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Finite rank elements in semisimple Banach algebras
by

MATEJ BRESAR and PETER SEMRL (Maribor)

Abstract. Let A be a semisimple Banach algebra. We define the vank of a nonzero
element a in the socle of A to be the minimum of the number of minimal left ideals whose
sum contains a. Several characterizations of rank are proved.

1. Introduction and statement of the main result. Throughout
this paper, A will be a unital semisimple complex Banach algebra. Recall
that the sum of all minimal left ideals of A coincides with the sum of all
minimal right ideals of A, and is called the soele of A. It will be denoted by
soc(A). If A does not have minimal one-sided ideals, we define soc(.A) = {0}.

According to the definition, for every nonzero element a in soc(A) there
exist finitely many minimal left ideals such that a belongs to their sum. Of
course, the choice of these minimal left ideals is not unique. We are interested
in the minimum of the number of minimal left ideals whose sum contains a.

DEFINITION. The element 0 € soc(A) has rank 0. An element a € soc(A)
has rank one if o belongs to some minimal left ideal of A and a # 0. An
element b € soc(A) has rank n > 1 if b belongs to a sum of n minimal left
ideals, but does not belong to any sum of less than n minimal left ideals.

Recall that every minimal left ideal £ of A is of the form £ = Ae where
e € A is a minimal idempotent, that is, a nonzero idempotent such that
eAe = Ce. Using this fact it is easy to see that a bounded linear operator A
on a Banach space X has rank n as an element, of the Banach algebra B (X),
the algebra of all bounded linear operators on X, if and only if the range of
A is an n-dimensional subspace of X. This justifies the choice of the word
rank,

Note that b € A has rank n > 1 if and only if b can be written as a sum
of n elements of rank one, but cannot be written as a sum of less than n
elements of rank one.
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We claim that & € A has rank one if and only if 2 # 0 and ada = Ca.
Suppose that a has rank one. Then ¢ # 0 and a belongs to some minimal left
ideal Ae where e is a minimal idempotent. But then it follows at once that
aAa = Ca. Conversely, a # 0 and aAa = Ca imply that Aa is a minimal left
ideal of A—this can be, for instance, shown by adapting the proof of [10,
Lemma 2.1.8]—which clearly implies that a has rank one. We have thereby
shown that our definition of rank coincides with the one given in [9] and [8].

The object of this paper is to prove several characterizations of rank. In
order to state the main result we need some more terminology.

We shall say that an element 4 of an algebra B is indecomposable if it
cannot be written as a sum a = b -+ ¢ where b,¢ € B are nonzero elements
satisfying 8¢ = 0. Note that an algebra B is prime if and only if every
element in B is indecomposable, and B is semiprime if and only if 0 € B
is an indecomposable element. Let By and B; be prime algebras and let
B = B; @ B, be their direct sum. Then every element in B of the form
(b1,0) or (0,by) is indecomposable while the element (by,bz) with b; # 0,
by # 0 is not. Indecomposable elements in soc(.4) will be characterized in
Proposition. 2.4.

By M, n, where r < n < 2r, we denote the algebra of all n x n matrices
A = [a;;] satisfying a;; = 0 whenever ¢ > r or § < n —r. We will show in
Lemma 2.7 that an operator T € B{X) has rank r if and only if the algebra
TB(X)T is isomorphic to M, , for some n. Note also that if a € Ais a
rank one element, then, as already noted, aAe = Ca, and so a.Aa is either
isomorphic to M; o (when a is nilpotent) or to C 2 M;; (when a is not
nilpotent).

As usual, o(xz) denotes the spectrum of «.

‘We are now in a position to state the

MaIN THEOREM. Let A be a semisimple unital complex Banach algebra
and let n € N, For a € A the following essertions are equivalent:

(A)  a has rank n;

(B)  the left ideal Aa is a sum of n minimal left ideals, but is not a sum
of less than n minimal left ideals;
(C)  o(xa) contains af most n nonzero points for every = € A and there
exists oo € A such that o(xga) contains n nonzero points;
(D) o satisfies
(D.1) Nyer (@ + Xa) C o(z) for every z € A and every subset
F C C\ {0} having n+ 1 elements,

(D.2) there exists &1 € A and a subset Fy € C\ {0} with n elements
such that Nxep, o(21 + Aa) € ozy);
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(B) @ satisfies
(BE.1) there exist finitely many distinct primitive ideals Py, ..., Py of
A such that a € P for every primitive idesl P # P, i =
Lok,
(BE.2) if m, i = 1,...,k, are continuous irreducible representations
of A on Banach spaces such that Kerm; = P, then mi{a) are
finite rank operators and n =rankmy(a) + ...+ rank m(a);

(F)  there exist ay,...,ax € A such that
(Fl) a=ay+ ...+ Qk,
(F.2) each a; is indecomposable,
(F.3) a;Aa; = 0 whenever i # j,
(F.4) aiAa; is isomorphic to My, n, for some ri,n; € N, ry < n;

< 2ry
(F5) n=r1+...+ 7.
Moreover, ai,. ..,ay are unigue nonzero elements in soc(A) satisfy-

ing (F.1)-(F.3).

When n = 1, the condition (B) should be understood as stating that Ae
is a minimal left ideal.

Not all the equivalences in this theorem are new. In a recent paper 31,
Aupetit and Mouton defined the rank via the condition (C). At the begn-
ning of the paper they show that (C) and (D) are equivalent {3, Theorem
2.1] (see also [6, 7, 2, 8] for the background concerning the conditions {C}
and (D)). Using the subadditivity of the rank they also show that these two
conditions are equivalent to (A) [3, Corollary 2.18]. Let us also point out [3,
Corollary 2.17] which indicates that an element can be written as a sum of
elements of lower rank (cf. the condition (F)).

The assertion (F) is probably the most iluminating one. It could be
considered as a structure theorem for elements having rank n. Let a € A be
an indecomposable element. Obviously, k in (F) must then be 1. Therefore,
we have the following characterization of rank of indecomposable elements
a: the rank of a is » if and only if a.Aa & M, ,, for some n, r < n < 2r. Let
us show by a simple example that this is not true for all elements in A.

ExAMPLE. Let X be a Banach space, and let A = B(X) & B(X) &
B(X)® B(X). Pick £ € X and ¢ in the dual X* of X such that é(€) = 0.
Let £ ® ¢ € B{X) be a rank one nilpotent defined by (£ ® )(n) = ¢(mE.
Set a = (£® ¢,£ ® ¢, ® ¢,€ ® ¢) € A The rank of a is 4. However, the
algebra a.da is isomorphic to My @ M1 & M1 & M1, which in turn
is isomorphic to Mj 4 for they both are 4-dimensional algebras with trivial
multiplication. .
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In particular, this example shows that the rank of an element a € A is
not necessarily determined by the algebra o.de. This is the reason why we
have to decompose o into a sum of indecomposable elements.

2. Preliminaries. In this section we gather together several auxiliary
results needed for the proof of the main theorem. We begin with some more
or less well-known theorems.

The first one is an extension of the Jacobson density theorem. It can be
deduced from [5, p. 283].

THEOREM 2.1. Let my,. ..,y be irreducible representations of A on Ba-
nach spoaces X1,.. ., Xi, respectively. Assume that Ker n; # Ker 7; whenever
i# 7. Let Vi,..., Vg be finite-dimnensional subspaces of X1, ..., Xy, respec-
tively, and let A; : X; — Xi, 1 = 1,...,k, be any linear operators. Then
there exists x € A such that

m(@)|Vi = AilVi, i=1,... .k

The set of all primitive ideals of .4 will be dencted by II(.4). The fol-
lowing theorem follows from [10, Theorem 2.2.9(v)].

THBOREM 2.2. 0(0) = Upegr(ayo{a + P) for every a € A.

‘The next theorem characterizes elements lying in the socle (see [1, The-
orem 7.2], (2, Theorem 2.1}, and [4, Proposition 2.2]).

THEOREM 2.3. For a € A the following assertions are equivalent:
(i) @ € soc{A);
(ii) the algebra ada is finite-dimensional;
(iii) o(za) is finite for every T € A;
(iv) there exist finitely many primitive ideals Py, ..., P, of A such that

a € P for every primitive ideal P # P;, i = 1,...,k, and a+ P, € soc(A/F;),
i=1,... k.

The condition (iv) shows, in particular, that a+ P ¢ soc(A/P) for every
a € soc{A) and every P € IT{A). Another useful observation is the following:
a+ P € soc(A/P) if and only if w(a) is a finite rank operator where 7 is an
irreducible representation of A with Ker m = P. We will use these two facts
without making explicit reference.

In the next result we show how one can recognize indecomposable cle-
ments among all elements satisfying (iv) of Theorem 2.3.

PROPOSITION 2.4. For a nonzero element a € A the following assertions
are equivalent:
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(i) a is indecomposable and a & soc(A);

(ii} there exists a primitive ideal Py of A such thot a € P for every
primitive ideal P # Py, and o+ Py € soc(A/Py).

Proof. Suppose first that (i) holds. By Theorem 2.3 there exist Py, ...
.., Py € IT{A), P; # P; when i # j, such that a € P whenever P € IT(A)
and P P;,i=1,...,k, and a+ F; € soc(A/F,). Since o # 0, we can of
course assume that a ¢ F;. All we need to show is that k = 1.

Suppose that k¥ > 2, Let 7y, ..., ™, be irreducible representations of A on
Banach spaces Xy, ..., Xy, respectively, such that Kerm; = P;. Since a+F; €
soc(A/P;), w;(a) are finite rank operators. Therefore, Theorem 2.1 tells us
that there is z € A such that m(z)|Immi(a) = 0 and m(z)|Imm;(e) =
IImm(a), i = 2,...,k. That is, mi(z)m(a) = 0 and m;(z)m(a) = m(a),
1= 2,...,k. Similarly, there is y € A such that m (y)m(e) = m{a) and
m(y)mi{a) = 0,4 =2,...,k. Thus, the elements b = ze and ¢ == ya satisfy

m(b) =0, mbd)=mla), 1=2,...,k
mfc) =m(a), mile)=0, i=2,... k.
That is,
beP, a-bePn..NPF
a—ceP, cePn...NE.

Using these relations one concludes that a —b—c¢ € Py N ... N Py. Now pick
P ¢ II(A) such that P # P;, i = 1,...,k. As a € P and b,c € Aa, we also
have b, ¢ € P, and in particular, a—b— ¢ € P. Thus we proved that a—b—¢
lies in every primitive ideal of A. But this means that a = b+ ¢ for A is
semisimple. Similarly we see that bAc is contained in every primitive ideal
of A, so that bAc = 0. However, b # 0 and ¢ # 0 for m{b) = mi(a) # 0,
i=2,...,k, and m(c) = m1(a) # 0. This contradicts the indecomposability
of a. Thus, we proved that (i) implies (ii).

Now suppose that (ii) holds true. Then a & soc(A) by Theorem 2.3.
Assume that there are nonzero b, ¢ € A such that o = b+4-cand bAc= 0. As
b,c % 0, there exist P,Q € IT(A) such that b & P, ¢ ¢ Q. Every primitive
ideal is also prime, and so bAc = 0 C P implies ¢ € P. Similarly, b e (). But
then a = b + ¢ lies neither in P nor in Q. Of course, P # @ for b ¢ P and
b € Q. This contradicts the assumption that a lies in every primitive ideal
but one. The proof of the proposition is complete.

LEMMA 2.5, If a € A has rank one, then a is indecomposable.

Proof. Every element of rank one lies in a left ideal Ae wh(?re €is a
minimal idempotent. Therefore, using Proposition 2.4 we see that it suffices
to show that every minimal idempotent is indecomposable.



292 M. Bresar and P. Semrl

We will prove slightly more, namely, that every minimal idempotent
e in a semiprime algebra B is indecomposable. Assume that e = b+ ¢ and
bBe = 0. We must show that b = 0 ar ¢ = 0. Since ¢ is a minimal idempotent,
there exist scalars A, i such that ebe = e and ece = ue. Hence (A 4 ple =
ebe + ece = e* = e. In particular, this shows that at least ome of A,p,
say A, is not zero. Consequently, Aec = ebec € ebBe = 0 yields ec = 0.
Therefore, b+ ¢ = ¢ = €2 = eb+ ec = eb. That is, ¢ = (& — 1)b. Hence
eBe = (¢ — 1)bBe = 0 and so ¢ = 0 by the semiprimeness of B.

LEMMA 2.6. Let s € soc(A), s # 0. Then there exist s1,..., 5, € s0c(A)
and distinct primitive ideals Py, ..., Py of A such that

(i) s =81 +.-. + sk;

(ii) 5: € P; and s; € P for every primitive ideal P # P;;

(iil) each s; is indecomposable;

(iv) the rank of s is vy + ...+ 1y where ry is the rank of s;;

(v) each s; is a sum of r; elements of rank one none of which lies in F;
and each of which lies in every primitive ideal P % Py

(vi) if m; 4s a continuous irreducible representation of A on a Banach
space X; such that Kerm; = P;, then wi(s) = mi(3;) is an operator of rank r;.

Proof. We denote the rank of s by n. Let uy, ..., u, be elements of rank
one whose sum is s. According to Lemma 2.5 and Proposition 2.4 for every
u; there exists exactly one primitive ideal not containing it. Of course, some
of these n primitive ideals may coincide. Adding together all the u;’s which
do not belong to the same primitive ideal P; and denoting their sum by s,
we can then easily verify that the assertions (i)—(v) are true. It remains to
prove (vi). In order to simplify the notation we write ¢ instead of s;, and
r,m, X, P instead of r;, m;, X;, P, respectively. Without loss of generality we
may also assume that ¢t = uy +...+w,, u; € P,4=1,...,r. We must show
that w(t) = w(uy) + ...+ w(u,) is an operator of rank r.

Let ¢ be any minimal idempotent in A. Thus, ede == Ce, and hence
w(e)n(A)r(e) = Cr(e). As w(A) is a subalgebra of B(X) acting densely on
X, it follows easily that = (e) is either 0 or a rank one projection. Using this
we see that w(uy),...,n(u,) are rank one operators. Thus, there are nonzero
vectors £1,...,& in X and nonzero functionals ¢y,..., ¢, in the dual X*
such that m{uw;}) =& ® ¢, i=1,...,r. Now

W(t)m£1®¢1+---+£r®¢r

has rank r, unless the £;'s or the ¢;'s are linearly dependent.
Suppose that the {;’s are dependent. Assume, for instance, that &, =
M+ .o+ Ap_1&—1 for some ); € C. Then

ﬂ(t) = £l @ (¢l + A1‘?5’1") N + gr—l ® (¢’r-—-1 + )\r-—lqsr)-
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As 7 is irreducible and &, # 0, there exist #1,...,%,—7 € A such that
m(zi)lr = Ly i=1,..., 7~ 1. Set v; = u; + Nwjur, = 1,...,7r — 1. As the
u;’s belong to every primitive ideal except P, the same is true for the v;’s.
Note that

w(vi) = & @ ¢i + Aim(@1)(6r @ br) = & ® (63 -+ Nihr).
Hence

m(t) = w(vr) + ...+ w(vr-1),

that is, t ~ vy — ...~ Upr—1 € P. As t a8 well as the v;’s lie in every primitive
ideal different from P, it follows that t = vy + ... + vp..1.

We claim that the v;’s are elements of rank at most one. We know
that w(v;) is an operator of rank at most one. Therefore, 7(vi)w(A)r(v;) =
Cr{v;). From this relation and the fact that v; lies in every primitive ideal
except possibly P, it follows that v; Av; = Cu;. As already observed in the
introduction, this relation yields that v; is either 0 or an element of rank
one. Thus, ¢ can be written as a sum of less than r elements of rank one.
However, r is the rank of £. This contradiction tells us that the &'s are lin-
early independent. Similarly we see that the ¢;’s are linearly independent.
Therefore, m(t) has rank r. The lemma is thereby proved.

LEMMA 2.7. Let X be o Banach space end D be a subalgebra of B{(X)
acting densely on X. Let T € B{X) and v € N. Then T has rank r if and
only if the subalgebra TDT is isomorphic to M, », for somemn, r <n < 2r.

Proof Assume that rankT = 7 Set X; = KerTNImT. As X; is
finite-dimensional, there exists a closed subspace X4 C X such that Ker T =
X1 6 X4. Choose a subspace X, satisfying X; @ Xz = ImT. A direct sum
of a closed subspace and a finite-dimensional subspace is closed. Therefore,
X1® X2 @ X4 is closed. Moreover, it contains Ker T, so that it is of finite
codimension in X. It follows that we can find X3 € X such that X has the
direct sum decomposition into closed subspaces X = X1 & Xa @& X5 @ X4.
Then

0 I, 0
_ 0 Ty, Ty 0
T= O ¢ o 0
0 0 00
with respect to this direct sum decomposition. Let A € B(X). Then
0 Ay A O
|0 As A4 O
TAT=19 0 0 o©
0 0 0 0

Clearly, dim(X; ® X3) = r. As X @ X3 is complementary to KerT we
have also dim(Xo & X5) = r. It follows that n = dim(X1 & X2 & X3) < 2r
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and n > r. It is now easy to verify that the mapping ¢ : TDT — M, ,
defined by

0 4; 4 O 0 A Ay
0 A3 Ay O

‘;b =10 A3 A4
0 ¢ o0 0 00 0
0 ¢ 0 0

is an isomorphism.

Conversely, assume that T'DT is isomorphic to M, ,. In particular, TDT'
is finite-dimensional. As D acts densely on X, it is easy to see that then
the operator T must have finite rank. But then we already know that TDT
is isomorphic to M;, n, where rankT = r;. Since M, and M, ., are
isomorphic and dim M,.,, = r* we finally get the desired equality r; = r.

3. Proof of the main theorem

{A)=(B). We first settle the easier part. If the left ideal Aa were a sum
of less than n minimal left ideals, then a would lie in this sum, so that the
rank of a would be less than n.

Now, let us prove that the left ideal Aa, where a is an element of rank
n, is a sum of n minimal left ideals. Apply Lemma 2.6 with a playing the
role of 5. We keep the notation from that lemma with a; instead of s;. We
will show that

(a) Aa = Aa; +...+ Agg; and
(b) Aa; is a sum of r; minimal left ideals.

Of course, (a) and (b) together imply that Aa is a sum of n minimal left
ideals.

It is trivial that Aa = A(a1 + ... + ax) € Aay + ... + Aak. Now pick
an arbitrary element 2101 + ... + zxag in Aag + ... + Aap. Let m; be a
continucus irreducible representation of A on a Banach space X; such that
Kerm; =F;,i=1,...,k. As each m; (a;) is a finite rank operator, Theorem
2.1 tells us that there exists # € A such that

mi(@)| I (as) = w2 )| Iy (a),  d==1,...,k.

That is, mi(z)mi(a:) = mi(2)mi(es), for all 4, which means that (z — z;)a; €
F;. As a; belongs to any primitive ideal different from P, it follows that
To; = ik, ¢ = 1,..., k. Hence myag+. . +zpay = z(og+. . .+ap) = za € Ao
We have thereby proved (a).

In order to prove {b), we simplify the notation as in the proof of Lemma
2.6. Let ¢ € A be a sum of rank one elements U1, ...,y such that each u;
lies in every primitive ideal different from P € IT(,A). Note that (b} will be
proved by showing that Af = Auy + ... + Au,.
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Now, as in the proof of Lemma 2.6 we have m(u;) = & @ ¢4, i =
1,...,7, where 7 is a continuous irreducible representation of A on a Banach
space X with Kerm = P, £1,...,& are linearly independent vectors in X,
and ¢1,...,¢, are linearly independent functionals in X*. Pick arbitrary’
Z1,...,%r € A By the Jacobson density theorem there is z € A satisfying
7(x)& = w(ws)i, i = 1,...,7. Consequently,

(@) E@d1) + .+ (@) (& @ b)) = m(@)(E1 D b+ A T (@) (6 @ &)
That is,

m(zug + ...+ 2ue) = m(@pu + -+ U,
which means that o{us +. ..+t )~ (2101 +.. .+ 2ru,) € P. Since the u;'s lie
in every primitive ideal different from P, we conclude that zf = m(u; + ...
+up) = xyuy + . .. + T, Thus we have proved that Aug +. .. + Au, C At.
The reverse inclusion, Af C Auy + ...+ Au,, is trivial

{B)=-(C). Assuming (B) we see that every element in Aa has rank at
most n. Therefore, fo(xa)\ {0} < n, z € A, will be proved by showing that
the number of nonzero points in the spectrum of every element in soc(.A)
cannot exceed its rank (we use §F to denote the cardinality of the set F).

Pick s € soc(A) and denote its rank by m. Let 81,...,5, and P1,..., P €
II(A) satisfy the assertions of Lemma 2.6. By Theorem 2.2 we have

s\ o= | ols+P)\{0}= |J ols+P)\{0}

Pell{A) PeIT(A)
=o(s+P)\{0}U...Uc(s+ P)\ {0}
=o(m(s) \ {0} V... Uelme(s)) \ {0},
and hence
o (s)\ {0} < Ho(m(s)) \ {0} + ... + fo(ma(s)) \ {O}-

Since m;(s) is an operator of rank 7y, it has at most r; nonzero points in the
spectrum. Therefore,

fo(s)\ {0} L ry 4. .+ =m,

which is our desired conclusion.

Next, we have to find an element zo € A such that fo(zpa) \ {0} = n.
Again we apply Lemma 2.6 to s == @, and, as above, we keep the notation
of the lemma with a; instead of s;, and, to avoid confusion, r{ instead of
r;. Using Theorem 2.1 it is easy to see that there is zp € .A such that
m1 (o)1 (a) = 71 (zoa) has eigenvalues 1,..., 7], ma(zo)ma(a) = m2(zoa) has
eigenvalues r} +1,...,7} +r} etc. Finally, me(2oa) has cigenvalues ri+. .. +
i+ 1,...,r +...+ 7. Therefore, {1,...,r| +...+r,} C o(zoa). This
means that the number of nonzero points in o(%pa) is not smaller than the
rank of 4. As Aa is a sum of n minimal left ideals, and a € Aga, the rank of e is
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at most n. However, it cannot be less than n. Namely, we already know that
(A) implies (B); therefore, if the rank of a were smaller than 7, then the left
ideal .Aa would be equal to a sum of less than n minimal left ideals, contrary
to assumption. Thus, the rank of a is n, and so fo(zpa) \ {0} > n. On the
other hand, jo(za)\ {0} < n holds for every z € A. Hence fo(xya)\ {0} = n.

(C)<=(D). As already mentioned, this equivalence was proved in [3],

(C)=(E). Let a satisfy (C). We first prove that there is at most n prim-
itive ideals not containing a. Suppose that, on the contrary, Py,..., Py
are primitive ideals none of which contains a. For each i = 1,...,n -1, let
m; be an irreducible representation on a Banach space X; with Kern; = P,
As mi(a) # 0, there exists § € X; such that mi(a)é; # 0. According to
Theorem 2.1 there is z € A satisfying m;(z)mi(a)é; = i€, i=1,...,n+1.
Thus, i € o(m(za)) C o(za). But then {1,...,n + 1} € o(za), contrary to
assumption.

Thus, we have proved (E.1}, that is, there exist k < n primitive ideals
Py, ..., P, such that a les in every primitive ideal different from them.
Let m; be a continuous irreducible representation such that Kerm; = P;,
i=1,...,k. As a € soc(A) by Theorem 2.3, m;(a) are finite rank operators.
Set r; = rank 7;(a). Arguing as in the proof of implication (B)=>(C) we see
that there is y € A such that {1,...,71 ... + rx} C o{ya). Therefore,
ri .ty < foya) \ {0} < n. We have to prove that this inequality is
actually an equality.

Using Theorem 2.2 we have

olwoa)\ {0} = |J olwoa+P)\{0}= | olaoa+ P)\{0)
PeH{A) PelI(A)
= 0(:130@4- P1) \ {O}U . Ud(woa*—l'" Pk,) \ {O}
= o(m(za}) \ {0} V... Uo(m(zoa)) \ {0},

and hence

n = fo(z0a) \ {0} < lo(m(zoa)) \ {0} +... + fo(mu(zoa)) \ {0}.
Since 7;(a) is an operator of rank r;, 7;(zoa) has rank at most r;. Con-
sequently, fo(m;(zoa)) \ {0} < m, and so n < 1 + ... 4 . Hence n =
T PR o 5

(E)=>(F). Suppose a satisfies (E). Using Theorem 2.1 we see that for
each i = 1,...,k there exists z; € 4 such that

i () mi(a) = my(a), 7i(@i)mi(a) =0, 3.

Set a; = zia, ¢ = 1,..., k. Thus, m;(as) = mi(a) and mj(a;) =.0, i # j, 50
that o ~a; € P; and a; lies in every primitive ideal except P;. It follows at
once that @ —ay ~ ... —.ax lies in every primitive ideal of A, and so (F.1)
holds. Theorem 2.3 tells us that a belongs to soc(,4). Therefore, Proposition
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2.4 implies that (F.2) is true. If ¢ # j then a; € P; and o; € F;, which
further implies that a;Aa; is contained in every primitive ideal of A. This
proves (F.3).

Set r; = rankm;(a). Lemma 2.7 states that the algebra ;(a)m;(A)m;(a)
is isomorphic to My, n, for some n; such that r; < n; < 2ry On the other
hand, m;{a)m;{(A)mi(a) is isomorphic to aiAa;. An isomorphism is exactly
the restriction of m; to a;Ade;—it is certainly a homomorphism from one
algebra onto the other, but it is also one-to-one. Namely, if m;(a;za;) = 0
for some = € A, then a;za; lies in P;, which clearly yields a;za; = 0. Thus,
(F.4) is true. Of course, (F.5) holds by assumption.

It remains to show that a1, .. ., ax are unigue nonzero elements in soc(.A)
satisfying (F.1)~(F.3). First of all, they are indeed nonzero elements lying
in soc(4) as can be seen using (F.4) and Theorem 2.3, Now suppose that
a = by + ...+ b where the b;’s are nonzero indecomposable elements in
soc(A) satisfying b;.Ab; = 0, ¢ # 7. According to Proposition 2.4, for every b;
there exists exactly one Q; € II(4) not containing b;. Observe that Q; # Q;
whenever 1 # j for bj.4b; = 0 C Q; yields b; € Q;. Note also that a—b; € @i,
i=1,...,1

Since by & @y, we also have a1 + ... +ay = a & 1. But then at least
one of the a;’s, say a;,, does not belong to Q. For any j # i1 we have
ai, Aa; = 0 C @y, which gives a; € Q;. Hence by +Q1 = a+ Q1 = a;, + 1,
that is, by —a;, € Q1. Asboth by and a;, are indecomposable, they lie in every
primitive ideal except Q1. But then b = ay,. Similarly, for each j=1,...,!
there is i; < k such that b; = a;;. Of course, j1 # jz yields 4 # iy,
for otherwise b, would be equal to bj,—this is impossible for b;, # 0 and
b;, Abj, = 0. It follows that ! < k. However, as the b;’s and the a;’s appear
symmetrically, we must have k = l. Therefore, {b1,...,bi} = {ay,...,ax}

(F)=>(A). As already observed, (F) implies that a; € soc(A) and so
a € soc(.A). In other words, a has a finite rank, say m. We already know that
(A) implies (F). Therefore, there exist indecomposable elements bi,..., b
€ A whose sum is ¢ and such that b Ab; = 0, ¢ # j, bjAb; = Mp, m, for
some p;,m; € N, m = py + ... + px. However, as the elements satisfying
(F.1)~(F.3) are wmique, it follows that {b1,...,b} = {a1,...,ax}. In partic-
ular, this yields m = py+...+p =71+ ...+ 7% = n The proof of the
theorem is complete.
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