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Spreading sequences in JT
by

HELGA FETTER and BERTA GAMBOA de BUEN (Guanajuato)

Abstract. We prove that a normalized non-weakly null basic sequence in the James
tree space JT' admits a subsequence which is equivalent to the summing basis for the James
space J. Consequently, every normalized basic sequence admits a spreading subsequence
which is either equivalent to the unit vector basis of I3 or to the summing basis for J.

1. Introduction. We study subsequences of normalized basic sequences
{£;}%2, in the James tree space JT. Amemiya and Ito [1] proved that if
{z:}2, C JT is weakly null then it has a subsequence which is equivalent
to the unit vector basis of Is.

We prove, following an idea of Hagler [7], that if {z;}{2,; is not weakly
null then there is a subsequence equivalent to the summing basis for the
James space J. In particular, this yields a classification of all the spreading
models of JT, extending the work of Andrew [2] for the space J.

We thank the referee for his detailed revision and his valuable sugges-
tions.

We first introduce some necessary notation and recall the definitions of
J and JT constructed by James in 8] and [9] respectively. Most of the
material referring to these spaces used here can be found in [5]. '

DEFINITION 1. The James space J is the Banach space of real sequences
b= (by)pe, with the norm '

Mo s(Y)

ol =sup (3 ( 32

vl lzan(y)

24 1/2
)"
where the sup is taken over all finite collections Si, ..., Sar of disjoint infer-
vals of natural numbers with 8, = {n{v),n(¥) +1,...,5(¥)}-
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58 H. Fetter and B. Gamboa de Buen

It follows that the sequence ¢, = (0,...,0,1,0,...) is a boundedly com-

n
plete monotone basis for J which is called the summing basis.

DeEFINITION 2. Let ¥ = {(n,%) : n,i € N, 0 < n < 00, 0 < i < 2"} be the
standard binary tree. The elements of T" are called nodes, n is the level of
the node (n,1) and the nodes (n+ 1,2{) and (n-+1,2i + 1) are the offspring
of (n,1).

Aset S ={t,...,tx} CT is a segment if t;.; is an offspring of ¢; for
1<j <mn. Any s € 5 is called a descendant of 1. If 8,1 € T and there is no
segment containing both of these nodes we say that they are incomparable.
A branch is a set B = {t1,t3,...} C T where £; = (0,0) and ;1 is an
offspring of 1; for all j.

DEFINITION 3. The James tree space JT is the Banach space of real
sequences a = (a(n,1))(n,ier With the norm

= sup 5 ( > an z‘))z) "

=l

where the sup is taken over all finite collections Sy, ..., Sp of disjoint seg-
ments in T,

The sequence {n(n, 1) }(n ier with n(n, i) = (a{m, 5))(m.5yer Where

ot 1 if (m,7) = (n,d),
o(m, 1) = {0 otherwise,
is a boundedly complete monotone basis for JT'.

We will use the following notation: I' will stand for the set of branches;
for every node t € T, P, : JT' — JT is the projection defined by

Pz = Z (n::z)nsa

{seT:e>t}

where {_n;},er is the biorthogonal sequence to {7;}.er and s > t means
that s is a descendant of ¢. For every branch B C 7, fg : JT — R and
Py : JT ~ JT are the functional and projection, respectively, given by

fe()=3 (nf,2) and Pa(z)=S (nf,2)m
teB teB

and for a segment S, fs is defined similarly. It is not difficult to show that
for every branch B, {Pp(m)}iep is isometrically equivalent to {£,};.
It is clear that ||f5 | = || fs]| = || Psl| = || .|| = 1.
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Observe that if a = (a(n,i))(ser one can write

M A L/2
lall = sup (D" (fs. @)) ",
v=]
where the sup is taken over all finite collections Sy,.. ., Sy of disjoint seg-
ments in 1",
As we pointed out, we will need the following result due to Amemiya
and Jto:

THEOREM 4. Suppose {#}2, s o normalized weakly null sequence in
JT. Then for any € > 0 there is a subsequence {2, }52, so that if 3 o, b}
< co, then

(1- s)ib? < ibazm,uz < (2+a)§m:b?.
1=1 1=1 1=1

More recently, G. Berg 4] proved that 2 4 £ can be replaced by v/2 + ¢
and that this result is the best possible.

2. Non-weakly null sequences in JT. In this section we prove our
main result:

THEOREM 5. Let {(;}52; C JT be a normalized sequence with no weakly
convergent subsequences. Then {{}72, has a subsequence equivalent to the
summing basis {£}52, in J.

We start with proving a particular case from which the general case will
follow.

PROPOSITION 6. Let {2152, be a block basic sequence so that for every
[N,

@ -1
=Y > an,dnni) wherep < q<pia

n=p e()

Suppose that there exist a sequence {r;}32, in N and for every a finite
sequence of different nodes of level pr:

@O all =1,

L { l ! i
i’il.lv"'ﬁtftr'ptzln'":tzrg!"‘:tlli""tlm’

so that for o fiwed pair (§,1), the set {t4;}2, 45 contained in a branch B;;.
Suppose further that: _
Bz =z20,1)+...+2(L,),1=12..., where for j =1,...,1,

2,5) = 3 P, a1):

=1
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(i) |Ffp(z(Li)| € 1/2 forevery Be I 1=1,2,...,i=1,..,1.

(iii) fBji(Zl)"—"'Cjz‘ fOT‘j = 1,...,1, i= 1,...,T'j, o= 1,2,...

(iv) There exists a pair (fo.%0) such that cjps = c# 0.

() S, /2 < 1.

Then {z1}2, has a subsequence equivalent to the summing basis {£,}52
of J.

Proof Forv =1,...,M let AM(») < p(v) < A(v + 1). Define
S, = {t = Bjo'io DPAG) < level(t) < qp‘(,_,)}.

Then {S,}}4, is a collection of disjoint segments in JT and we have, for
T bz € JT,

v (v) )
(5 0 =3 (o 8 )
rv=1 [=A(¥) w=1 I=x(v)

M il 2 oo 2
e () < Sl
pe=] l=1 I=1

Thus by the definition of the norms in J and JT,

o0 .0}
| Sooe] < Sael
[==1 l=1

Furthermore, the same estimate holds for every subsequence of {2 }2,.
To get the other inequality, we choose a sequence 1 =mg < my < ... %0
that for [ > 1,

=1 1 1

(2) 2w Sy

J=my
and

2 & 11

2
(3) Z Zcij s 09m;_y ' §i
J=my i=1

The latter is possible, since for every | € N,

I o7y
(4) Yo =3" S e < |lal? =1.
i=1i=1 =1 i=1
We will show that || 335°, bizm, |2 < 90]| 52, by 12, which will complete
the proof. (Clearly, this estimate is not the best possible).
To thisend let 51, ..., 83 be disjoint segments in 7" and for v = 1,....M
let n(v) and x(v) be such that n(v) < x(v) and §, intersects the supports of
gy @nd of 2, ), but S, does not intersect the support of zm, if I < n{v)

icm

Spreading sequences in JT 61

or [ > &(v). Here by the support of z; we mean the set of nodes ¢ such that
(nf, 1) # 0, and we will denote it by supp z;.
We will use the following decomposition:

(fSu ( é br2m, ) ) ’ S 3b72n,1(.,) (fs, (Zmnisy )?

w{r)—1 2
+3( 3 Bfslm)) + 3 (fs, ()
i=n{v)+1
Since the S.'s are all disjoint, by the definition of the norm in J T,
M

DV (s (Ema ) P S TR ST (fs, (2 )

v=1 n=1  {vmn(v)=n}

o oo
<D Billam, =38
n=1 n=1

One obtains a similar inequality for 3 iy (F5, (Zmy))?- Thus

M oo
(B) 3D (V) (F9, (Bma) ) 0, (F5, (B, ))P) <6302,

p=1 n=1

It remains to estimate the term (E;;(:)(:l w1 01fs, (2m,))%

Let v be fixed and n(v) + 1 < (1) < ... < I(k) be such that for r =
1,...,k, there exists t;.’zﬁ)’;’(,,) € Sy but S, N SUPp Zp,,,, is Dot contained in
Bjryi(ry, and so that for I(r) < I <i{r+1),r=1,...,k~1, or | > I{k),

v () 8UPD 2y, is either empty or contained in By, for some (7,7). -

Let n(v) + 1 < o(1) < u(1) < o(2) € w(2)... < oe) < p(u) be s0
that for o = 1,...,u there is (j(¢),%(¢)) with S, N supp 2m; C Bj(a)i(o) if
(o) <1< (o), Bjoyi(e) # Bitonyicery i 0 # ¢ and for p(o) < 1 < p(o +1)
or pi(u) < I, 8, Nsupp 2z, is not contained in By, for any j.

Thus for n(v)+1 < I < (v)—1 either there exists o with (o) < 1 < p(o)
or there is 1 < » < k with [ = I(r).

For o{¢} < 1 < w{o) it follows that |fs, (2m, )| = |¢j(e)ico)| and since

AL ,tmﬁ{:;r“(,) are all of level pm,,,,, we see that for ¢ <,
(6) Ho+1) > my)-
Also observe that if t;ﬁil is a descendant of +., and (j1,41) # (Jo, o),
Ehe]a;;lm € By for i=1,...,75,7=1,...,1p and thus j; > lp + 1, and so
Y ), ‘

mn |f3(P:;1i1 (1,))| < 1/2 . for every B € I
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Thus, since for r=2,...,k, tr?i()?(r) ig a descendant of trrz:,(';)z(r 1y We
have
(8) |fS,, (zml(r))l < 1/2'”‘11(;»_1) :
Now
w(r)—1 9
Z blfSu(zmi)) < 4b?(1}(f5u(zm¢{1)))2
I=n{r)+1

+ 4( i biry f5, (2 )) 2

=2
p(1)

+4( Z blfsv zm;))
b=g(1)
u  pfo}

+4(32 Y wfs, zm,) .

o=21=0(c)

Using (2) and (8) since I(1) > n(v), we get

k oo
(Zbl(r)fs.,(zmz(r ) Z Z: 22m1(,_1,

r=2 =1
oo o0 1 o0 1 1
< Z by 57 S > Simntey R
I=1  j=mnuta =1
y (3), (6) and the definition of the norm in J,
(L) u  pe) 2
( Z blfS,,(zm:) (Z Z bif‘g“(zm‘))
I=p(1) o=21=p(c)
u(1) u ple)
56?(1)1:(1)( > i) +Z° (o)l a)z( >, b )2
I=g(1) =2 =2 [=g(o)}

(1)

50?(1)i(1)( > bi) + Z Z i

I=p(1) ""mn(u)+1 i=1
a(l)

< ien Z‘bl)z

1 1 > 2
Moo DL
l=g(1) I=1

Thus by (i), (2), (9) and the above, if we write I(v), p(v), u(v),

sz&H

(v) and
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i(v) instead of 1(1), g(1), p(1), j(1) and i(1) respectively, we get

r{v)—1

Z blfSu Zrny )

I=n{r)+1

o0
1
<4bl(”)22 1/) 1)+ Z: 29mn(,_.) 2n(u)+1

u(v) 2

+4%<u>t<v)( > "’1)

I=g(v)

4 1 1 o b 2 < 452 1
+ imney | gn(n+1 le_.; ‘5‘” = () 92(5(»)-1)

1 1 > 2 wr)
+ qumn(u) ) an{v)-+1 H 12‘:, bl&lH + 46?(u)i(u)( Z() bg) .
- l=p(v

™)

Since for every n the only possible nodes such that ¢ i) € S, with
l{v) =n are
FAkN

Mn
.y m-,-.l’ vy mn,’.mﬂ,

Sys using (v) and (4) we

T iy, 41 Mn
11 ,...,t1r1,t21 ""’tz’l‘z"'

summing these estimates over the segrents S1,.- 0,

get

M k(p}e~l

S X sl zm[)) <4Z > b‘(’f)22(a(v} =y
v=1 l=n(v}+1 n=l {w:l(p)=n}

! 1 1 0o )
+8,§W‘WH§%H
oo Ty o 2
Y Y w2 B
F=1 =l (G0, 8(w)) = (4,00} ey
o0 00 ’ .
<43 4( Y )
n=l =l
X2 e Ty
+8”Zbl€z“ +4ZZ¢?¢
' j=11i=1
< zsqu;a” .

=1

S
=1
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Finally, using (5) we have

550
=1

<o Sone
=1

as desired.

Proof of Theorem 5. Since the basis {n:}ter is boundedly com-
plete, using a standard perturbation argument we may assume that {¢}52,
has a subsequence equivalent to {z+ 2}2, for some z € JT where {z}{2;
is a block basic sequence which is not weakly null. It is readily seen that
we need only prove the following: if {2}{2, is a normalized block basis of
{me}ter with lim; fa(z) = ¢ # 0 for some B € I' then a subsequence of
{z}32, is equivalent to the summing basis of J and thus the corresponding
subsequence of {z + z }2, is equivalent to the summing basis of J as well.
We may also assumne that {z}§2, is of the form (1) as in Proposition 6.

Let B;: denote any B € I with ¢t € B, and let

A(1,0) = {t € T : level(t) = p; and fg,(2) =0 for all B, € I'},
A7) ={t €T :level(t) = p and | fp,(2)| < 1/¥ " forall Bye I
and 3B, € I so that |fg, (z)| > 1/2'} forj > 1.

Then ;2o AL J) ={teT: level(t) = pi} and for j > 1 the cardinality of
A(l, 7), denoted by #A(l, ), is less than or equal to 2%, In fact, if j > 1,
t1,...,t. € A(l,§) are different nodes and By,,...,B;. € I' are such that
|fB., (2)] > 1/27, then

7 < L@l <P <1

Now we will apply repeatedly the fact that if {t,}, is a sequence of
different nodes in 7, then either there exists a subsequence contained in a
branch or there is a subsequence {tm,, }2%, 80 that ¢, is incomparable with
tm,, fn#n'

Consider the sequence {A{l,1)}2,. Since #A(l,1) <4 for [ =1,2,...,
there exist 7 < 4 and an infinite set N; such that Ny C Nand #A4(1,1) =,
for every l € Ny.

Ifr;=0,let N =N{=Ny.

If r; > 0, then let {t};,..., 2}, } = A(l,1) for every [ € Ny. Now let
Nj C N; be an infinite set such that for every fixed ¢, 1 < < ry, either the
sequence {t};}ieny is contained in a branch called By; or ¢y, is incomparable
with t}; if 1,1’ € N and [ 5 I'. Let further

I={1<i<r:3By €I {ti;hen; C Bu}-

If Il = m, let N]’_’ = Ni
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If I, # 0, let N{ be an infinite subset of Ni such that for ¢ € Iy,
limye vy fB, () = c1; exists. This is possible because {fp,;(z)}i2; is a
bounded sequence.

Proceeding inductively we construct a sequence {ri}he; C N and sets
Ni, NL, N k=1,2,..., I, I5,...C N, so that

() ND Ny D N{DN/DN2D..., Ny isinfinite for £ =1,2,...

(b) For { € Ny, k=1,2,..., either A(l,k) = 0 or we may write A(l,k) =

{thyseortin, b
(c) If A(l, k) # 0 and 1 < 4 < 7y, then either {t}:}ien; is contained in a

branch By; or i}, is incomparable with th for 1l € Nj and 1 #1.
() I = {1 < i S e {thihewy © Bua)-
(e) If i € Iy, then

lim fp,;(z)=cy exists

i—o0

leNy
forj=1,....,k i €1I;

Let my < g < ... where iy € N’ for all 4. By passing to a subsequence
of {zm, }32, and perturbing we may assume that

By = Wy +
where wy = w(l,1) +... +w(l, ) and for j=1,...,1,
Wuwli)= Y, Pmlm)= >
{igrytiely} {t=t;r;‘€A(ml,j):iEIj}

(i) | fe(w(l, §))| < 1/29~" for every B & I'.
(ﬁi) fBji(w;) == Cqy for j = 1,2,...,0, ¢ EIJ', I=12,...

Also, since |Jw;|| < 1, if 8; = #{i i € I;} = #{t}}' € A(my,5):d € I;} then
we have

!
: 84
()3 557 < il <1
g=

From our construction we infer that {u;}§2, i a bounded block basis of
{m:}rer which satisfies, for all B € I,

li{nfg(w) =0.

Pt(zm,t).

Since it is known that a bounded block basis {Z, )7y of {m}ter is weakly
null if and only if lim; fa(z:) = 0, it follows that {u;}§2, is weakly null.

By Proposition 6 and Theorem 4 there exists a further subsequence
{2}, )2, with 2}, = w] + uj so that {wi}, is equivalent to the sum-
ming basis for J and {u}}{2, is either norm null or equivalent to the unit
vector basis of l;. The theorem now follows easily.



66 H. Fetter and B. Gamboa de Buen

As an application we are able to describe the spreading basic sequences
in JT and its spreading models.

Recall that a basic sequence is spreading if it is equivalent to all of its
subsequences. The theory of spreading models can be found in [3].

COROLLARY 7. Let {z;}§2, be a normalized basic sequence in JT. Then
{zi}2, hes a subsequence which is equivalent to either the summing basis
for J or to the unit vector basis of ly. In particular, these fwo spaces are
the only spreading models of JT and every normalized basic sequence in JT
admits a spreading subseguence.

Theorem 5 and the corollary apply to the space (J & J @...};, since the
latter is a subspace of JT'. Thus the above results improve those previously
proved by the authors in [6].
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Estimates of Fourier transforms in Sobolev spaces
by

V. I. KOLYADA (Odessa)

Abstract. We investigate the Fourler transforms of functions in the Sobolev spaces

Wyt It is proved that for any function f € W{v""™™ the Fourier transform f belongs

to the Lorentz space L™/ ™, where r = n{ i1 1/ r;)~ ! & n. Furthermore, we derive from

this result that for any mixed derivative D*f (f € C§°, 8 = (81,... ) 54)) the weighted
norm [|(D° )| gy (w(€) = [€17™) can be estimated by the sum of L -norms of all pure
derivatives of the same order. This gives an answer to a question posed by A. Pelczytiski
and M., Wojciechowski.

‘1. Introduction. For any function f € L'(R™) its Fourier transform is
the function  defined by

fley= | fla)e?>%dz, EER".
R
For the Fourier transform of a function f € LP(R™), 1 < p < 2 (see [13],
Ch. 1), we have the following classical inequalities ([2], Ch. 1):

o the Hausdorff-Young inequality
(1 Pl < ISl 1SPS2 s+ =1
o the Hardy-Littlewood-Paley inequality
@) ({lere-aFeipde)"” el 1<p<2

I L]
It is well known that (2) is not true for p = 1, n % 1;50n the other hand,
by Hardy’s inequality we know that for any f e HYR"),

3) § 8 gt < ol
Rﬂ

Furthermore, the inequality (2) can be strengthened in terms of rearrange-
ments.
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