces ' = CZ (R?).

For 0 < p < 0o and « > 0, C is defined to be the collection of all
functions f € Ly := L,(R?) such that

O<a<l,

1991 Mathematics Subject Classification: 41A35, 41A63, 42B25, 46E30, 46E35.
Key words gnd phroses: maximal functions, approximation by operators, wavelets,
smoothness spaces.
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220 G. C. Kyriazis

(1.9) [ £llcs = NFllzy + 1FE mingrnlzs < 00
where for any 0 < g < o0,
i 1 1 l/q
1.4 z):=sup inf —(—— - q)

and the supremum is taken with respect to all cubes containing z.
Similarly to (1.2) the size of feg,q gives control over the smoothness of f;
for @ > 0 and 0 < p £ oo it is known (see [DS]) that

o (21 a4
Biy = Cp = By,

where BZ 1= BZ(L,(R?%)),0 < g € oo, is the Besov space of smoothness a
(see definition in §4).

The spaces CF, &> 0, 0 < p < 00, have also been studied by Triebel [T]
where it is shown that for o > d(1/p— 1), C} coincides with the so-called
Triebel-Lizorkin space Fy'o, (see {T] for definitions and details).

Qur goal in this paper is to explore the connection between smooth-
ness and the local errors of approximation induced by alternate approxi-
mation methods. In particular, instead of local polynomial approximation
we exoploy families T := (T} )kez of linear operators that are related to
shift-invariant spaces and to the construction of wavelets. For every such
family T and 0 < a,¢ < oo, we define on f € Ly(loc) the maximal func-
tion

1/q
(15 1) = s i (o Jir- Tiofl7)

where the supremum is taken over all cubes containing x and for each cube
@ with edgelength £(Q), kg is the unique integer with 2-%e—1 < #(Q)
< 2%,

Under certain assumpticns on the family T' we will show that the finite-
ness of f&: o Teflects directly in the smoothness of f. For instance, we will
prove (see Lernma 4.8) that for any » > o, f € Ly (loc) and h € R?,

AL (f,2)| < const[R|* > (FT + M)z +ih) ae.,
im0
where f7 := fI, AL(f,-) is the rth difference of f (see definition below)
and M is the Hardy-Littlewood maximal operator. A similar result holds
in the opposite direction as well (see Theorem 4.19).
Going even further, we will establish in Theorems 4.31 and 5.25 that for
a>d(l/p—1)4 and 0 < p, g < oo the following are equivalent:
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(i) “f“oga
@) flle, + 1721z,

(16) (i) |fllz, + “3’;2_5 2% f — Tifll|,,

(iv) [Ifllz, + llsup 2**| T f — Tes £z,
kEZ
™ iflle, + |\%g§2kQ(“+d/“)llquf — Tig-1flz @)l 2,-

We point out that the spaces CF play an important role in adaptive
polynomial approzimation (see [DY]). In addition, the characterization (1.6)
appears in connection with adaptive methods for the solution of elliptic
PDE'’s, based on wavelet-type decompositions. In particular, we will prove
in Theorem 4.37 that compactly supported orthogonal wavelet sets {1} .cn
(see definitions in Section 2) form unconditional bases for Cy, a > 0,
1 < p < oo, and that if f(z) = 3, , af ;9 is the wavelet decompo-
sition of f, then (1.6)(v) is equivalent to

An W] sup 29D S gy il aran|
a3 P

{a similar result will be given for the whole range of p (Theorem 5.28)).

At this point we need to introduce some notation; we will use Q for the
collection of all cubes in RY, and QF, k € Z, for the cubes Q of sidelength
2781 < Q) < 27F. Also, as is customary, we will denote by I} the set
of dyadic cubes in R?, that is, D := |Jpcz D, where Dy is the family of
cubes with sides parallel to the coordinate axes, sidelength 2—% and lower
left corner at 27%Z¢,

In what follows we shall use standard multi-index notation; for every z =
(21,...,2q4) € R? and o = (ey,...,a) € N%, we define z* = 2{*...25",
| =y + ...+ aq and D® := 81"“’/6“13:1 L. 0%y,

Also for every r € N, h € R and 2 C BR? we denote by AL(f,-,12) the
rth forward difference relative to {2, in the direction of h, defined by

v
iy (;)(wl)’"‘“"’f(m+kh), Z,@+hy..., 2 +rh e L,
T k=0

0, otherwise,

A5 (f,z, )

Finally, by 4 ~ B and A < B we mean that there exist positive
constants, independent of the variables involved, sueh that const < A/B
< const and A < const B respectively.
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2. Multilevel operators and wavelet-type decompositions. Let
$, & be bounded functions on R such that

(A1) supp é, ¢ C [-L, L)%, L& N.

The integer translates of ¢ and $ give rise to & linear operator Ty defined
on Ly (loc) by

Tof() = Y Y w)dly — Dy (- — ),
jezd
while dilation and tramslation yields a sequence T := (Tk)rez of operators
given by
(2.2) Tef() ="y 2" f(y)g(2ky — 5) dy $(2* - —7).
jezd
We assume that the sequence (Tk)rez has the following properties:
(A2) For some a > 0,

Ty =, WGH{,I], ke Z.
(A3) For every k,vv € Z with k > v,
T, =T,

(Ad) ¢ € Clod+1,

(A5) In addition, we will often need the shifts (integer translates) of ¢
to be linearly independent over [0,1]%; by this we mean that the family of
funetions

{#(- — 7) : 5 € Z* and ¢(- — 5} is not identically zero on [0, 1]%}

is linearly independent over [0, 1]%. In particular, since any two norms on
a finite-dimensional space are equivalent, it is easily seen that there exist
constants, depending on 0 < p, ¢ < oo and ¢, such that for any dyadic cube
Q € Dy, k € Z, and any sequence {a;};ezq,

(22) 297|| 3 a;0(2* - )

jeA(Q)

ae 2kd/a
Lx(Q)

~ flasli A
where A(Q) denotes the set of j € Z¢ such that ¢(2" - —5) is not identically
Zero on (.

All these assumptions are standard and well understood because this
kind of operators play a dominant role in the characterization of the approx-
imation orders of shift~invariant spaces and the construction of wavelets.

For instance, (A2) is usually related to the approximation properties of
the sequence (Tk)rez and holds if ¢ satisfies the Strang-Fix conditions of

icm
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order [af + 1, i.e.,
DPg(2mj) =0, jeZ*\{0}, |8| <la],

and in addition ¢(0) = 1, {0) = 1, while for 1 < || < [a], D?$(0) =
D3(0) = 0 (for a proof see [K]).

On the other hand, the rest of the assumptions are always satisfied within
the framework of compactly supported wavelet bases. Although we assume
that the reader is familiar with the usual wavelet theory, we will very briefly
review the censtruction of compactly supported wavelet bases in order to
describe sufficient conditions for the assumptions (Al, 3, 5) to hold. For
details we refer the reader to [D], [M]. As is customary, in what follows for
any function f defined on R% we adopt the notation Fi,i () = 2832 F(2k.—4).

The term wavelet refers to a function ¥ in Lo (R) whose dilated translates
{¥x,;}, k., J € Z, constitute an orthonormal basis for L(R).

The usual construction of compactly supported wavelets on R starts
from a compactly supported function ¢ € Iy(R) having orthonormal integer
shifts, i.e.,

(2.3) S wlx)ple —~j)dz =do;, JEZ
R

-~

It is also required that for some sequence (h;); of complex numbers,
i satisfies the refinement equation

(24) o) = hyp(2- —j).
JEZ
The function ¢ is then used to construct a multiresolution analysis con-
sisting of an ascending sequence (Vy), k € Z, of subspaces of Ly(R). Each

Vi, k € Z, is generated by the 27*Z-shifts of the function ¢(2*.); in other
words,

(25) Vi C Vk+17 ke Z»

and

Vi i=span{pn; : €L}, kel

Under the assumption that o satisfies the Strang-Fix conditions of some
positive order and {¢ = 1, one can prove that

(2.6) (Ve ={0} and |JWVi=La(R),
keZ keZ

and the wavelet « is given by

$() =Y (=1 heyap(2 - ~5).

7
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It is known that for each k € Z, 3x,0 lives in the space Wy, := V11 SV,
and that

Ly(R) = (P Wi,
keZ
from which one derives that for every f & La(IR),

(2.7) =Y eg(Moi(),  cng = Fly)hn; @) dy

k.jez R

In the multivariate case a rather simple approach is by means of tensor
products. For z := (21, ...,24) we define

P(x) == p(®1) ... p(za),
with ¢ the function defined above.

It follows that ¢ satisfies the refinement equation (2.4) with coefficients
aj:=hy .. Ry, 7= (91,... ja). Moreover, the sequence

Vi :=span{ey; : j € 2%}, keZ,

forms a multiresolution analysis for L,{R?).

To construct the corresponding tensor-product wavelets in the wavelet
space WO we set mg = ¢, n; := 1) and we let E be the set of non-zero
vertices of the unit cube [0, 1]%. Finally, a family of 2¢ — 1 wavelets in W9 is
given by

d
(28) ¢e(m) = H Ne; (Ij"): e€ b
jenl
The family {97 ;}e,k,; is an orthonormal basis for Ly (IR?) (see [M]).
The orthogonal projections of Ly(R?) onto Vi, k € Z, are given by the
operators
(2.9) Pef()= ) 2V Fy)@(2Fy = f) dy p(2* - —).
jezd '
Finally, one can prove that for every k ¢ Z,

(2.10) FO = Pef()+ 3 (P f() - PF(),
vk
and that
Poaf()— Pkf Z Z ag ¥k, ()
e€FE jezd
where for every k € Z and j € Z9, the wavelet coefficients are defined by
(2.11) af; = [ F(@)0F ;W) dy.
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It is important to note that wavelet decompositions hold for a variety of
spaces. For instance, (2.10) is valid for any function f € L,(R%), 1 < p < o0,
whﬂe for p == oo one could resort to the Besov spaces B°‘( (B, a,q > 0
(see [M]).

As is readily seen, the sequence (P;)kez is 2 special case of the operators
(Ti)rez defined in (2.1) and it is well known that the Py’'s satisfy both (A2)
and (A3). (A5) is also known to hold in cur setting and has been established
by Lemarié and Malgouyres (see {LM]) for the univariate orthogonal scaling
functions ¢ as well for the corresponding wavelets 1.

Closing this section we note that it follows immediately that the tensor-
product wavelets 1%, e € E, also have linearly independent shifts over [0, 1]9.
This fact implies, similarly to (2.2), that there exist constants depending on
0 < ¢ < oo and ¢, e € F, such that for any dyadic cube Q € Dy, k € Z,
and any integrable function f,

(2.12) 1Petsf = Pefllrg@y & 2902105 a8l ae )
ecE
where A°(Q) denotes the set of j € Z% such that 1»*(2*. —7) is not identically

zero on .

3. Multilevel operators and maximal functions. For the rest of the
paper we assume that we have a sequence (T} )xrcz of operators that satisfy
(A1-4) for some o > 0. For any k € Z, we define

QF :={Qe Q: (AL +2Vd)27* 1 < (@) < (AL +2vd)27F}.
Moreover, for every x € R? and k € Z, we denote by Q% (z) the cube centered
at z with sidelength 4L + 2v/d, i.e.,

Q% (z) = &+ [-Vd - 2L, Vd + 2L)%/2".
Let 2 € R? and assume that Q € Q*, k € Z, contains z. It is easily seen

that Q@ C & + [—+/d, vd]*/2*. Since supp ¢(2* - —j) < ([~L,L}* + 5)/2% it
follows that for every z € @,

(1) =] %

{jeBH2hz—je[~L,L]4}

1
S | Ifl
QL@ 4ty

Employing (A2) it follows from (3.1) that for any cube Q € Q% k € Z,
containing =z,

(3.2) £ (=) —

2% £ (y)p(2ky — 7) dy (22 - 5)

Tif (@) < |If — fos @) + Telfgt ) — Tefllzo (@
<f = formltw@ + 1Tkl ~ for @Ml i@
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1
S = fas@llaiesen + grry 1= foral
B Gk
SN = for @) lraw @i @)
where fou (e = |Qf(e)|™* ng(m)f' From (3.2) it is easily seen that for
every continuous function f,
(3.3) Jin T f(z) = f(2).

It is routine now to extend (3.3) to locally integrable functions, in the
sense of almost everywhere convergence. For this we recall the Hardy-
Littlewood maximal operator

=17

Mitw =)

Let
Af(z) = Im |f(z) - Tuf(z)].
Since |f| < M f a.c., we deduce from (3.1) that Af < Mf, which in turn
implies that A is an operator of weak type (1,1), i.e., for any h € L,
t{z : Ah(z) >t} S |IA]L,.

Let @ be an open cube in R? and ¢ > 0; given € > 0 we can choose a
continuous function g € L1 {R?) such that || fxg —g]| Li(r4) < et. Taking into
account that Ag = 0 we derive that A(fxg) < A(fxg — g). Therefore,

Hz : A(fxQ) > tH < e : A(fxqg —9) >t}
S fxe = gllp,mey /t S e

Since £ was arbitrary we conclude that A(fxg) = 0 a.e. Finally, we note
that for every x € Q there exists ko large enough with T}, f () = T (fxg)(z)
for all k > ko. We deduce that A(f) = A(fxg) = 0 a.e. on Q. By varying
the cube @ we find that for every f € L (loc),

(3.4) kl-i-,lﬂlo Tef(z) = f(z) ae.

On the other hand, for every f € Ly, 1 < p < oo, and z € R¥, Hélder's
inequality yields

1
Thf (@) S e | 1f ) dy S QY (@) M7 £ 1, ey -
BTN
Letting k — —oc we get
(3.5) Jm Tef(z) =0, zeR
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Concluding this section we note that for any f € L,, 1 < p < o0, (3.3)
and (3.5) imply that

(3.6) F@) = (Tef(z) - Tror1 f(z))  ae.

kezd

4. Smoothness spaces in Ly, 1 < p < oc. In what follows we will
frequently use a slight variation of the maximal function fZ defined by

1
(41) )= s e (I - Tadl
Q503 Q

Our first task is to show that (1.5} and (4.1) give rise to equivalent
maximal functions, i.e.,

(4.2) fi(@) = [t (@), zeR%

In view of this fact we will drop the superscript L from f1'F and we will use
fT for both maximal functions indiscriminately, without any further notice.

Let Q@ € Q% k € Z, containing z. We denote by @ the cube in Q’E
which is concentric with @, has sides parallel to those of @} and sidelength
Q) = (4L + 2v/d)2(Q). Since Q1 D @ it follows easily that

1 1
= Tefl S = | IF=Te|
JQ|1+a/d CS)].f kfl ~ iQLI:H-a/d QSL 'f k.fl

Taking now the supremum first over all @ € Q%, k € Z, and then over
@ € Q we get
(4.3) fa (@) < f25 ().

Working now towards establishing the reverse inequality we note that
for any cube @ € Q’E, k € Z, containing = and v < k, v € Z, we have

1
@9 i {1f-T
|Qp [t +e/d QSL
ﬁm{ S If = Tfl+ § lTk(Tuf—f)l}-

QL Qe

Similarly to (3.1) we can prove that there exists a cube Oz O Qy, centered
at # having sidelength (8L+/d+4.L+4d)2~*, and such that for every z € Qy,

1
(4.5) ITof ()] S = | 1S
lQL| 5
L
Let £ < k be the largest integer such that C} 1. ¢ I for some cube I € QF
centered at z. From (4.5) we see that for some constant independent of k
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and any z € Qr,

(4.6) |ITe(Tef ~ @] S Sinf—fl-

I
Using (4.6) in (4.4) (with » = £) we get
1 1
l4a/d S if M_kal 1+a/d S |f Tffl
|Qul+e/e 5 [T[i+ad

for some constant independent of &, £. Taking now the supremum first with
respect to all T 3 z and then with respect to Q@ € Q;f,, k € Z, we get

(4.7) 50 z) S fl(z), zeRY

The following very useful lemma shows that the size of fI contains valu-
able information regarding the smoothness of a locally integrable function.

LEMMA 4.8. Assume that the sequence T = (Ty)xez of linear operators
satisfies assumptions (Al, 3, 4) for some a > 0. Let also r = [o] + 1 and
f € Li(loc). Then for any h € RY,

(4.9) |AL(f,2)] S R Z(fa +Mf)(@+ih)  ae
1=
In addition, if f € Ly(R?), 1 < p < oo, then
(4.10) AL (f,2)| S |h)® Z fFz+ih)  ae
=0

Proof. First we prove (4.10). We fix h € R? and we assume that for
some k € Z, 27%"1 < |n| < 27, We define the set 25 by

O ={zeR: Jim T, f(z + ih) = f(e+1h), i=0,1,...,r).

From (3.4) and (3.6) we know that |£2{] = 0 and that for all z € 12,

fle+ih) =Y (T, flz+ih) — Tuoa fle+ih)), i=0,1,...,r
vEZ
It follows that
(4.11) |45 (£,2) < D I8N f — Tua £, )|
v>kh
+ Y T —Toafia)| = T+ IL
vk

For the first sum we note that
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"

(412) I

A

1T (f — Tooa f)(z + ih))|

o

ﬁll

7] ¥

N

L i 1w

v—1
h
0 Q1 (z+ i) QY Mz +ik)

=T 1f(y)|dy

w

TV
Ed
Iy

(2 + ik)|>/2
=0 v

s

x

i
(|QE(“’ + ‘ih)|1+“/d S | fy) ~ Tuf(y)| dy)

QY (z+ih)

S Y fe+in) Y |Qiz+iR)* SIS [T (z + ih).

i=0 v>k—1 i=0

In order to estimate the second sum we will use the inequality

(413)  |AN(TS = Tooafom)| SR N fT(g 1 ih), v <k

=0
To prove (4.13) we note from the integral representation of the rth difference
(see [BS], p. 336) that

(4'14) |AZ(T,,f - T,, lf: )l
- {8 GRIE: T DAL, f ~ Toma f)(o+ €A de
0 Iﬁl—r
S M8 Y IDA(TLf ~ Tos f)(m + €h)) de,

0 |gj=r
where M, is the B-spline of order » supported on {0,7]. We fix 0 < £ < r.
Since |h| < 2=% < 2=¥ it is easily seen by the construction that there exists
i€{0,...,r} such that = + ih € QY% (z + £h).
Since ¢ is compactly supported, for every z € R? and |3| = r we have

(4.18)  DP(T,(f — Tu-1f))(2)
= N 2 HEN (£ - T,y )(m)d(2y — 5) dy (DPG)(2"2 - 5),
jE#d
and similarly to (3.1) we get
(4.16) |D6(Tu(f — Tymaf)) (2 + £h)]

el S |f = Toa ) dy S 2707~ T (z + ).

‘QL(SU + £h’)| Qu( +Eh)
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From (4.14) and (4.16) one easily gets (4.13). It follows that

(4.17) s |h|’"(22"(r‘°‘)) i:ff(m-l—ih)

wlh 1==0
< hie S F o+ ih).
=0
To conclude the proof of {4.10) we only need to employ (4.12) and (4.17)
in (4.11).
In order to establish {4.9) we assume, without loss of generality, that
|k < 1/2. Otherwise we easily get

AL (F,2) S 31+ i) SRS Y ) Mf(z+ih)  ae.

i=0 i=0
Instead of (4.11) we now use the decomposition

145 2) < S 1AL @ —Tooa foo) + Y AT f ~ Tuca £y )|

vk o<k
+ 1AL (Tof, z)| = I+ I+ IIL

I is estimated as before. For II using (4.13) we get

TSI Y 2003 o+ ) S e 3 42 + ih)
i=0 =0

0<r<k
Finally, for IIT we get from (4.14) and {4.16), using Ty instead of T, — T}, 1,

r ™
IDSIA Y Mf(e+ih) S W™D Mf(z+ih).
i=0 3=0
This completes the proof of the lemma. m

It is well known (see [DS]) that for e > 0, the space C% coincides with

the Besov space B2 (Lo (R})? (see definitions below) and more specifically
that

£ lBe (2o me = | Fllce-
Using the previous lemma it is also easily seen that

(4.18) 122,z @)t 2 1200 + 155 |20
Before we establish (4.18) we introduce the Besov spaces B {L,({2)) where

a>0,0<g, p<ocand 2 CR? We recall that for every f defined on (2, -

7 € Nand ¢ > 0 the modulus of smoothness w,(f,t), is given by
we(f,t)p = sup [|AL(f, Q) iz, me)
O<[h| <t
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Let r € N be such that r > a > 0. The Besov space By(Lp(f2)), 0 <
q,p < 00, is defined to be the family of all functions such that

T dt\/
£ %wr(f,t Q_) , 0<g< o,
Il Bg (Lo = Iz, + ( §[ (f )] < q
SUP;>p W (f, )y, g =00,
is finite.

THEOREM 4.19. Let o > 0 and assume that T = (T})rez satisfies as-
sumptions (Al-4). Then for every f € Lo,

1B (2 m)t = 1F koo + 17 -

Proof. One direction is trivial; taking the supremum over = € B¢ and
|h| <t in (4.9) we get

[l pe 2o @2 < IFawme) + 172 2o + 1M FlLome
SN lirwmey + 172 e

For the other direction we let z € R? and assume that Q is a cube in QF,
k € Z, containing . For any polynomial P € II|y) we have

(4.20) j17-Tfi < § 17~ PI+ §1T0(s - P
Q Q Q
From (3.1) we know that for every z € @,
1
. Tp(f—P < - P|.
(4.21) T%x(f = P)(2)| < 05 @) Qg(m) |f = P|
It follows from (4.20) that
(4.22) flf-mesis § IF-Pl
Q@ Qh (=)

Let now P € IIj,) be a polynomial of best Loo(Q% (z)) approximation
to f. It is known (see [DP]) that

(4.23) 17 = Pl cor ey S 1QE @) F |y (Lo (@8 (o))
It follows from (4.22) that for every = € R and Q" 5 @ 5 ,
1
Qe VI~ Tufl S 15l Bt i@t @)y S 1F e (Dee (o) -
Q

Taking the supremum first with respect to @ > z and then applying the Lo,
norm yields the result. m

Next we want to investigate (1.6) for a > 0 and 1 <p < oo.TFor this we
will establish the equivalence between the maximal functions f; and fE.
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THEOREM 4.24. If T = (Th)kez 15 a sequence of linear operators satis-
fying (A1-4) for some & > 0, then for any f € Ly, 1 < p < oo,
(4.25) F(r) =~ fi(z), =eRL

Proof. First we prove that for every x € B4, f¥(z) < fi(z). Let z € R¢

and assume that Q is a cube in Q¥, k € Z, containing z. We know from
(4.22) that for any polynomial P € Iy,

fly-nsls § 1r-2L
Q Q% ()
Taking now the infimum with respect to all P € ITy,, dividing by {Q|'+a/d
and then taking the supremum with respect to Q) 3 x we get
xS fL
For the other direction, for any x € R and any cube @ containing z we
will find a polynomial Py such that

(4.26) VIF = Pol S VIf = Tug I+ QI =/2£2 ().
Q Q
If this is the case then
1
(4.27) fi(z)ﬁsupws |f — Pgl S 1 ().
Q35z Q

Towards this end let @ € Q% k € Z, be such that Q 3 . On Q we define
the polynemial Py by

Paly) = 3 ([g])uﬂ(fkmm)(y o).

181<[a]
It is easily seen that
(4.28) VIF =Pl < VIf = Tufl + { IThf — Pol = I+ II.
Q Q Q

For IT we note that for every y € Q,

(429)  |Tef(®) - Pow)l = |Tef@) — 3 ([ZJ)Dﬁ(ka)(m)(y—m)ﬁ
|8]<[ex]

S1QIUet Y sup N | DA(T ) (w)].
YEL | 51=[a] 41
From (3.5) we see that for any & € R?,
Tif(@) = ) (Tf(x) — To-1f(z)).

vk
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Moreover, similarly to the proof of (3.5), for every 8 with |8| < [¢] + 1,
| DT ) ()] S 1Q% ()P 1812 £ 1,
which shows that
(4.30) D¥(Tif)(z) = Y DP(T,f — T,_1f)(z),
v<k

because the series on the right hand side of (4.30) converges uniformly.
Let now w € Q, and |8| = [a] + 1. Using (4.30) and an argument similar
to (4.18) we get

DB (T fY(w)| < Y IDP(Tf = Toea fY{w)] § ) 27Ueli==) £T( ;)
vk v<h
S |Q|lemiel=b/d T ().
It follows from (4.29) that for every y € Q,
Tk () — Palw)| S |1QI*/4f2 (2),
which implies that for every @ 3 z,
J 175 = Pol S |QIM=/9f3 (2)-
Q
Plugging this last inequality in (4.28) gives (4.26). w

THEOREM 4.31. Let 1 < p < o0, and 0 < g € c0. If T = (Th)rez
satisfies (A1-4) for some o > 0 then, for every f € CY, the following are
equivalent:

() Ni(f) = HfHCg,
@) Nao(f) = lflle, + 1fz 2,

(i) N3(f) = fllz, + lsup2**|f ~ Te fillz.,,
(4.32) kEZ

(iv)  Na(f) = fllz, + lsup 2**| T f — Th-1fllz,,
keZ

(v) Ns(f) = \Flz, + l|%1;13 259%|| Tioo f — Trg-15 0@l £

Moreover, if (AB) holds, then all of the above are equivalent to
(V) No(F) := |If]z, + [supgsg 25910+ D|| Ty f ~ Teg-1.f lLo(@l 2y
where the constants of equivalence depend on ¢, T and d.

Proof. First we consider the equivalence Ny(f) = Na(f). For p = oo,
as we already mentioned, the result is an immediate consequence of Theo-
rem 4.19. For 1 < p < oo, the result follows trivially from Theorem 4.24 and
the definitions of the norms,
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Next we prove that Np(f) < Na(f). For any = € R? we have

1
ff(iv) Sup [Q!l%—u/d S If_Tka|

< sup —
Qo &Ql

Using now the boundedness of the maximal operator on Ly, 1 < p < 00, we

get N2(f) < Na(f)-
In order to prove that

(4.33) Hiug 22| f — Tofllz, S ||SHP 2% Thyy — Tofllz,,
€

Ssup2k°‘|f Tufl <M SUsz\f Te 1) ().

we note that
F=Thfi< >, ITf —Torfl  ae

v2k41
It follows that
(4.34)  2%|f —Tyf| < 2’““( 3 2‘“"‘*) sup 2°°|T,, f — To_1 f]|

vkl VEE

Ssup 2T f — T 1 f|.
vEZ

Taking the supremum with respect to k¥ € Z and applying the L, norm on
both sides of (4.34) we get (4.33).

The inequality Ny(f) < Ns(f) follows trivially. Thus, we only need to
establish

(4.35) llgg}; 25| T f = T -1f I 2ect@)zn S 1FE N2,

in order to conclude the proof of (4.32). From (3.1) we know that if Q 2 z
then

(4.36) 2’“‘3“!1quf —Tho-1f 2@
z(kQ“l)a

U 1f =TI S 7R (@)

S ke
xT -
QET @) o,

Taking now the sup with respect to all cubes containing z and then applying
the L, norm gives (4.35).

Finally, to finish the proof of the theorem we note that if ¢ satisfies (A5)
then for any 0 < g < oo,

No(f) S No(f) S |Ifliz, + HD%% 28%|| Ty f = Thg-1f 5 (@)lz,

ko {a+td
Sz, + ||D59%%22 QDT f — Doz @Iz,
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S IF e, + “g‘;{’c 2kaler e f— Togrfllzuo iz,

< Ns(f)-

In the third inequality we used (2.2) and in the fifth Hélder’s inequality. m
Finally, employing (2.12) in the previous theorem we derive (1.7).
THEOREM 4.37. Let 1<p < oo and 0<gg 0o. Let also ¥ ={* : ec E}

be the family of compactly supported orthonormal wavelets given in {2.8).

If the corresponding sequence (Py)rez of operators satisfies assumptions
(A2, 4) for some a > 0, then for every f € C

4.38 ]C' co & p+“ sup 2-‘CQ(C¥+d/2) ae AP . || ,
(438)  [flleg = fllz oup ;3”( kadliliaas@n]]

where A%(Q) denotes the set of j € Z% such that ¥(2%@ . —3) is not identi-
cally zero on Q and af  ; are the wavelet coefficients defined in (2.11).

Proof. We recall that the sequence (Py)rez satisfies, by construction,
the assumptions (Al, 3, 5). Thus, by using (2.12) in (4.32){vi) we get the
result. m

5. Smoothness spaces in L,, 0 < p < 1. Next we want to extend
Theorem 4.31 to 0 < p < 1. The only difficulty appears to be that the
maximal operator used in the proof of N3(f) < N3(f) is not bounded on
L,, 0 < p < 1. To overcome this obstacle we will establish that for any
a>d(1/p"1): 0< g, s <1,

(5.1) 172,501z, 2 11 £2 g1z,
and that
(5.2) aallzes
where for any 0 < g < 00,

/g
5.3 T (x) := su ( T ) .
( ) f ,q( ) QBI:J |Q[a/d |Q1 S |f chfl

Another, rather minor, problem is that Tuf, k € Z, may not be defined
on Ly, 0 < p < 1. However, if we restrict our attention to o > d(1/p — 1)
it is not hard to show that the space Cp is continuously embedded in L.
To see this we recall the following embeddings for Besov spaces (see [DS]
and [DP]):
By — Cff — B, a>0,

(5.4) B®T — BOT, a>p, 0<gq r<oo,

ByoP ws Ly, a>dl/p-1).
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Let now & be small enough so that a — 2¢ > d(1/p — 1). From (5.4) we
have

(5.5) Cp = Bp™ = Bp 7% s B0 o Iy,

We start with the proof of (5.1). For this we employ the following in-
equality from [DS]:

Lemma 5.6. If 0< s <r aond f € Ly(loc), then
(5.7) Fi (@) S Mo (L ,)(a),
with 1/o = 1/r + a/d and M, (g) = [M(|g|7)1}/°.

THEOREM 5.8. Let 0 < p <1 and a > d(1/p— 1). For every 0 < 1 <
g <1 and f € Li(loc),

(5.9) 17411z, =~ 17 gllz,
Proof. From Hélder’s inequality it is easily seen that
flo<it,

For the other direction it is sufficient to consider only the case ¢ = 1. Ap-
plying the previous lemma with r = 1 and s = [ we get

(5.10) LS Ma(£L).

Since 1/0 = 1+ a/d it follows that p/oc =p + ap/d >p +p(1/p — 1) > 1.
Applying the L, norm on both sides of (5.10) and the boundedness of M
on Ly, yields the result. m

Next we prove (5.2). In what follows for every cube I € Q% k € Z, we
denote by I the smallest cube that contains the union of all dyadic cubes

in Dy that intersect I. It is readily seen that |I| < |I| for some constant
independent of k € Z.

LeMMa 5.11. Let f € Li(loc) and 0 < g < 1. Then for every cube
IcCRY,
(6.12)  [(f — Ther fFxs]*(2)
H ds
s(1reerLsenr), ocesiy
t

where, for ¢ € I:,

1 /1 AR
(5.13) F(z) = sup W(@ S |f — Thg £ ) ;

IoQas Q

and ¢* denotes the decreasing rearrangement of g (see [BS] for the defini-
tion). - :
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Proof Welet I € Q,,v € Z, and define F == {z ¢ I: F(z) > F*(t)}.
From the definition of F* we know that |E| < ¢.

Let z € I\ E be such that lim.,o Ty f(z) = f(x). We choose dyadic
cubes I; € Dy, j > v, containing  and such that I 5 I, > I,1 S ... Since
t < |I]/2¢ we let m > v be the integer with 2—(m+1)2 < ¢ « 9-md The
triangle inequality gives
(5.14)  |f(z) T f(@)| < f(2) = Tnf(2)|+ |Tn f(z) ~ T, f(z)| =: A+ B.

For A we have

(5.15) A S Z ||Tk+1f_kaHLm(Ik+1)

k>m
1 1/g
S Z (EI_T S |Tk+1f—kalg>
he>m k1 Iega
1 1
< —_— T _ fle
< 2 (e § s 1)
k>m T

+ (] |ka—f|q)1/q)

2! ;.
S 0 IR (z) S V| (2) S 4 (2),
k>m

where in the second inequality we used the fact that

(5.16) [ Tes1f = TS oo (Tnra)
1 1
R ("f‘-—“l' S |Tk+1f—ka§q) y k2w,
eval 2
which follows from (2.2).

As far as B is concerned, using a similar argument we get

(317) B Y [Twwrf(z) — Tuf(a)|

m>kzv

< S0 L inf Fluy s Y Tl OF ()
m>k>y Ul m2kzy

]

< [ /31 F"(s) ds.
t

Finally, taking into account (5.17) and (5.15) in (5.14) we get for



icm

238 Q. C. Kyriazis

every ¢ € I'\ F,
H
Uw)—ﬂj@ﬂg(sFﬂﬂﬁmﬂd&+ﬁmF%ﬂ) 0<t<|1]/2%
t
From this and the definition of [(f — T0, f)xs]* the result follows. w
We are now ready to prove (5.2).
LemMma 5.18. If 0 < s <r and f € Ly(loc) N Ly (loc), then
(5.19) ar(@) § Mo (£3,)(2),
with 1/¢ = 1/r + a/d.

Proof. Let I be an arbitrary cube and define ny := [(f — Tk, )xz]*(t).
Then

1 1
5.20 T (z)=sup ——|f ~ T} = e .
( ) , ( ) ISI.'I): u‘l/a Hf kr.f“Lr(I) ig-g |I|:|_/fJ ||77I||Lr

Employing (5.12) and using the fact that 77 is a decreasing function it is
easily seen that

1 |T/24
{npdt<at | nrat
0 0
[1]/2d H
S [ S a/d +ta/dF*(t)]
t
m/z i7] N S gt
ofd dt tl/ch* [ hald
S[S R TR
Using Hardy’s inequality (see [BS]) we get
HEAH r 1]
d
I O
0 L 8 0
which implies that
1]
dt
(5.21) Inzlz, S S[t””F*(t)]
0

Employing (5.21) in (5.20) we get

(622 £,(e) S owp - iremeor ) gL
2 L sup ( [ St 631 m) =
bl iIil/ g[ _ (®)] T f.gg ml/g ”F“Ltrm?

Mazimal functions and smoothness spaces 239

where || - ||z, I8 the norm of the corresponding Lorentz space. We refer the
reader to [BS] for the definitions of the Lorentz spaces as well as for some
of their properties. In particular, it is known that for o < r,

I llzer S Nees 211+ iz, -

Using this last inequality in (5.22) we get

2.(0) S sup (1;1 i) " sup (% §_(f§‘,q>“)”a

S Mo (f2,)(z).
Following now verbatim the proof of Theorem 5.8 we derive

THEOREM 5.23. Let 0 < p, ¢l <1l anda >d(l/p—1). T = (Th)kez

satisfies (A1-B) then, for any f € Ly(loc),

THEOREM 5.25. Let 0 < p< 1, and 0 < q < co. If T'= (Ti) ke satisfies
(A1-4) for some a > O then, for every f € CJ, the following are equivalent:

@ Mu(f) = Iflice,
(i) No(f) = [IFlle, + 1S, -

Moreover, if ¢ has linearly independent shifts, i.e., if (AS) holds, then the
above are equivalent to

(i) Ns(f) = fllz,+ lsup 2°%(f = TeflllL,,
keZ

() Nu(f) = || f]z,+ lsup 25| Tef — Timi flz,.
keZ

5,26
(5:20) (v) Ns(f):= !|f||Lp+||zg€2kqailquf“qu—lfHLw(Q)lle:

(vi) Na(f) = |ifllz,+ ngp gkalatd/a T, F— Ty o1 fllzg@llLps
BT

where the constants of equivalence depend on ¢, T' and d.

Proof. First we prave the equivalence between N1(f) and N2(f). In
view of (5.5) we know from Theorem 4.24 that

(5.27) £a e fl

Therefore, applying the L, norm on both sides of (5.27) and taking into
account {5.9) with g =1 and ! = p completes the proof.
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Assuming now that {A5) holds, we will prove that Na(f) < Na(f). Let
0 < ¢ < p. For any z € R?, we have

rale) = 530 s (1 1 - T f|q)1/q
e Qe \JQr Y T e

1/q
< mup (7 Neup 21y - 1) = My loup 24717~ Taf o).
gz \ @ o keZ kEZ

Using now the boundedness of the maximal operator on Lygy /g > 1, and
(5.24) we get

Ifallz, SNFE e, < HMQ(?EE 2% f — T f iz,
S llsup 2% |f — Tk flilz, -
kez

Finally, the inequalities N3(f) < Nu(f) = Ns(f) S Ne(f) < Malf)
follow in the same manner as in Theorem 4.31. m

At last, similarly to Theorem 4.37 we have

THEOREM 5.28. Let 0 < p<land 0 < g < oo, Let also U={y)°: e € E}
be the family of compactly supported orthonormal wavelets given in (2.8).
If the corresponding sequence (Pr)pez of operators satisfies assumptions
(A2, 4) for some o > 0 then, for every f € Cy,

(5.29)  Iflleg = Ifllx, + 1l sup 24232 .11 caecapllr,,
D3Q32 el

where A*(Q)) denotes the set of j € Z2 such that ¥e(2%2 . —5) 4s not iden-
tically zero on @ and of 0.j 7€ the wavelet coefficients defined in (2.11).
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