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Analyticity for some degenerate
one-dimensional evolution equations

by

G. METAFUNE (Leoce)

Abstract. We study the analyticity of the semigroups generated by some degenerate
second order differential operators in the space C([e, 81), where [a, 8] is a bounded real
interval. The asymptotic behaviour and repularity with respect to the space variable are
also investigated.

1. Introduction. In this paper we prove the analyticity of the semi-
groups generated by differential operators of the form

A1 =m()[(@ - a)(8 - 2)D? + b(z)D]

or
o)

(z —o)(8 — =)
where D = d/dz, in the space C([e, 3]), with suitable boundary conditions.
The functions m and b are real-valued, continuous on the compact interval
[, 8] and m. is strictly positive; moreover, we assume that b satisfies a Holder
condition at the endpoints ¢ and 8.

The study of degenerate parabolic problems like

duw/dt = Bu,
{1.1) {u(ﬂ) = g,
where

Az = m{z) [Dz +

B =a(z)D? +b(z)D, =mel,
and I iy a real interval, already started in the fifties with the papers by
Feller [10] and [11], motivated by some one-dimensional diffusion problems;
the subsequent work of Clément and Timmermans (see [7] and [15]) clari-
fied which (necessary and sufficient) conditions on the coefficients a and &
guarantee the existence of the semigroup generated by (B, D(B)) if D(B)
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is defined by
D(B)={uecO(I)nC*I): 1in;fBu(x) =0}

or by

D(B)={ue C(I)NC*I): lim_Bu(z) exists}.

281
Specializing the results of [7} and [15] to our case and using the fact
that b is Holder continuous at o and 3 we see that A4;, 1 = 1,2, generates a
Co-semigroup on C{[e, 8]) if D(A4;) is defined as follows: w € D(4;) © u €
C([a, B]) N C*(lex, B) and u satisfies the following boundary conditions:

(Tw) lim Aju(z) € C exdsts  if ﬁb (le > 1,
(Ve) Jim Acu(z) = 0 if ﬁb_(f% <1,
(Tg) :11—% Au(z) € C exists  if ;(_—ﬁzl < -1,
(V) lim Aqufa) = 0 if -é’-(% s -1

Conditions (V) and (Vp) are the classical Ventcel’s boundary conditions
at o and [ respectively. In the terminology of Feller, we can impose (V) if
o is not an entrance point while we can impose (T,,) if @ is neither a regular
nor an exit point, and similarly for the point 5.

We shall not deal with degenerate evolution problems in several variables
for which we refer to [14] and to the references quoted therein.

The regularity of the semigroup (I'(f))i>0 generated by (B,D(B)) is
considered neither in Feller’s original papers nor in the more recent work of
Clément and Timmermans, The first results in this direction are contained
in a paper by Brézis, Rosenkrantz and Singer (see [4]) where some differen-
tiability properties of the semigroup generated by (1.1) on the half-line are
stated in the special case a(z) = 1 and b(z) = ¢ with ¢ > —1. The analytic-
ity of the above semigroup if a(z) is bounded away from zero, b(z) = c(z),
where ¢ is a bounded continuous function on [0, cof satisfying e(0) > ~1, has
been proved by Angenent in [2] assuming Neumann boundary conditions at
x = 0; his methods are the starting point for this paper. Other results have
been cbtained in [12], [3], [9], [8] and [6] with different techniques; in par-
ticular, the analyticity of (T'(¢)}¢>¢ is established in C'([e, 8]} if a vanishes
at o, § and /a € C1([a, B]) (with the additional assumption that b/+/a is
bounded, see [9] and also [8]). This fact forces a to have (at least) double
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geros at the endpoints and excludes the operator 4; which is the most im-
portant in applications and, above all, is the most natural in the class of
one-dimensional degenerate differential cperators,

Here we completely solve the problem of the analyticity of the solutions
to the degenerate evolution problem (1.1) in the case of simple zeros. Qur
methods apply to the case of the half-line as well as to that of bounded
interval. In particular, we prove analyticity results for Ventcel's boundary
conditions and, as a special case, we obtain the analyticity of the semigroup
generated by z(1 ~ 2)D? on C([0,1)), a problem which has been left open
for a long time. Applications to higher order of degeneracy are given in (5].

The paper is organized as follows.

In Section 2 we consider the operator

L = m(z) [Dz + b%‘"’lp}, x € ]0,00],

and we prove that it generates (with an appropriate domain) an analytic
semigroup in C([0, oo]}. Angenent proved in [2] that if 5(0) > ~1 the opera-
tor L generates an analytic semigroup on C'([0, oo]) if its domain is defined
by

(1.2) Di(L) = {u € C([0,00]) : v/ (0) = O}

In order to study the operators A; and As we need results for L for all
values of b(0). In particular, the case b(0) == ~1 is necessary to investigate
Ay =z(1 - z)D2,

If 5(0) £ —1 we put

(13)  Ds(L) ={u & C([0,00]} N C*(]0, c0]) : lim Lu(z) = 0},

ie. we impose the Ventcel boundary condition at = 0, and we use An-
genent’s techniques to show that (L, Da (L)) generates an analytic semigroup
in C{[0, oc]}. Observe that for —1 < b(0) < 1 the point z =0 is regular and
hence many other boundary conditions at = = 0 make L the generator of a
semigroup (see [11]). We consider here only the case of Neumann conditions;
other possible choices are considered in [3].

The analyticity of the semigroups generated by (L, D;(L)), i = 1,2, will
imply the same property for the semigroup generated by Az provided D(A4z)
is defined in a “natural” way using the boundary condition for L.

In Section 3 we reduce the operator A; to A2 by a change of variable
and deduce the analyticity of the generated semigroup. We shall see that
our proof also works for operators like

G = m(z)[(x — )" (8 — 2)°D? + b(z) D]

where 0 < r,5 < 1. The compactness of the semigroups, as well as their
asymptotic behaviour, are studied in Section 4. In Section 5 we study the
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regularity of the solutions with respect to the space variable and use these
results to show that the spectrum of A;, ¢ = 1,2, is contained in |—oo, 0]
and to deduce that the semigroups are bounded analytic of angle =/2.

Notation. All the function spaces considered in this paper consist of
complex-valued functions.

€™ (lo, o0]) denotes the space of all m-times continuously differentiable
functions u on e, cof such that lim, e u®) () exists and is finite for all
0 <k < m. Of course limg_,0o u® () = 0 if k > 1. O™ ([—00, b]) is defined
in a similar way.

The symbol 1 denotes the constant function of value 1.

A bounded analytic semigroup of angle © (0 < © < 7/2) is an analytic
semigroup defined in the sector

={zeC: |argz| < O}

that is bounded on closed subsectors of Sa.

An operator (4, D(A)) defined on a C(K)-space (K compact) satisfies
the positive minimum principle if for every 0 < f € D(A) and z € K the
equality f(x) = 0 implies (Af)(z) > 0. If (4, D(A)) is the generator of a
semigroup (T(t)):z0 on C(K), then the semigroup is positive, i.e. each op-
erator T'(¢) is a positive operator on C(K), if and only if (4, D(A)) satisfies
the positive minimum principle (see [13, B-II, Theorem 1.6]).

Acknowledgments. The author wishes to thank Prof. D. Pallara for
many helpful discussions on this topic.

2. The operators I and A;. We first consider
L =m(x) [D2 + ﬂflp]

and we suppose that b is continuous and bounded on [0, ccf, and m is uni-
formly continuous and bounded on [0, o] with inf,~om(xz) > 0; moreover,
we assume that the estimate

|b(z) —b(0)| < C®

holds in a neighbourhood of 0, for some positive constants o and C. We also
suppose b to be real-valued even though most of the results of this section
are valid for complex functions. If 5(0) > ~1 Angenent proved in [2] that
(L, D1(L)) generates an analytic semigroup on C{[0, oc]) where D1 (L) is de-
fined by (1.2). His proof also shows that the generated semigroup is analytic
of angle 7 /2. Actually, Angenent uses spaces of C™ functions bounded and
uniformly continuous on |0, oo[ but his methods work also in our case.

Ifb(0) < —1 we define Dy (L) by (1.3); in particular, a fanction u € Da(L)
satisfies condition (Vp).

icm
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We say that a function u € C([a, 8]) satisfies condition (N,) if
(Na) u O2([a,cx+5]) and u’(a) =0
for some positive 4.

Clearly every function in Dy (L) satisfies (Np).

By [15] and [7] we know that condition {Th) can be imposed if and only
if 5(0) > 1 while condition (V5) can be imposed if and only if 5(0) < 1.
We put

1) 7o) =u'(a) + "t ()
and
(2.2) ¥ z) = exp S E(;l dt,

[+

where ¢ is & fixed positive number, so that

miz) d
202 (o @) = mi) (o),

Tn the following propositions we discuss the boundary conditions (Np),
(Vo) and (Tp) for the operator L; because of their local character these results
will also be valid for Ag. Proposition 2.1 will not be used in this paper and
appears here for the sake of completeness.

Lu(z) =

PROPOSITION 2.1. Let b(0) > 1 and u & C([0,0]) N C2(]0, c0[); then
conditions (Ng) and (Tp) are equivalent for u.

Procf. Suppose (Tp) holds. Then the function f defined by (2.1) is
continuous in a (right) neighbourhood of 0. Integrating we obtain from. (2.1)
and (2.2),

(2.3)

H

7(z) (=)
Observe that () behaves like Ka?®, K # 0, for & near 0 and that

u}--Sfy(t)f g+ 2
0

| =

li
+ y(z

\_/

§ (£)f(t) dt =
1]
1,

Since v is continuous and b(0) > 1, the constant C must be 0 whence '

vanishes at = = 0 and (2.3) gives
PR ()
wie) = g
Then o (2)/2 is continuous at z = 0 and so is u”, i.e. u satisfies (No)-
The converse is obvious and always true. w

w+o() z— 0.
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If —1 < b(0) < 1, then (Np) and (V) are independent. In fact, any C*-
function with «/(0) = 0, u”(0) # 0 satisfies (No) but not (V5}. Conversely,
if -1 < X <1and L = D%+ (\a)D then u(z) = 2'~* satisfies (V) but
not (Np). In the limit case b(0) = —1, clearly (No) implies (Vo) but not
conversely. Consider, for example, u such that

b(z) 1
" ! —
u'(z) + T w(z) logz
for z near Q.

PROPOSITION 2.2. Let b(0) < ~1 and u € C([0, o0]) NC?(10, 0o]); then u
satisfies condition (Vo) 4f and only if u € C*([0,6]) for some positive § and
u'(0) =" (0) = 0.

Proof. Suppose that f vanishes at z = 0; then

(o) = = s+ L
U = T —_—
v(z) ] v{x)
Since y(z) & Cz*® as ¢ — 0, for a suitable C > 0, it is not difficult to see
that
Vo) _ £ _,

B(0) = 1
from which it easily follows that w € C?([0,48]) for some positive § and
w'{(0) = u"(0) =0.

The converse implication is obvious. =

The case b(0) = —1 is slightly different.

PROPOSITION 2.3. Let b(0) = —1 and u € C([0,00]) N C*(]0,c0(); then
w satisfies condition (Vo) if and only if u € C*([0,6]) for some positive 4,
u'(0) =0 and

lim

w0 &

o
E%%gwwwwwuna:a
Moreover, if u satisfies condition (Vo) then u''(z) = o(logz) and v/(z)/z =
o(logxz) as x — 0,
Proof. As in the above proposition we obtain

1 3 u'(e)
pr s} E'y(t)f(t) dt + )
with « defined by (2.2) and satisfying v(z) = C/z ag z — 0 for a suitable

C > 0. Since limg_,p f(z) = 0 it follows easily that w'(z)/z = oflog«) and
u’(z) = o(log z) as x — 0. Writing b(z} = —1+0(z?) for z — 0 with o > 0,

v (z) =

icm
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we see that w” (&) —(1/z}u' (@) tends to 0 as £ — 0. This immediately fmplies
@

1m%%ﬂ@—MWﬁ=&
0

z—+l)
Conversely, if «'(0) = 0 and this last condition is satisfied, then
1
u'{x) ~ Eu’(w) —0 asz—+0,

that is, » satisfies Ventcel's condition at 2 = 0 with respect to the operator
D? — (1/%)D. The argument above then shows that v'(z)/z = o(logz) as

2 — 0, whence
1
fz) = u'(z} - E“I(CC) +O0(z"logz) asz—0
and v satisfies (Vp). w

Observe that the function b enters the definition of Dy(L) only through
the value 5(0).

LeMMA 2.4. The operator (L, Do(L)) is closed, dissipative and satisfies
the positive manimum principle.

Proof. Let u € Do(L) and z > 8 > 0; then
bz)
e

Hence for every & > 0 there exists C. > 0 such that for z > 4,

< 67 |blico sup |u'(z)]-
r>é

e

< esup |u"(z)] + Ce sup |u(z)|.
z>08 a>d

Since infyso m{z) > 0 it follows that
sup [u” ()| < Ks[sup |Lu(z)| + sup [u(=)|l-
z2d 2>4 r26

I (un) © Dg(L), un — u, Lu,) — v in C([0,0q]), then the inequality
above implies that u’,, u/, converge uniformly on [§, oo[ for all & > 0, whence
u € C(]0,0¢]) N C2(]0, o0]) and Lu(z) = v(z) for = > 0. Since v(0) = 0 it
follows that u € Dy(L) and Lu = v,

Let us show that L is dissipative, 1.e. that

(2-4) Mlulloo < 13u— Lullos
for A > 0.

If || oo = u{zo} with 0 < 2o < oo, then Lu(zo} < 0 and (2.4) holds,
and similarly for ||u[le = —t(20). If [ullec = £ liMy.o0 u(z) one concludes

similarly since limg—, o Lu(z) = 0.
The proof of the fact that L satisfies the positive minimum principle is
similar. =
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Remark 2.5. Arguing as in Propositions 2.2, 2.3 and Lemma 2.4 it
follows that the map

U ig—clu'(w)

is continuous from Dy (L) to C{[0, ca]) if

(i) f is continuous and bounded, in the case b(0) < —1;

(ii) f is continuous, bounded and Hélder continuous at z = 0, with
f(0) = 0, in the case b(0) = —1.

Our aim is now to prove that (L, Da (L)) generates an analytic semigroup;
we start with the case b(x) = b constant, with b < —1, and m(z) = 1.
For A & |—00,0}, A = 12 with Re pt > 0, consider the singular differential
equation in |0, ool
u” gu' = ptu.
It has in ]0, oo two linearly independent solutions p(pz), g(pz) given by
p(z) ="K (z), g(z)=a"L(z),

where v = (1—b)/2 and K, (z), I.(z) are the Bessel functions of imaginary
argument. Since Re p > 0 it follows that

(2.5) lg{pz)| — o0,

exponentially as z — co.
For the function ¢ the following expansion holds:

o0 1 z 2h+42y
a(e) =k§0k!l‘(k+v+1) (E) ’

p(pz) — 0,

whence
(2.6) gpz) = C
for a suitable C # 0. Since

227? asz —0

K, (z) ~ %r(u)(g) 28 — 0

for Re pt > 0, we obtain

(2.7 1in%)p(u,m) = 21 (),

i.e. p(ug) is regular at z = 0 with a non-zero value (see [1] for all these
properties of Bessel functions).

LEMMA 2.6: If b is a constant, b < —1 and m = 1 then the spectrum of
(L,D2(L)) is contained in ]—o0,0].

icm
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Proof. Let A = p®, Rep > 0 and consider the operator L — 42 from
Dy(L) to C([0,00]). Clearly g{ux) does not belong to Dy(L) and the same
holds for p(pz) since (L — p®)p(uz) = 0 and, by (2.7), p(uz} does not vanish
for @ = 0. By (2.5) no linear combination of p(uz) and ¢(uz) belongs to
Dy(L), whence L — 12 is injective.

Now we prove the surjectivity. Let f € C([0, co]) and consider the equa-
tion

b
(2.8) u” + -ﬂ;u’ —plu=f.

If f is a constant ¢ then u = —c/p? is a solution of (2.8) and clearly is
in Dg(L)}, so that we may suppose f(0) == 0. Let v(2) = q{uz) and write
u == wv. Inserting this in (2.8) we find that the new unknown w satisfies the

differential equation
!
w'’ + (2:0— + -b—>w’ = i
vz U

in a suitable interval |0, §[ where v(z) % 0, from which we get

w'(z) = __xbvlm)z [ £ty dt,
0

the integral being convergent by (2.6). For the same reason we deduce
w'(z) = O(x®) as = — 0, whence

_[Oo@y ifb< -1,
w(z) = {O(logm) i£h=—1.
It follows that u = wv is a solution of (2.8) in]0, 6] and that lim,_,p u(z) = C.
Since Lu = f + p*u and f(0) = 0, u satisfies condition (Vj). Extending u to
a maximal solution defined in the whole of |0, oo[ we obtain a global solution
u of (2.8) satisfying (Vo) (but perhaps unbounded at oo).
Consider now the operator
M= DZ _ ,LL2
with
Do (M) = {u € C*([r,c0]) : u'(r) = O}
Then M is invertible from D, (M) to C(Jr, cc]) for every positive r and the
norm of M~ is independent of r. Since
b .
L - ,ufz = M + ED
and

sup |u/(2)| < 2lsup " (z)| + sup [u(z)]
Txr T2r TZT
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we obtain, for every u € D,{M) and sufficiently large r,

d 1
—%M U(.’L‘)

< %supfuw)l-

ety

Then L ~ p? is invertible from D,(M) to C([r,0]) and we can find u c
D, (M) satisfying (2.8) in [r,c0], whence (by extending it to a maximal
solution) a global solution up which belongs to C2(]0, oo[). Clearly us(z) =
u1 () + c1p(px) + caq(pz) for suitable constants ¢y, ca.

Consider the solution ug(z) = w1 (#) + cag{ue); then uy € C?(]0, x]) and
up satisfies (Vo) since u; does by construction and ¢{uz) by (2.6) (recall that
(L ~ pu*)q(pe) = 0). '

Thus ug € Da(L) and (L — u)ug = f. =

PROPOSITION 2.7. If b is a constant, b < ~1 and m = 1, then (L, Da(L))

generates a bounded analytic semigroup of angle m/2. Moreover, the semi-
group is positive end contractive,

Proof. Consider the group (I;}s.q of isometries of C{[0, co]) defined by
Lf(e) = £(%3).
It is easily verified that LIy = tI, L, whence [;(Dy(L)) = Da(L). If A = tw
with |w| = 1 and w # —1, then

(A—L)y™ ' =t (w — L) e,

whence

1A=Ly < A7 Cw)
where C(w) depends continucusly on w. This estimate, together with the
preceding lemma, shows that (L, Da(L)) generates a bounded analytic semi-

group of angle m/2. Positivity and contractivity are consequences of Lerm-
ma 2.4. m ‘

Now we turn to the general case

L =m(z) [D2 + b—SQD], b(0) < —1.
THEOREM 2.8. The operator (L, Dy(L)), with Dy(L) defined in (1.3),

generates an analytic semigroup of angle m/2. The semigroup is positive
and contractive,

Proof. The proof can be achieved through the artifice of Kormn, i.e. the
constant coefficient case (dealt with in Proposition 2.7) and a partition of
unity argument suitably adapted in order to take care of the degeneracy at
x = 0. In fact, observe that the continuity of the map

LU =b0)

icm
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from the domain of L into C([0, oc]), guaranteed by Propositions 2.2 and 2.3
(see also Remark 2.5), allows us to approximate the operator L in a neigh-
hourhood of the singularity x = 0 with the constant coefficients operator
Lo =m(0) {Dz + @-D].
@
We omit further details and refer to [2] where similar arguments are dis-
cussed more extensively. An alternative approach is presented in [5]. m

Remark 2.9. Observe that the hypothesis of b being Holder continuous
at @ = 0 is necessary only for the case b(0) = —1 (see Remark 2.5) so that the
above theorem holds for b(0) < —1 if the coefficients are merely continuous.

We use the result of this section and of [2] about the operator L to study
the operator
b
)

(z-a)(B-2)

in the bounded interval |a,3]. We suppose m to be strictly positive and

continuous, b continuous on [ev, 8] and Holder continuous at the endpoints.
We define the domain of Ap in the following way: u € D(As) & u €

C(e, 8)) N C*{|e, B]) and u satisfies the following boundary conditions:

Ay = m(z)|D? +

) Loy S <o,
29)
(Ns) if%<1, (Vi) ifg(%zl.

Observe that Propositions 2.1-2.3 are of local character and apply to
this situation with 0 replaced by o or 8. In particular, we see that (N,) is
equivalent to (Ty) if b(a)/(B — @) > 1 and that (Ng) is equivalent to (Tj5)
i£b(8)/(8— @) < —1.

By Propositions 2.2 and 2.3,

u € D(Ag) = u € 0o, 8]) and v'(a) = u/(8) = 0;
moreover, provided we exclude the critical cases b(a)/(f —a) = —1 and
B8 - a) =1, if uis in D(As) then u € C*{[a, 8]). In the critical case
the integral condition of Proposition 2.3 holds instead of the continuity of
u"’. We do not specialize Propositions 2.2 and 2.3 to the operator A? _but
just point out that, once b(c) and b(8) are known, the boundary conditions
are completely explicit.

Lemma 2,10, The operator (Az, D(A2)) is dissipative and sotisfies the
bositive minimum principle.

Proof. Identical to a part of the proof of Lemma 2.4. »

We may now prove the main theorem of this section.
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THEOREM 2.11. The operator (Ag, D{Az)) with D(Ay) defined in (2.9)
generates a bounded analytic semigroup of angle 7 /2 in C([c, 8]). The semi-
group is positive and contractive for t > 0.

Proof. Positivity and contractivity come from Lemma 2.10 once the
existence of the semigroup has been established.

Let ¢, ¢1 be cut-off functions such that ¢f+¢? = 1 on [er, 5] and ¢g = 1,
¢o = 0 and @1 =0, ¢1 = 1 in neighbourhoods of a and J respectively.

Let 40g, 11 be other cut-off functions such that 4, = 1 on the support of
¢i, 1= 0,1, g = 0 in a neighbourhood of 3, ¥; = 0 in a neighbourhood
of .

Extend m putting m(z) = m(a) for z < o and m{z) = m(B) for z >
and consider, for ¢ = 0, 1, the differential operators

b
c=r e
where D{Lg) C C([e, 00]) and D(L1) C C([~00, 8]) are defined as follows:
u € D(Lp) & u € C[a,00]) N C?(ja, 00]) and ugg € D(Az),
u e D(L) @ ue O, 8) N C%([~o0, B]) and ugy € D(43).

L; = m(z)|D* +

By [2, Theorem 5.1] and Theorem 2.8 above, Ly and L; generate analytic
semigroups of angle #/2. Hence if 0 < @ < 7 is a fixed angle, we can find
positive constants C' and R such that for |A| > R and jargA| < & the
resolvents (A — L;) ™1, 4 = 0, 1, exist and satisfy the estimate

(3= L)~ < C/1A.
Put, for [A| > R and |arg \| < O,
S(A) = do(d — Lo) o + ¢1(A ~ L) " 1.
Clearly, for these \'s,
S(A) : C(lex, B]) — D(As)
and satisfies | S(\)|| < K|A|™". Let us prove the equality
(A= A)S(A) = I — [A2, do] (A ~ Lo) "o = [A2, ¢1](A = L1) ¢

where [Az, ¢ilu = Ao (d;u) — ¢i(Aau). In fact, the choice of the cut-off func-
tions and the definitions of the operators Ly, Ly give ¢odov = dpliov for
every v € C?(Ja,00[) and As{gou) = Lo(dou) for every u € D(Ay) whose
support is contained in the support of ¢y, Similarly, ¢;Asv = ¢y Lyv for
every v € C?(]~o0, B[) and Aa(pyu) = Li(¢nu) for every u € D{A,) with
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support contained in the support of ¢;. Then for v € C([a, 5]) we obtain
(A — A2)S(Mv = (A — Lo){¢o(A — Lo) ¢hpv)
+ (A= Lij(dr (A = L1)  yv)
= v~ [Lo, ¢ol(A = Lo) " dov — [L1, 1 ](A — L1) 7 ghyv
= v — [Ag, do](A — Lo) " *ov — [Aa, 1] (A ~ L1) " .

Observe now that [As, ¢} is a first order differential operator supported
on [a+ 8,8 — 6] for some & > 0, hence without singularities. Since Lg has
no singularities in [a + &, 00|, it follows that

sup [u'(z)} € Cif sup |Lou(z)| + sup |u(z)|]
©>od-8 o w2 a+d

for every u € C*([a + 8, 00]).
The above considerations (and the analogous ones for [;) imply that for
Al > R and |arg Al < 6O,
[[1A2, @] (A — L) < O/ A2,
whence for |A| = Ry > R and larg A| < ©,
[(A —~ A2)8(A) - I|| < 1/2

and (A — A42)5(A) has a bounded inverse Z of norm less than 2.
It follows that for |A| > Ry and |arg A| < @, S(A)Z is a right inverse of
A — Ay and the above argument shows that for |A| > R; and |arg )| < ©,

(2.10) (A = A2) ™ < Cu/ A
provided that A — Az is injective and, in particular, for A > 0 since Az is
dissipative.
Remembering that if A belongs to the resclvent set of A and
o = Al < [[(A = A2) 7

then w belongs to the resolvent set of Ag, it is not difficult to deduce, using
(2.10) and a simple argument based on connectedness, that

0(42) 2 {d e Clarg Al < @ and |Al > Ri}.

This last fact, together with (2.10), shows that Az generates an analytic
semigroup of angle 7 /2.

The proof that the semigroup is bounded analytic of the same angle will
he given at the end of Section 5. m

3. The operator A;. By a linear change of variable we fnay reduce the
study of the operator A to the interval [0,1], i.e. we may suppose z € 0,1]
and

Ay = m{z)[z(1 ~ )D* + b(z) D).
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As in the preceding section we suppose that m,b € C([0,1]), m is strictly
positive and b is Hélder continuous at z = 0, 1.
Put

0<t <m,

whence ¢ == arccos(1 — 2x).
With this change of variable the operator A; transforms into

g(t) = [2b((1 — cost)/2) — cos t]ﬂfm-—-

where

Observe that

(3.1) g(0) = m[2b(0) - 1], g{m) = 7[2b(1) +1].
We define D(A2) according to (2.9) with & = 0, 8 = 7 and b = g. Conse-
guently, we define D(A;) by

U e D(Al) S Ve D(Ag)

where v is deﬁhed by
v(t) = u{(1 — cost)/2).

Of course the reduction of A; to Az will be of some interest when we will
clarify the boundary condition implicitly contained in JD(A;). Clearly, if u
belongs to D(A;) then u belongs to C([0,1)) N C?(]0, 1]).

As in Section 2, we say that u satisfles (Vp), (Vi) if limg—q Aju(z) = 0
or limy_,; Aju(z) = 0 respectively.

ProPOSITION 3.1. Let u € C([0,1])NC*(]0,1]). Then u € D{A;) if and
only if the following conditions are satisfied:

(i) u satisfies (Vo) if b(0) €0
u € C*([0,4)) and Jim, 2 (z) =0 if b(0) > 0,
(i) w satisfies (V1) if b(1) = 0,

uwe CH[1-4,1)) and mlll’il__(l —z)u(z)=0 if (1) <O.

Proof. We prove only point (i}. The proof of (ii) is similar.
If b(0) < 0, then by (3.1) and (2.9), v must satisfy (Vp), i.e. u satis-
fies (Vp).
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Similarly, if 5(0) > 0 then v satisfies (Ny), that is, v € C2([0, 5]) for some
7 >0 and v'(0) = 0. Note that

dv  ldu d?u d2y 1 du
B FTaimp™h gl ( ‘)d—

If w € C([0,d]) for some 6 > 0 and limm;,0+ zu'(z) = 0, then by (3.2),
v € C%([0,7]) for some positive n and v'(0) = 0,
Conversely, suppose this last fact is true. Then by (3.2) again, we obtain

and the function .
dzu 1 du
f@) =2 g+ 5
is continuous on [0, §] for some posrcwe . Then
du 1 [ fls)
du_ 156 g,
& EVVE

whence lim, o+ du/dz = 2£(0) and u & C*([0, 8)).
By taking differences lim,.,o+ zu"(z) exists and must be 0 since u’ is
contimicus at z = 0. =

PROPOSITION 3.2. Letu € C([0,1]) N C2%(]0,1[). Then

(i) Ifb(0) < 0, then u satisfies (Vo) &f and only ifu € C*([0,d]), »'{0) =0
and lim, g+ zu”(z) = 0. If b(1) > 0, then u satisfies (V1) if and only if
ue CH{1—4,1]), u'(1) =0 and lim,_,;- (1 — z)u"{z) = 0.

(i) If b(0) = 0, then u satisfies (Vy) if and only if lim, o+ zu”(z) = 0.
Ifb(1) = 0, then u satisfies (Vi) if and only if lim,_,1- (1 — z)u"(z) =0.

Proof. The proof of (i) is identical to that of Proposition 3.1, with the
use of Proposition 2.2.
For (ii) we use Proposition 2.3 and note that v satisfies (Vp) if and only

if
) d%y
tl 0+[dr2 (cot t)— ] =0.
Since
dPu dv Py
ERC tt)dt] -2 g

we obtain (ii). m

We now state the main result of this section which is an 1mmed1ate
consequence of Theorem 2.11.
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THEOREM 3.3. The operator (Ay, D(A1)) with D(A1) defined according
to Proposition 3.1 generates a bounded analytic semigroup of angle 7/2 on
C([0,1]). The semigroup is positive and contractive.

In particular, we obtain the analyticity of the semigroups generated by
m(z)[z(1 — z)D? with Ventcel boundary conditions at 0 and 1, and by
Dim(z)2(1 — z)D] with the degenerate boundary Neumann conditions u &
C1([0,1]) and limg 0,1 {1 = z)u”(z) = 0 (see also [6]).

We examine briefly the case of low order zeros, i.e. we consider

G = m(z)[z" (1 ~ z)°D* + b(z) D]

where, for simplicity, we suppose both 0 < r,s < 1.
In this case we change variables putting

1
b= dz
(S, Vp(z)
where p{z) = z"(1 —z)*, 2 € [0,1], t € [0,£], £ = B(1 - r/2,1—5/2) (B
denotes the Euler beta function).
In the new function v(f) = u(w(t)) the operator G has the form

Agzm(t)[D2-l— 9(t) D}

(£ —t)
where
ot) _ blm) = (1/2¢ (@)
(£~ 1) () '
It is not difficult to see that
. ré ) sé
2ot =y Apel=gT

Since ~1 < —r(2—r) and (2 —~ 8) < 1 the boundary conditions for A; are
(Ng) and (INg). If we define
D(G)={ue C([0,1]) : v € D(42)}

then we have the following proposition whose proof is similar to those of
Propositions 3.1 and 3.2.

PROPOSITION 3.4. Let u € C([0,1]) N C*{]0,1]). Then w € D(G) if and
only ifu € C*([0,1])NC2(]0, 1[}, »'(0) = /(1) = 0 and both limy,.,o+ 2™u" ()
and lim,_,; - (1 = z)*u/(z) exist and are finite.

From Theorem 2.11 we obtain

THEOREM 3.5. The operator (G, D(G)) generates a bounded analytic
semigroup of angle w/2 on C([0,1]). The semigroup is positive and conirac-
tive.
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4. Compactness and asymptotic behaviour. In this section we show
that the semigroups generated by A;, A; and @ are compact and we use
this result to investigate their asymptotic behaviour. We recall that D(A1)
is defined in Proposition 3.1, D(Ay) is defined in (2.9) and D(G) is defined
in Proposition 3.4.

THEOREM 4.1. The semigroups generated by (A;, D(A;)), (A2, D(A3))
and (G, D(G)) are compact.

Proof. It is sufficient to prove the theorem only for (4s, D(A,)) since
the other operators reduce to it via a change of variable (which is a linear
isometry for the corresponding spaces of continuous functions).

Since the semigroup is analytic, hence norm-continuous, we only have to
show the compactness of the resolvent of A,.

But D(Az) embeds into C*([or, 8]) (see Propositions 2.2 and 2.3 in the
case of Ventcel conditions; for conditions (N,,) and (Ng) this is obvious) and
D(As), endowed with. the graph norm, continuously embeds into C'(fe, ]);
by the closed graph theorem the inclusion of D(As) into C([e, 4]) is con-
tinuous.

The compactness of the inclusion of D(As) into C([o, §]) and of the
resolvent of Ap then follow by the Ascoli~Arzeld Theorem. m

We write (Va, Vs), (Va, Vs) and (No,Ng) to specify which boundary
conditions define the domain of As; of course we tacitly assume in each case
that the values b{er} and b(3) are chosen according to (2.9).

We denote by (Ti(t))i»0, 1 = 1,2,3, the semigroups generated by
(Az, D(Ap)) in the following cases:

(T {t)}spo in the case (Va, Va),
(Ta{t)}ez0  in the case (N, Va),
(T5(t))t>0 in the case (Ng, Ng).

Since, for each ¢ == 1, 2,3, ¢ > 0, Tj(¢) is compact, positive and T;(t)1 = 1,
it follows from [13, B-IV, Theorem 2.5] that (T}(#))s»0 converges in norm as
t — oo to a projection P; satisfying Im(P;) = Ker(A42).

The differential equation Apu = 0 has twoe linearly independent solutions
uy and up in |, B[ given by ui(z) = 1 and wa{z) = ¥(z) where

’l/)’(.’L) = W(IL') = exp I:—' S t—t_—%ﬂ Clt:|

and ¢ is an arbitrary (but fixed) point in o, 8[.
Observe that W is the funetion introduced in [7].

[+



268 G. Metafune

Clearly, W is summable near o (that is, uo is continuous at = = a) if
and only if b(e)/(8 — &) < 1, and W is summable near 8 (that is, us is
continuous at z = 8) if and only if (3)/(F — a) > —1.

In the following propositions we give explicit formulas for the limit pro-
jections.

PrOPOSITION 4.2. We have
u(f) ~ u(a)

Piu = ula) + 505

w(z) forue O, f)),

with (z) = |- W(t) dt.
Proof. The functions 1 and # are in D(A3), whence
| Piu=c1l+ ey
for suitable constants ¢; and. ¢s.
Let U(z,t) = Th(t)u(z). Then the equality

0
B“EU(HJ, 75) e AzU(m, t)

holds pointwise for ¢ > 0 and z € [, 8]. In particular, (8/0t)U(z,t) =0 for
t>0, z=caandz =g It follows that U{e,{) = u(a) and U(5,t) = uw(f)
from which we deduce Piu(c) = u(er) and Piu(8) = u(f), and the assertion
follows. w

PROPOSITION 4.3. Pou = u(B) for u € C{[ey, 8]).

Proof. 1 € D(A5) but ¢ does not. This is clear if b(a) /(8 — &) > 1since
in that case v is not continuous at z = a. If =1 < b(a}/(8 — «) < 1 then
1 is continuous but does not satisfy (N,). In fact, suppose by contradiction

¥ € C*{[a, & 4 §]) and 9¥'(a) = 0. Then we would have

[+
(4.1) S t—a) )dt:oo
Since
b{z)
W' (z) = —W (2} sl
R G
and W' = 1" is bounded near «, we deduce
b{z) C

(& —a)(8—~z}| ~ [W(
near ¢« and so (4.1) wonld be false.

Thus Ker(As3) consists of the constant functions and the same argument
of Proposition 4.2 proves the formula for Py. m

@)
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PROPOSITION 4.4. For u € C([, £]) we have

Pgu = Si u(m)')’(x)m(m-)—l dr
Si ")’(iﬂ)m(g;)-l dr

=W(z)" L.

Proof. Since

where ~{(z)

b(ar) b(8)
ﬁ Y > -1 and E":’"& <1
it is easily seen that v € L' (e, §).
Let U(x,t) = T3 (t)u(z) and write

Agu(z) = T )],
Y(z) [de

1

Since y(x) = o(z — @)~
follows that

asz — a and y(z) = o(f —z) tasz — 3, it

lim ~(z )aiU(:c,t) =0

x—ra,f3

for t > (. Then

A
% { U(m,t)% do = { A0(2,0) Y 4y

m(z)

Rt R e

% {y(m)%U(m,t)J dw =0,

whence
A 8
10 tr(amio) do = [ uehr(a)m(a) ™ da
[#3
and, letting ¢+ — oo,

I B
S Pyu(@)y(z)m(z) "t de = S u(e)y(z)mlz) " dz. .

o
Since Ker(Ay) consists only of constant functions (as in the preceding propo-
sition) the result follows. m

In the case of the operators Ay and G we denote by (S;(t))¢>0,1=1,2,3,
the generated semigroups according to the following list:

(Sl( '))tkﬂ in the case (Vb: I’71):
(S2(t))e>0  in the case (No, V1),
(33 (t))tag in the case (Np, Nl),
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and by @; the limit projections. Considering 0 < r,s < 1 we include A; in
the definition of G.
Defining
¢ bt
W(z) = exp [—— S —*%%dt]

172
where p(z) = z"(1 ~ 2)* and y(z) = {; W(t) dt we deduce from Proposi-
tions 4.2-4.4, by a change of variable, the following formulas for the projec-
tions ;.

PRrOPOSITION 4.5. Let u € C([0,1]). Then

L)
(b) Qau(z) =u( ) 1
L Bu@reme) de
(c) Qsu(z) = Er(@jmi@)-1do
where (z) = [p(z)W (z)] 7.

= u(0) + [u(1) — u(0)]x for the operator
Ay = m(z)[z(1 — z).D?]
with Ventcel boundary conditions at 0 and 1 (see [12]), and

1

Rau(z) = Su(m) dz for Ay
0

In particular, @ u(z)

= D[m{z)z(l — z)D]

with the degenerate homogeneous Neumann boundary conditions (see [6])

mﬁrglm(.l —zu"(z) =0 foru e C*([0,1]) N C3(Jo,1]).

5. Regularity in the space variable. Let (T3(t))s>0, ¢ = 1,2, be the
semigroup generated by A;; in this section we investigate, for fixed ¢, the
regularity of the solution Tj(t)u(x} in the variable = and use these results to
show that the spectrum of A; is contained in |~co, 0] and that the generated
semigroup is bounded analytic.

Observe that (keeping the notation of Section 3), since v(t) = w({1 —
cost)/2) (u € D(A1), v € D(As2)), every regularity result with respect to
the space variable for 4; will imply the analogous result for Aj. For this
reason we formulate and prove the following results in the case of A4;. We
also recall that D(A;) is defined according to Proposition 3.1.

In the following three propositions we suppose m,b € C°°([0,1]) and,
only for simplicity, we assume “similar” boundary conditions at 0,1
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PROPOSITION 5.1. Let b(0) > 0, b(1) < 0 and u € D(4,). If
Aru—~ A e C*{[0,1))

then u € C™1([0,1]). Consequently,

ﬂ D(AY) = C*([0,1])

and Uz, 8) = Ty (B)u(z) € O((0,1] x 10,00]) for every u € (10, 1]).
Proof. Let u € D{4;1). By Proposition 3.1, u & C1([0,1]).
Suppose first Ayu € C™([0,1]). Then the function

51) F(®) = a1 — 2)u"(2) + b(z) (z)

belongs to C™([0,1]).

Consider only the interval [0,1/2] and write

_z(l-x)[d ;
@) = LA Loa)]
where
{5.2) ~v(z) = exp [ S R—g—(—?ﬁ dt] = 5O (z)

1/2

with ¢ € C*°((0,1/2]) and ¢ > 0.
Then we find

1 1

(5.8} u'(z) = o) §Sb(o)—1n(sm)f(sm) ds
with 5(z) = $(@)/ (1 — 2) € C([0,1/2)).

Differentiating under the integral gives v € C"+1([0,1/2]) and the same
argument in [1/2,1] shows that u is (n -+ 1)-times continuously differentiable
on [0,1]. N

If Aju — du € C™([0,1]), one obtains immediately Ayu € C([0,1]),
whence u, Ayu € C*([0,1]) and, in n steps, v € C™*([0,1]).

It follows, by induction on n, that D(A7) € C™([0, 1]), whence

() D) = 0=(00, 1),
el

The C*-regularity of the solution U(z, t) then follows from the analytmlty
of the semigroup. w

PROPOSITION 5.2. Let b( )= b(1) =0 and u € D(A;) be such that
A = ue C™(0,1]), 0<eo<l
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Then u € C™12([0,1]). Conseguently,

A DA = (0, 1)

n=1

and Uz, t) = Ti{t)u(z) € C([0,1] x ]0,00l) for every u € C([0,1]).

Proof. Let first A = 0 and suppose that 4;u € C™9([0,1]). Then the
function f defined by (5.1} belongs to C™7 ([0, 1]) and vanishes at 0, 1.

Therefore the function f(z)/(2(1 — 2)) is in C™~2¢([0,1]) for n > 1, and
is dominated by K[z(1 — )]°~" if n = 0. Moreover, the function - defined
by (5.2) is infinitely differentiable and strictly positive on [0, 1]. Since

= L [T 205
u'(z) = e [152 H1—1) dt +u'(1/2)

we obtain u' € C™7([0,1]) and u € C™+17([0, 1]).
In the case A # 0, let

g = Aju—du € C™9([0,1]).

Since A; annihilates the functions 1 and w(z) = {5 v(£)~1 dt which are
infinitely differentiable we may subtract from g the term

g(1) — g(0)
w(l)
and assume that g(0) = g(1) = 0. Then u(0) = u(1) = 0 and g(z)/(z(1 - &))

has the same properties as above.

Since limg—,0,1 #(1~2}u'(z) = 0, u is Hélder continuous (of any exponent
o < 1) and the formula

9(0) -+ w(z)

w(a) = = [ [ i 2820 4y
)= | | 7O e -+ 2]

gives immediately v’ € C7([0,1]) and, by induction, u € ™7 (10,17).
It follows by induction that D{A}) ¢ C™7([0,1]) for all n and the proof
of the second statement follows exactly as in the previous proposition. =

In the case b(0) < 0 and b(1) > 0 the above propositions are (in general)
no longer valid. For example the function w defined in the proaof of the
proposition above is annihilated by A; but is not 0 near 0 unless b(0) is
a negative integer. Similar considerations hold for the point ¢ == 1,

We denote by ng the smallest integer greater than —b(0) and B(1).

icm

Analyticity for degenerate evolution equations 273

PROPOSITION 5.3. Let b(0) < 0 and b(1) > 0. If u € D(ATT*) then
u=h-go+ g
where
he CHY[0,1]), Al (z) = Qg™ bO=m(y _ gy+b1)-m)
for0<m < k+1 and
golw) = & *Vg1(),  g(z) = (1 - 2)"H Wy (z)
with ¢y and ¢o C™ -functions on [0,1].

Proof. Since Ker(A,) is generated by the functions 1 and {7 v(t)~1di
which are of the form indicated in the statement of the proposition, we can
assume u(0) = u(l) = 0.

First we show that if u € D(AT°) then
(5.4) u(z) = O ~*O(1 — g)t+o(1),

Consider only the interval [0,1/2] and choose 0 < o < 1 such that n—r + ¢
is never an integer for n € N, where r = —b(0).

Since u € D(4;), we have u € C*{[0,1/2]), %' (0) = 0 and lim, o 2u" (z)
=0, whence u(z) = O(z*+).

Suppose, by induction, that

u € D(AY) = u(z) = O(z™* + 2™to+1),
If u € D(A}™) let f = Aju. With the notation of Proposition 5.1, formula
(5.3), we obtain

(5.5) dﬂ—u’(l/z)

cu(z) =

e [§ SI()
101
F@ L), T -0
for 0 < = < 1/2. ‘
Since f(x) = O(z"*+! + g"+o+1), by the inductive hypothesis, we obtain
by (5'5)5 .

(56) u’(m) - O(wr + xn-f-cr-l-l),
whence
(5.7) u(z) = Oz + g™ to+2),

Using a similar argument near 1 and putting n = ng we obtain (5.4):

Now we prove the stated representation of u in [0,1/2] (i-e. only w1t}'1 ‘?he
functions h and gp); similar computations give it in [1/2,1] and a partition
of unity argument yiclds the final formula in [0,1].

The statement is true for k = 0 since u & C1([0, 1/2]) and (5.6) and (5.7)
hold.
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Suppose u € D{AT*™**1). Then f = Aiu € D(A7Y*) and f(z)/2™+! is
bounded, whence

n(#)f ()

tr-)-l

(5.8) W (z) = 2 [ dt—l—C’}

D e G

for 0 < = < 1/2, with n(z) = ¢(z)/(1 — z) and C a suitable positive con-
stant.

Observe that
2 [Taf®) ) 1 [in(se)f(se)
&9 ¢m)L ] = o |1 ]

Hence, if f(x)=h(z)+a""" ¢ (2) with h e CF([0,1/2]), K™ (z) = O(z™+1-m)
for 0 <m <k, and ¢; € C°°([0,1/2]) by the inductive hypothesis, then we
obtain the assertion from (5.8) and (5.9). w

We use the results and methods of this section to show that the spectrum
of A; (hence of Ap) is contained in |—co, 0].

Remark 5.4. We point out that, even without assuming b and m to
be infinitely differentiable, any eigenfunction u of A; in Propositions 5.1
and 5.2 is in C'([0,1]) and any eigenfunction u of A; in Proposition 5.3
satisfles the estimate «'(z) = O[z™*O(1 — 2)*()]; this is readily seen by
inspection of the proofs.

THEOREM 5.5. The spectrum of Ay (hence of Ag) is contained in ]—oo, 0],

Proof. We distinguish three cases and, only for simplicity, we assume
similar boundary conditions at the endpoints.

Suppose that A # 0 and u € D(4,) satisfies Ayu = Au. Using the
function v defined in (5.2) we may write

- d ()
5.10 — ! = A (i) o] i
(5.10) D @] = (o)L
(1) 5(0) > 0 and (1) < 0. In this case y(z) —+ 0 as & ~ 0,1 and
v(z)/(2(1 - =) € L(0,1). Hence, if we multiply both sides of (5.10) by @
and integrate by parts, the boundary terms vanish and we get

o) () i = - )20
(511) g'r( W ()] dz = Aélu(w)J m@)a( =5

and s0 A € |~00,0].
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(i} (0) = b(1) = 0. The function - is continuous and u vanishes at the
endpoints. Since v € C{[0,1]), the function u(z)/{z(l - z)) is continuous
and we may repeat the argument used in (i) to get {5.11) and deduce A €
j—00,0].

(i) £(0) < 0 and &(1) > 0. Since u(0) = u(1) = 0, we deduce from
Remark 5.4 that u(z) = O[z'~20)(1 — 2)M0)] whence v(z)|o'(z)[? and
m(qg)|2»y(a:)/(a~(1 — 1)} are integrable over [0, 1]. Also, limg-,q,1 y{z)u’ (z)u(z)
= 0, 50 that one gets (5.11) and concludes as before. w

We use the results of Section 4 and of this section to complete the proof
of Theorem 2.11, showing that the generated semigroup is bounded analytic
of angle /2.

This will be a consequence of Theorems 4.1 and 5.5 and of the following
proposition.

PROPOSITION 5.6. Let (A, D(A)) be the generator of an analytic semi-
group T'(z) of angle 7/2; suppose that the spectrum of A is contoined in
]—c0,0], that A has compact resolvent and that T(t) is uniformly bounded
for positive real t. Then T'(z) is bounded analytic of angle w/2.

" Proof. We only have to show that T'(2) is uniformly bounded on any
closed subsector of the right half-plane. By the semigroup property this is
equivalent to showing that T{z) is bounded on every ray {z = rei’} with
r >0, and ~7/2 < 8 < 7/2 fixed.

Fix —7/2 < 8 < 7/2 and set Se(t) = T(e®t). Then (S(t))i>0 is the Co-
semigroup generated by €% A (with the same domain as A), whence || Ss(t)]|
is bounded on bounded intervals and it is sufficient to show boundedness as
it — co.

Observe that €Y A has compact resolvent and spectrum contained in
{z=re' . r <0}

Let Ay be the cigenvalue of e 4 of maximal real part. Since (95 (£))i>0
is norm-~continuous, its growth bound coincides with Re g (se_e (13, Re-
mark 1.7], so that, if Re Ap < 0 then

[156(2)

Suppose now Re g = 0, i.e. Ag = 0. Then 0 € o(A4) and 0 is a simple pole
of the resolvent of A since the semigroup (T'(t)):zo is uniformly bounded on
the positive real line. Then 0 is also a simple pole of the resolvent-of P A
and, by [13, B-IV, Theorem 2.1], we conclude that S() converges in norm
to a projection ag ¢ ~+ oo.

This concludes the proof. m
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Intringic characterizations of distribution spaces on domains

by

V. 85 RYCHKOV (Jena)

Abstract, We give characterizations of Besov and Triebel-Lizorkin spaces By (¢7)
and Fyq(2) In smooth domaine 2 < W' via convolutions with compactly supported
smooth keruels satisfying some moment conditions. The results for s € R, 0 < p,¢ < &
are stated in terms of the mixed norm of a certain maximal function of a distribution. For
seR 1<p 00,0 < g% oo characterizations without use of maximal functions are
also obtained. -

1. Introduction. The Besov and Triebel-Lizorkin spaces By (R™) and
Fp(R*), s € R, 0 < p,q< oo, are well-known scales of spaces of tempered
digtributions on B", covering classical Holder-Zygmund spaces, fractional
Sobolev spaces, local Hardy spaces and their duals.

After being introduced in the 60s-70s in the pioneering papers by

0. V. Besov [Besl,2] (B, spaces, s > 0,1 < p,g < ),

M. H. Taibleson [Tai] (Bp, spaces, s € R, 1 < p,q < 0),
P. I. Lizorkin [Liz1,2] (F, spaces, s > 0,1 < p,q < o0},

H. Triebel [Tril] (Fy, spaces, s € R, 1 < p,¢ < ),

J. Peetre [P1,2] (extensions of By, and Fj, to all0 <p,¢ < 00),

these spaces were studied in detail. General references for the theory of
Bg, and Fj$, spaces arc two monographs by H. Triebel {Tri2,3], and the
fundamental paper by M. Frazier and B. Jawerth [FrJ].

In this paper B, and Fj spaces on domains are studied. Let £2 be a
domain in " with smooth boundary. The natural way (also used here) to
introduce distribution spaces B, (12), Fag(12) € D'(£2) is to define them as
restrictions of corresponding spaces from R® to 2. Then the problem of
finding intrinsic characterizations of these spaces arises.

1991 Mathematics Subject Classification: 46E36, 42B25.

Key words and phrases: Besoy spaces, Triebel-Lizorkin spaces, spaces on domains,
intringic characterizations, local means, maximal functions. ’
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