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Extrapolation methods to solve non-autonomous retarded
partial differential equations

by

ABDELAZIZ RHANDI (Tibingen and Marrakeeh)

Abstract. Using extrapolation spaces introduced by Da Prato-Grisvard and Nagel we
prove a non-autonomous perturbation theorem for Hille—Yosida operators. The abstract
result is applied to non-autonomous retarded partial differential equations.

1. Introduction. The purpose of this note is to study non-autonomous
perturbations of (not necessarily densely defined) Hille-Yosida operators.
The abstract result of this paper will be illustrated by means of non-auto-
nomous retarded partial differential equations.

Let X he a Banach space and A a linear operator on X with domain
D(A). We say that (A, D(A)) is a Hille-Yosida operator if there existsw € R
such that every A > w is in the resolvent set o(A) of A and

sup{|[(A —w)*(A - A" : A > w, n €N} < .
If the congtant w can be chosen negative, then A is called of negative type.
It follows from the Hille-Yosida theorem that a Hille-Yosida operator

generates a Cp-semigroup on the closure of its domain. More precisely, we
have (cf. [Hi-Ph], Thm. 12.2.4).

ProposiTiON 1.1 Let (A4, D(A)) be a Hille-Yosida operator on the Ba-
nach space X. Then the part (Ao, D(Ag)) of A in Xo := (D(A), ||||) given by

D(A(}) = {.’L & D(A) c Az € XQ}, Apz = Ax forz € D(Ao),

generates a Cy-semigroup (To(t))ezo on Xo. Moreover, o(A) C o(4p) and
(A= Ap)~" 43 the restriction of (A — A)™* to Xo for A € o(4).

For the rest of this paper we assume without loss of generality that
(A, D{A)) is a Hille~Yosida operator of negative type on X.

Now we summarize some basic facts on extrapolation spaces and Favard
classes, which will be used throughout this paper. For more details we refer
to [Nal], [Wa] and [Na-Si] where also the missing proofs can be found.
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220 A. Rhandi

On the space Xp we introduce a new norm by
Izll-1 = |45 =},

The completion of (Xg, [l - |) will be called the extrapolation space of X
associated with Ag and it will be denoted by X_;.
Since Aang (t) = To(t)Ay* for all ¢ > 0, one has

HTO(t).’E““]_ < ”Tg(t)“g(x)“:?}il._l for z € Xp and € > 0.

This shows that the operator Tp(¢) can be uniquely extended to a bounded
operator on the Banach space X..i. The result is a Co-semigroup on X_,
denoted by (T_1(¢))t>0. The semigroup (T_1(t))i»0 will be called the eztro-
polated semigroup of (To(t))e>o. If we denote by A_; : D{A_3) — X the
generator of (T_1{t));>q, then we have the following properties (see [Na-Si],
Prop. 1.3 and Thm. 1.4).

() 172 Bl = I1To@) 2xo)-

(ii) D(A_1) = Xg.

(iti) A_y : Xg — X_1 is the unique extension of Ag : Xo O D(Ag) — X1
to an isometry Xp — X .

(iv) A_1 is invertible with (A_;)™! € L{X ).

The original space X now fits into this scheme of spaces Xy and X
(see [Na-Si}, Thm. 1.7}.

THEOREM 1.2. Let (A, D(A)) be a Hille-Yosida operator of negative type
on the Banach space X. Then Xq = D(A) is dense in X with respect fo the
norm

z € Xo.

lallo = 47, = e X.

Hence, the extrapolation space X .1 is also the completion of (X, -+ ||-1)
and therefore X «— X..1. Moreover, the operator A_ is an extension of A,
hence (A—1) 71X = D(A).

Let us also recall the definition of the Favard class of a Ch-semigroup
(cf. [Bu-Be], Chap. 3). The Favard class of the generator Ag is the space

F(do) = {:r € Xy s limsup %HTO(t)m _af < oo}
equipped with the norm
Il sy = liriljfl}lp%HTo(t)m —a|  for & € F(Ao).
It is easy to see that F(Ag) is invariant under (To(t)) and D(Ap) C F(Ap).

Similarly we have Xo ¢ F(A_;1). In [Na-8i], Prop. 3.2, it is shown that
F(A_,) is the extrapolation space of F(A4y).
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PROPOSITION 1.3. For the Favard classes F(Ag) and F(A_1) the follow-
ing holds.
(i) A1 F(Ag) = F(A_1).
(1) [|[ A1zl rea_y) = [[zllpea,) for z € F(Ag).
{iil) D(An) CD(A) — F(Ag) = Xo C X = F(A_1) — X_;.
(iv) T-1(t)F(A-1) C F(A_1).

Let now C': Xo — F(A_}) be a bounded operator. Then it is proved in
a recent paper [Ni-Rh] that the operator
D(By):={x € Xg: Acix+Cx € Xo}, Boz:=A_12+Cz, =& D(B),
generates a Cy-semigroup (Sy(t))i»0 on Xg. This semigroup is given by the
variation of constants formula

t
(1) So(tye =To(t)z - | T_y(t — s)CSu(s)zds, =€ Xo, ¢ 2> 0.
0
In this paper we shall generalize this result to the case of time depending
perturbations. We prove that if C(-) is a strongly continuous function from
[0,T] into the space of bounded linear operators £(Xp, F'(A4-1)), then the
variation of constants formula
t
(2)  U(t,s)e =To(t — ) + | T_1(t — 0)C(0)U(c, 5) do,
g
e Xy, 0<s<t<T,
gives a strongly continuous evolution family on Xp.

As an application we prove in Section 3 that the variation of constants
formula (2) solves the non-autoncmous retarded partial differential equation
x'(t) = Bx(t) + L(t)ay
s(r)=f(r—38), s—r<7<s0<s<t<T,
on C([~r, 0], E), where E is any Banach space, B generates a (y-semigroup
on B and L(-) is a strongly continuous operator-valued function from [0, T

(NRDE) {

Cinto L(C([~r, 0], E), E). We nention here that Clément et al. (see [Cl}, [C11]

and [C12]) proved a similar variation of constants formula by using duality
methods in the sun-reflexive case. The non-autonomous retarded partial
differential cquation (NRDE) can also be solved by using the theory of
multiplicative perturbations {see [De-Sch-Zhl).

Abstract extrapolation spaces have been introduced by Da Prato—
Grisvard [DaP-Gr] and Nagel [Nal] and used for various purposes (cf. [Am],
[vNe], [Na-8i] and [Ni-Rh]).

Concerning evolution families and their connection with non-autonomous
Cauchy problems we refer to [Pa] and [Ta]. For terminology and basic re-
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sults on semigroup theory we follow [Go}, [Na] and [Pa] and for retarded
differential equations we refer to [Ha] and [Di-vGi-Lu-Wal.

2. Non-autonomous perturbation of Hille-Yosida operators. The
aim of this section is to prove that the variation of constants formula (2)
defines an evolution family.

DEFINITION 2.1. Let T > 0and A:= {(t,s) e R*: 0 < s <t <T}L A
family (U(%,9))(sea of bounded linear operators on a Banach space X is
called an evolution family on X if the following conditions are satisfied.

(a) U(t,t) = Tand U(t,r)U(r,8) =U(t,s) for 0 < s <r <t < 7T,
(b) A 3 (t,8) = Ul(t,s)z is continuous for each z € X.

Throughout this section we consider a Hille~Yosida operator (A, D(A))
of negative type and as in the previous section we comsider the scale of
spaces D(Ag) C D(A) — F(4g) — Xo € X — F(A_1) = X_; and the
Cy-semigroups (To(£))e>0 and (T_1(£))s»0. Moreover, let C(-) € C([0,T],
Lo(Xo, F(A-1))) be the Banach space of all strongly continuous functions
F(): [0,T) — £(Xo, F(A_1)).

In order to prove the main result of this section, we will need the following
lemma due to Nagel and Sinestrari (see [Na-Si], Prop. 3.1).

LEMMA 2.2. For f € IMRy, F(A_1)) and t 2 0 we define
t
(T_y * (&) o= { Toa(t - 8)f(s) de.
0
For this convolution integral the following properties hold with a constant
M < oo independent of f and i:

(i) (T_q % F)(t) € Xo.
(@) [(T-y* HEN < Ma|l fllz2 o), mcasy-
(i) Lm0 [[{T-1 % £ = 0.

From Lemma 2.2 follows by successive approximation the existence and
uniqueness of the evolution family (U(t, 8))(,s)e4 satisfying (2).

THEOREM 2.3, Let (A, D(A)) be o Hille-Yosida operator of negative type
on the Bamach space X and consider Xo = D(A). Moreover, let C(:) €
C([0, T, Ls(Xo, F(A_1)}). The expansion

(3) ' Ult,s) = i Un(t,s), where
n=0

t
(4) Uplt,s) =To(t -~ s) and Unta1(t, s) = ST_l(t — 0)C(0)Up (o, s) do,

8
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converges in the uniform operator topology of L(Xy) uniformly on A and
defines an evolution family (U(1,5))(ts)ca on Xo, sotisfying

(5) U@, o) < MeMEl=2)  for (1,5) & A,
where M is a constant and v(t, 8) 1= sup,¢,.<; |C(0) | sixo,Fa_y)) - In addi-

tion, the variation of constants formula (2) holds.

Proof. One can see by Lemma 2.2(1), (iii), that for each neN, U, (¢, 5)Xo
C Xo for all (t,5) € A and A 2 (t,5) — Uy(t,s) is strongly continuous on
Xo, where (Un(t,8))(,s)ca 5 the family of operators given by (4). From
Lemma 2.2(ii) it follows that

U1, s)z]| = H E T (t - 5~ 0)C{o + s)Tg(a)mda”
0
<M | 0o+ s)To(0)alria_,y do < MPu(t,s)(t - 8)|jz]),
6]

where v(f,8) = suUp, <<t [[C(0) | 2(x0,7(4_1)) & € Xo and (¢,5) € A. By
induction we obtain

— Tt
[Un(tr )l < Mm+oge, sy S50

s (t,s) e A, ne N

This implies that the expansion

Ult,s) =Y Unlt,s)
n=0

converges in the uniformn operator topology of £{X) uniformly on A and de-
fines a strongly continuous family (U(2, 8))¢,sjea on Xo, since A 3 (t, 8) —
U,(t, 8) is strongly continuous on Xj for each n € N. Moreover, the estimate
(5) holds. From (3) and (4) it is easy to see that the family (U (¢, s))t,s)ca
satisfies the variation of constants formula (2) and therefore U(t,t) = I for
all t & [0, 7).

It now remains to show that

Ult,»U(r,8) =Ult,s) for0<s<sr<t<T.

Since
Ult,r)U(r,s) =3 Un(tyr) Y, Unlrs) =Y 3 Uney(t,7)Us(r,8),
n=0 m=0 n=0 j=0

we only have to prove that

i .
S Une(t,r)Uj(r, 8) = Un(tys) for0<s<r<t<T
e
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The assertion is true for n = 0 and by induction we have

n--1

ZUn+1_J (t, 7YU;(r, 8) = EUn_l_l_,_,(t r)U;(r, 8) + To(t — 7)Upaa(r, 8)
§=0

n

ZS —1(t — ) (o) j(o,r)Us(r, 8) do

.

0
+§T 1(t = a)C(o)Uy(a, 8) do

= (5+§)T_1(t—cr)6‘(a)Un(o,s) do

t
= {T_1(t — 0)C(o)Un(0, 5) do
&8
=Upy1(t,s) for0<s<r<t<T. =

Remark 2.4. If in Theorem 2.3, (A, D(A)) is an arbitrary Hille~Yosida
operator on X, then it is easy to see, using the rescaling procedure (cf. [Nal,
A-T, 3.1), that all assertions of Theorem 2.3 are true except the estimate (5)
which is replaced by

(6) U, 8)]| € MeltMultalit=3)  for (¢ 5) € A,
where M and w are such that || Tp(¢)[| < Me¥? for ¢ > Q.
Let A(t) be the part of A_y + C(t) in X, i.e.

D(A@®) :={z € Xo: A_sz+ C(t)x € Xy}
Atz = A_z +C(Ha, = D(AR)), ¢ € [0,T].

As in [C12], Lemma 2.4, one can see that if z € D(A(£)) for all ¢ € [0, T,
then

(7 lim
g,rst § —
T8

In fact, let £ € [0,7] and = € D(A(t)). Then from Lemma 2.2 we have

(U(s,r)z —2) = A(D)w.

Sir’ E T-1(s —r = 0)[Clo+n)U(o +r,r)a ~ C(t)z] da”
M T )
< | 10@+nU+rr)e—C#)a)pra_y) do-
: 0
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Since C(-) € C’([O,T], Lo(Xy, F(A_1))), we obtain

lim H
gr—t §— 1T
r<a

(s —r—o)[Clo+r)U(o+rriz— C(t)x] do*“ =0,

So by (2) follows

0= lim, - i - [(U(s,'r)w — ) — (To(s - r)z — 2) §T_1(s ~ 0)C(t)z da]
rLE T
= lel»t S—i— [(U(s ) - x) - g T_1(s —r —o)(A_1z + C(t)x) dcr].
r<s 0

From A_1z + C(t)z € Xy the assertion follows.

Since (7) holds and with the same proof as in Theorem 2.5 of [Cl2]
we obtain the following relation between A(:) and the evolution family
(U(t, 8))t,9)ca given by Theorem 2.3.

COROLLARY 2.5. Let the assumptions be as in Theorem 2.3. Let s € [0, T
and & € D(A(s)). Then the evolution family (U(t,8)) ayca satisfies

(a) %U(t,s)m = A(s)z,

t=9

(b) %U(t,s)m — U, 5)A(s)z,

where the right derivative in (a) and the derivative in (b) are in the norm
topology of Xp.

3. Non-autonomous retarded partial differential equations. In
this section we consider a Cp-semigroup {S(t))¢»0 on a Banach space E
with generator (B, D(B)). Denote by Cg := C([—r,0], E) the Banach space
of all continuous functions from [—r, 0] into E, where 7 i3 a positive constant.
Let L() € O([U,T], »Cs(OEaE))‘

Using extrapolation methods and especially the variation of constants
formula (2), we solve the following non-autonomous retarded partial differ-
ential equation:

(NRDE) { @'(t) = Ba(t) + L(t)z:

a(r)=f(r—s), s-r<7<s 0Ss<t<T,
on Cg, where f is a given function in Cg and z; € C denotes the function

zy(7) =t +7) for 7€ [, O]T
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We consider the Banach space X := E x Ug equipped with the norm

)

Let M > 1, w > 0 be two constants such that
1S()| < Me*t  fort > 0.

We denote by 8 the Dirac measure concentrated at zero and 63 f := f/(0)
for f € C% = {f € C : f is differentiable and ' € Cg}.

The following lemma will be used to prove well-posedness of the Cauchy
problem (NRDE).

= |nls + lglles = lInlis + sup_llg(r)iz for (H)GX'
—r<r<0 g

LEMMA 3.1. With the notations introduced above, the mairiz operator

_ [0 Bé-
A= (0 djdr

on X satisfies

55) with D(A) = {0} x {f € CL : (0) € D(B)}

M
(A—w)m

for all A > w and n € N. This means that A is a Hille-Yosida operator
on X.

Proof. For A>w, (") € X and () € D(A) we have
(o) =0-4() = (W3l )
Hence,

®) { 7(r) = &7 F(0) + § X~ g(0) do,
7/(0) — BF(0) =,
for 7 & [~r,0]. Since (w, o) C o(B), it follows from (8) that

(w,00) Co(A) and ||(A- AT <

0
+7) + S N g(e)do  for T € [, 0.

T

(9) Fr)=e(h— B)y"Hg(0)

This implies (w,o0) C o(A) and

-4 (3)=(0)

where f is given by (9). One can show by induction that for n € N,

o-a()- (2)
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where

for) = S er T (0 By ) )

p=0
0
o om0 do

for 7 € [—r,0]. Since B generates a Cp-semigroup on E, it follows from the
Hille-Yosida theorem that

M * [(w - [(w — NP
<(,\ oy lnlz 20 -
M w— 7—1’ 0

M .
S Goae Il

A 0
+lales | 2o’ Fles i, Moo

< e ggells +lslos )

for v € [~r,0]. If we compute the term [...] we obtain
M oS lw=Nre M D M
e + —g) ey =
{A—w)n pg() ! (n—1)! §( ) (A—w)n

for 7 € [—r,0]. Therefore,

(A=A~ < foral A\ >wandneN. =

M

Since D(B) is dense in B, we have Xy := D(A) = {0} x Cp, which
we identify with Cg. From Proposition 1.1 it follows that the part Ay of
A in Xy generates a Chp-semigroup on Xy, which we can identify with the
following Cp-semigroup on Cp:

Flt+7) if —r<t+7 <0,
To()f)(7) = {S((t+7)f(0) if t+7 >0,

for T &€ [—r,0] (see [Naj, B-IV, p. 220). Let (T1(t))i»0 denote the extra-
polated semigroup of (Tp(t))iz0 on X. Since L{-) € C([0,T], Ls(Cr, E)) and
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X = F(A_,), we have

oty= (o L”) & C([0, T, £+(Xo, F(A_L))).

Consequently, the assumptions of Theorem 2.3 are satisfied and hence there
exists an evolution family (U(t, s))¢,syca on Cp satisfying

(10) (U(t?s)f> - (> o7 +ST‘1@_") (L(G)Uffo‘s)f) e

for f € Cg and (3, 5) € A.
‘We can now state the main result of this section.

THEOREM 3.2. Let (B, D(B)) be a generator of a Cy-semigroup (S(t))s>0
on a Banach space E. Let L(:) € C([0,T), £s(Cg, E)). For every f € Cp, the
non-autonomous retarded partial differentiol equation (NRDE) has a unique
mild solution x on [0,T). This means that x € C([0, T}, E) and satisfies

(11) {m(t) = S(t — 8)£{0) + |\ 8(t ~ o) L(0)w, do,
z(r) = f(r—~3s), s—-r<7<s0<s<t<T.

Moreover, the function & is given by
(12) a(t) = (U, 5)f)(0), 0<s<t<sT,
where (U (L, 8)}e.ea 5 the evolution fomily given by (10).

Proof. First, we remark that for all » € F we have

8(0) = (e myn) €20

where e(7) = ¢, 7 € [—1,0]. It follows from (9) that

(13) (I— ARy (g) = (g)

From (10) and (13) we obtain

(14 (U( 9
+ Tlt-mcr)I AR (L(U)UO(“’S)f>d

+ (I —A) Ta(f—a)( ()(I - B)~ 9L( Ule s)f) w
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- (To(fcl 8)f>

— t 0
+{(I—-A_) (Ss Tolt — o)e(-)(T — B)—lL(a)U(O,S)fda)
for (t,s) € A. If we put n(o) := L{o)U(o,s)ffor 0 € [s,t] and 0 < s < £ <
T, then we have
h{T) = S (To(t — o)e( YT~ B)™

&

(o)) (r)do

{577 S0t + 7~ 0)(I - By 'n(0) do
= +S:+¢ eI~ B) in(o)de ft+r—s52>0,
S‘; eF7=o(I — B)"'n(o) do f—r<t+r—8<0,
for r € [—r,0]. Hence, h € C}, h(0) € D(B) and
.77 S(t+1 - 0)B(I - B)"n(0)do
R(7) = + S:+1- Hr-o(I - BY " p(c)de  ift+T—s5>0,
St et7=(1 — B)"in(o) do if—-r<t+r—-5%<0,
for + € [-r,0] and 0 < s < ¢t £ T. Consequently, ( ) € D(4) and

0-a(y) == 4(;)
= (YO @=(, )0

0
= ({St-'-TS(f“{“’T“O')T](U)dO' ft4r—-520 )
0 if —rLt+7—-58<0
for 7 € [~r,0] and 0 € § <t £ T So by (14) we obtain
(18) (U, 8)f)(7)
St +7—38)f(0)
= i—ﬂ’MS(f +71—0)L(a)U(r,8)fdoe t+7—520,
f(i+r--=:) if—r<tt+r-5<0,
forr € [-r,0] and 0 < 8 <t < T.If for 0 < s <t £ T, we put z(t) :=
(U(t, 8) £)(0), then it follows from (15) that
t
(16) o(t) = (¢~ 9)(0) = | St ~ ) L()V (035)f dor
and fli+r—s) if—r<ttr—s<0
r—38) f-r<i+r—-5<0,
@) weenm={TTS T
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If we extend 2 to the interval [s — r, 5] by

ﬂL‘(T) = f('T“—S), TE [S’"T:SL
then from (17) we obtain
(18) Ut,8)f =z for (t,5) € A

Therefore, it follows from (16) that (11) holds and the theorem is proved. m

Let I be an interval and F' be a Banach space. We denote by C%(I, F)
the space of all functions f Hélder continuous with exponent 6, 0 < 6 < 1,
on I, i.e., there is a constant C such that

IF(8) — F(s)ilp < Clt - s/°

The Holder space of order 6, 0 < @ < 1, associated with a Cp-semigroup
(S(t))sz0 with generator (B, D{B)) on a Banach space E is

Dp(8,cc) = {meE: s(up GHS( )m—~sc||E<oo}.

for s,t € I.

Then Dg(8,00) is the Lions interpolation space between D(B) and E
(see [Li]).

Let s € [0,T]. We say that (NRDE) has a classical solution « on [0, 7] if
 is continuous on [0, 77, continnously differentiable on (3,7, 2(t) € D(B)
for ¢ € (5, 7] and (NRDE) is satisfled on [0, T].

We establish some sufficient conditions on the semigroup (S()):>0 and
L(*} to assure that the mild solution given by (11} is a classical solution of
(NRDE)}.

PrOPOSITION 3.3. Let (B, D(B)) be e generator of an analytic semigroup
(8(t))¢>0 on a Banach space E. Let L(-) € C*([0,T], £L(Cg, E)). For every
J € Cg such that f(0) € Dg(8,0) the mild solution z on [0, T] given by (11)
1s a classical solution of the non-autonomous retarded differential equation
(NRDE).

Proof. Let s € [0,7]. From (11) we have

t

(19) zs(t) = St F(0) + | S(t — o) Lo(0)(zs)oder,  t €[0T,
0
where Ly(o) = L(o + s). It follows from (18) and Theorem 2.3 that the

function g =

Ly(Y(zs). 1 [0,T] — E is continuous. In particular g €
- 9)

E). So by Theorem 4.3.1 of [Pa}, we have
ve C°([0,7], B),
where v(t) = SE S(t — o) Ls(o){(zs)o do (¢ € [0,T).

Slnce F(0) € Dg(h, ), the functlon [0,T] 3 t — S8(t)f(0) belongs to
C%([0, T), F) and therefore the function z, given by (19) is Hlder continuous
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with exponent @ from [0, 7] into E. From L(-) € C?([0,T], £L(Cx, E)) we
obtain g € C%([0,T], E). Hence it follows from Corollary 4.3.3 of [Pa} that
¢, is continuously differentiable on (0,77, z,(t) € D(B) for t € (0,7] and

#'(s 1) = Bz(s + 1) + L(s + t)zers, t€ (0,7
This implies that « is a classical solution of (NRDE) on [0,7]. »
The following exaxnple gives a concrete application of Proposition 3.3.

ExaMmpPLE 3.4. Let 2 be a bounded open set of R™ with sufficiently
smooth boundary I'. On the Banach space F := C’o(ﬁ) of all continuous
functions vanishing at the boundary I" we consider the Laplace operator A,
with maximal domain D(A,). Then it is well known that A, generates an
analytic semigroup (S{f)}»0-

Let L € £{E) and k : [0,T] x 2 3 (,2) — k(z,?) € R be uniformly
Hélder continuous with exponent § € (0,1) with respect to the variable £.
For ¢ € [0,T], we consider the bounded linear operator L(¢) : Cg — E
defined by

(L&) F) (=) = k(t, )(Lf(—r))}z) forze .
Then
L() € Ca([oa T]v ﬁ(OE:E))

On the other hand, for 8 € (0,1) one has (see [Lu], Thm. 2.10, and [Lul],
Thro. 3.1.29)

_feRE@, 6+41/2
D, (8,00) = { 022(%)? §=1/2,

where
CEr () = {u € CP(0),u!P € C%(2) and u=0on I'}
(PEN, a€(0,1))
So by Proposition 3.3, we see that for £(0) € C3°(£2), 6 € (0,1), 6 # 1/2
(or £(0) € G3(f2), if 6 = 1/2), the retarded partial differential equation
{ g; (t,2) = Agu(t, o) + b o) (Lu(t —r))(z), z€f, 0<s<t LT,
(Tﬁ ) = (T - S)a

has a unique classical solution.
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