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Bernstein and van der Corput—Schaake type inegualities
on semialgebraic curves

by

M. BARAN and W. PLESNIAK (Krakéw)

Abstract. We show that in the class of compact, piecewise €1 curves K in K", the
gemialgebraic curves are exactly those which admit a Bernstein (or a van der Corput-
Schaake) type inequality for the derivatives of {the traces of) polynomials on K.

0. Introduction. The Markov and Bernstein inequalities estimating
the growth of the derivative of a polynomial in terms of its values on an
interval or a circle are still a fascinating object of investigations. For an
interesting account of these classical results and their refinements in the
one-dimensional case, we refer the reader to [MiRa]. A corresponding the-
ory in the several variables case is relatively new and was essentially de-
veloped in the last decade by W. Pawlucki and W. Pleéniak ([PP1], [PP2],
[P13]), P. Goetgheluck ([Goel], [Goe2]), A. Jonsson ([Jonl], [Jon2]), J. Siclak
([8i3]), M. Baran ([Ball-[Bad], [BaPl), L. Bos, N. Levenberg, P. Milman,
B. A. Taylor ([BM1], [BM2], [BLT]|, [BLMTY), A. Zeriahi ([Z]), A. Goncharov
([Gon]) and others, In particular, it was found that Markov’s inequality is
closely connected with the classical problem of the existence of a contin-
wous linear operator extending C*° functions from a (sufficiently regular)
compact set in R™ to the whole R* (see [PP2], [P13], [Z], [BM2], [Gon]). As
concerns Bernstein’s inequality, following Baran’s papers {Ba2], [Ba3], it is
closely related to the equilibrium measure of a compact set in R™. These
two discoveries emphasize once more the important role of both the Markev
and Bernstein inequalities in real and complex analysis.
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Markov or Bernstein type inequalities on curves in R™ do not directly
follow from their versions for “big” subsets of B", and the paper [FeNa]
seems to be a first attempt at such investigations. This paper is motivated
by the papers [BLT] and [BLMT] which are important from the Constructive
Theory of Functions point of view, since they establish a characterization
of an algebraic submanifold K of R™ with the aid of a tangential Markey
inequality as weil as a Bernstein theorem for Lipschitz classes of functions.
Following [BLMT], a compact m-dimensional submanifold K of R* with
boundary {1 <m <n— 1) is said to admit a tangentiol Markov inequality
with exponent one if there exists a positive constant M depending only on
K such that for all polynomials p,

|.Drplix < M(degp)|pllx-
Here Drp denotes any tangential derivative of p along K and ||p|jx :=
sup [p|(K). According to [BLT] and [BLMT], a €' submanifold X of R
admits such an inequality if and only if K is algebraic. However, the reader
of those two papers has to be careful, since, in both, the C? regularity of a
given submanifold should probably be replaced by C* regularity. Indeed, the
following simple example (due to the first author) shows that C! regularity
does not suffice for an algebraic curve K to admit a tangential Markov
inequality.
ExampLE 0.1, Consider the algebraic curve
Ki={z,)eR:y¥ = (1-2H)*1}, 1eN

Then, for the polynomials Py (z,y) = [+T4(z)] %y, where T, is the Chebyshev
polynomial cos(karccosz) for z € [—1,1], one has
|DrPi(1,0)| = [DaPi(1,0)| = & > k> By .

In connection with the above example, the question arises about the size
of the exponent £ with which a curve K satisfies the inequality

(Mr) |Drp(z)| < M(degp)°||p] x

for all polynomials p. If X is not algebraic, then, in general, X need not
satisfy such an inequality with any finite £. For an example, see [BLMT,
Section 6]. On the other hand, it was shown in [BLMT, Proposition 6.1]
that if K is an arc of a smooth algebraic curve & in R?, then K satisfies
(Mz) with exponent £ = 2. In the proof of that proposition the authors
claim that K C {(z,y) € R? : p(z,y) = 0} for some irreducible polynomial
pwith Vp = (py, py) # (0,0) on K. This, however, need not be true, which
is seen by the following example (also due to M. Baran).

ExampLE 0.2. Take the (irreducible) polynomial

p(z,y) = [2y° ~ 32(1 — 22)]2 — 22[8(1 — 22:)? + 1].
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Then Vp(0,0) = (0,0). At the same time, the curve {(z,y) € B? : p(z,y)
= 0} has the explicit representation

2% = 2[3(1 - 2z) + [8(1 — 22)% + 1]%/2],
whence it is R-analytic.

It seems that the same gap occurs in the proof of the main theorem of
[BLT]. In order to avoid the above mentioned difficulties, in this paper we
propose an essentially different (and technically simpler than that of [BLT]
and [BLMT]) approach to Bernstein and Markov type inequalities in R®
that applies to curves with an analytic parametrization.

DeFNITION 0.3, Let K be a compact curve in R™ and let T = [-1,1].
Then K is said to admit an analytic parametrization if there exist r € N,
o > 1 and R-analytic maps ¢; = (¢j1,...,¢jn):al = K, §=1,...,r, such
that each @;|7 i8 a bijection onto ¢;(I) and

SEAGES:¢
ju=l

Let us give some examples of curves admitting an analytic parametriza-
tion.

ExampLE 0.4. The natural parametrization h(t) = ¢ of the line segment
I'=[-1,1] does not fit the requirements of Definition 0.3. The point is that
although / is an analytic bijection of I onto I, there is no & > 1 such that
h((—a,0)) C I.If we replace h with the parametrization ¢ : R 3 ¢ — ¢(t) =
sin 7t € I then I becomes a curve with an analytic parametrization.

ExamMpre 0.5. The curve
K = A{(n,y) e B 1y = (1- %)%}
is not of class C. Nevertheless, it admits the analytic parametrization
B(t) = (cos wt,sind nt).
Exampri 0.6, The curve
K= {(z,y) e R? .y = 2*(1 — 2?)}

has a double point at (0, 0), whence it cannot be a topological manifold. At
the same time, it admits the global analytic parametrization given by
$(t) = (cosmt, cos mtsin 7).

Notice that any curve X in R® such that K = h(I), whgre hisan ar'zaljtic
function in an open neighbourhood of I, admits an analyt.lc parametrization
in the sense of Definition 0.3. (Tt suffices to take ¢(¢) = sin §t.) In the class
of curves admitting an analytic parametrization, we are able to characterize
semialgebraicity of ' in terms of Bernstein or van der Corput—Schaake type
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inequalities as well as Lipschitz type conditions for the pluricomplex Green
function associated with K (see Theorem 2.1). We recall that a subset K of
R™ is said to be algebraic if K = {z € R : f(z) = 0 for any f € I(K)},
where

I(K)={f €Rlzy,...,z5] : V2 € K, f(z)=0}.
K is said to be semialgebraic if it is a finite union of subsets of R™ of the
form

{ze®: fi(z)=0and g;{z) >0fori=1,...,land j=1,...,m},

where f; and g; are in R[zy,...,2,]. The semialgebraic sets in R™ form the
smallest family of subsets of R” which contains all algebraic sets and is closed
under projections. For more information on properties of semialgebraic sets
we refer the reader to [BeRil.

By Puiseux’s theorem (see e.g. [E]), any semialgebraic curve in R" is
piecewise C* and, moreover, it admits an analytic parametrization. For this
reason, the class of curves we consider here is well adapted to our problem.

The proof of our main result (Theorem 2.1) is given in Section 2. It is
preceded by some technical preliminaries, collected in Section 1.

1. Preliminaries. In our study the crucial role is played by the so called
Joukowski function

o) =3 (w3}, weehioh

which establishes a biholomorphism between {w € C : jw| > 1} and C\
{—1,1]. The inverse function b = g~ : C\ [~1,1] — €\ {|w| < 1} has the
form

h(z) = z + (2% = 1)V/*
if we choose an appropriate branch of the square root. We shall need the
following formulae (see [Ba2, Proposition 1.13)):

(11.1) Iee(-1,1), e>0and 8RR, then
1
~log |h(a +126)| < |BI(1 - a®)7M/2,
(112) Hoe(-L1),0<e<1/2, BER, and | <1 - |ee], then

1
(L-elsl(t-a*) 12 < 7 log [h(a +ief)|.
Let now E be a compact subset of T, We set
Ve(z) = sup{u(z) 1 u € L(C™), uip <0}, =zeC",
where

L(C*) = {u ¢ PSH(C") : sup fu(2) — log(1 -+ |2])] < oo}
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is the Lelong cluss of plurisubharmonic functions with minimal growth. The
function Vg is called the (plurisubharmonic) extremal function associated
with E (see [SiQ]l. It is a multidimensional counterpart of the classical Green
function for C\ E, where E is the polynomial hull of B, since by the pluripo-
tential theory due to E. Bedford and B. A. Taylor, its upper semicontinuous
regularization Vg is a solution of the homogeneous complex Monge-Ampére
equation, which reduces in the one-dimensional case to the Laplace equation
(for references, see [K]). By [Si2],

1
(1.2)  Vu(z) = sup {M log |p(2)] : p is & polynomial with degp > 1

20d pliz < 1}.

In other words, Vi == log $p, where @ is the (polynomial) extremal function
introduced by Siciak [Sil]. If F is a compact subset of R" then by [Bal,
Th. 1.3],

(13)  expVp(2) = sup{|h(p(2))]"/ 57 : p € Rlz], degp 21, {lplls < 1}.

A subset F of " is said to be pluripolar if one can find a plurisubhat-
monic function u on C" such that F C {u = —co}. By Josefson [Jos, F is
pluripolar if and only if it is lecally pluripolar, i.e. for each point @ & F there
exist an open neighbourhood U of ¢ and a function « plurisubharmonic on
U such that ENU C {u = —o0}.

Let now A be an analytic subset of C" such that the set Areg of regular
points of A is a complex submanifold of C* of pure dimension m. Let K
be a compact subset of A. Then, since A is pluripolar in C", so is the
set K and hence Vi = oo (see [Si2]). However, by definition, Vx = 0 on
K and Vx may be finite at some points of C* as well. Now, K is said to
be (pluri)polar in A if there is a plurisubharmonic function u on A (ie.
 is plurisubharmonic on Aye and locally bounded above on A) such that
KM Argg C {u = o0}, We shall need the “only if” part of the following
important criterion of Sadullaev [Sal:

(14) A is algebraic if and only if Vi is locally bounded in A for some
(and hence for each) non-pluripolar compact subset K of A.

Given a subset B of C", let Py(E) denote the vector space of the re-
strictions to B of all polynomials in Px(C"), the space of polynomials of
degree at most k in (21,...,2,) € C*. Let 8 = 6x(E) be the dimension of
the space Py (E) and let {£1,...,8, } be a basis of Py (E). If 1 <1 < by, let

{(f”, ceey C,m} C K be a system of extremal points of E of order I, i.e.
VIE) = Ve, L ) = sup{|V (e, .o m)| s {2 © K
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where V(%1,..., ) := det[€;(z;)] is the generalized Vandermonde determi-
nant. We claim that

(1.5) VIE)>0 forl<I<é

(cf. [Sil, Proposition 4.3]). For, if [ = 1, we have Vi(E) > 0. Suppose that
Vi(E) = [V(?,...,¢cY) > 0 for 1 <1 < &. Then, for z € E,

!
Dya ~
i:(”a (L‘) = V(C;gt)) ey C.!{ ))GH-J. -+ Z Cjﬁj(w).
j=1

Since Vi(E) # 0, W(z) # 0 on E, whence Vi.1(F) 2 sup,ep [W(z)| > 0, as
claimed.

Let X = X(E) denote the Zariski closure of E, i.e. X is the smallest
algebraic subset of C" that contains E. We claim that

(1.6.1) §(B) = O(kSmX By,

where the exponent dim X (F) is best possible. For, since Pg(E) = Py(X),
it is enough to consider the case of E = X being an algebraic set in C*,
Let 2 : C* 3 (%1,...,20) — [1,21,...,2x] € P* be the canonical inclu-
sion of C" into the projective space P™ and let X* denote the closure of
¥(X) in P*. The ring Clzo,z1,...,2,] of all polynomials in C**! has a
natural gradation Clz] = @j_, Clz]x, where Clz]) is the space of homo-
geneous polynomials of degree k. Correspondingly, the ideal 7 := T{X*) of
homogeneous polynomials in Clzg,zy,...,z,) that vanish on X* has the
natural gradation I = @j- Iy, where Z; = I N Clx],. Consequently, the
homogeneous coordinate ring 5{X*) = Clxzg, z1,...,2,]/Z has the natural
gradation S(X*) = @2, Cla]i/Zx. Put Pi{X*) := Cla]s /T and consider
the map

1/) : P;;(X*) 3 f(moaxla-'-)xn) = f(llmll"“)w’n) € Pk(X)

Then ¢ is Clinear. Moreover, if f(1,21,...,2,) vanishes on X then the
(homogeneous) polynomial f is equal to 0 on ¢(X), and hence on X*, since
3(X) is dense in X*. Thus the map 4 is injective. It is also surjective. For,
let g€ pk(X) and take f(w[],l']_, v nmn) = mgg(ml/w()z s an/mO)' Then
$(f) = g. Hence 9 is a C-linear isomorphism of PHX™*) onto Py(X). Con-
sequently, dim Pi{X) = dim P}(X*) =: hx.(k), where hx~ is called the
Hilbert function of the projective variety X*. Now, by the Hilbert—Serre
theorem (see e.g. [Hart, pp. 51-52] or [Har, Proposition 13.2)), there is a
polynomial px« of degree dim X*, called the Hilbert polynomial of X*, such
that for k large enough, hx-(k) = px-(k). Thus dim Pr(X) = O(kdmX"),
where the exponent dim X* = dim X is best possible.

The above result also admits an inverse. Namely,

W) = v(,...,
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(1.6.2)  if F is an irreducible closed analytic subset of C* of pure dimension

m such that 6p(E) = dimPy(F) = O(k™), for k large enough,
then E is a pure m-dimensional algebraic subset of C*.

For, let X be the Zariski closure of E. Since dimPx(E) = O(k™) for
k> 0, it follows from (1.6.1) that dim X' < m. Since F C X and dim E = m,
we have dim X = m. Hence it easily follows (see e.g. [Chir, Proposition 3,
p. 61]) that E must be an algebraic subset of C*, and E = X,

Thus we have proved that

(1.7)  an irreducible closed analytic subset E of C* of pure dimension m
is algebraic if and only if §,(E) = O(k™).

Remark. The authors owe the proof of (1.6.1) and (1.6.2) to Dr. Z. Je-
lonek. They also thank him for valuable discussions concerning algebraic
geometry.

"We find it interesting that (1.6.1) can also be proved by purely “ana-
lytic” methods. To show this, assume that X is an algebraic subset of C"
of dimension m. Let zy be a regular point of X and let Uy be a coordinate
neighbourhood of xg which is mapped by a biholomorphic map h onto some
open ball By in C™ of finite radius, centred at 0 € C™. We set

Qr={foh™: f € Pe(X)}.
Let B be a closed ball centred at 0 € C™ guch that B C By. By a uniform
version of the Bernstein—Walsh-Siciak theorem (see [P11, Lemma 1), there
exist constants M > 0 and a € (0, 1) such that

dist(f, Pi(C™)) = inf{sup |f — p|(B) : p € PL(C™)} < M| fllz,0"

for each f € Qi and I = 1,2,... Now, if fe @, there exists F' € Py(C™)
such that Fix = f. Hence, since gz log|F| € £L(C"), by the definition of

Vg, and since A~ (B) is non-(pluri)polar in X, we get

1fllze = 11 o h ™ mo = | flIn-2(80) S [1Flln-1(m) exp(k ey )Vh-I(B))
il

= || flin-1(mA* = | FllzA¥,

where by Sadullaev’s criterion (1.4), A := exp(supy-1(z,) Va-1(8)) < 00.
Hence we obtain

dists(f, P.(C™)) < M||f]|zA*a’.
Set I = rk, where 7 is so chosen that Ae” < 1/M. Then, if f# 0,
- distp(f, Pr(C™) < |flz fork=1,2,...
We claim that '
dim Py (X) = dim Qi € dim Pr(CT™).
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For, if dimQy > dimPp(C”), then by the Krein-Krasnosel'skii-Milman
theorem (see e.g. [Sin, Chap. II, Lemma 6.1]), one can find fo € Q% \ {0}
such that fy 1 Ppx(C™). This means that

Ifols <llfo+2llz, Vo €Pm(CT).

Hence we get HJ‘BHB < distg(%,’.Prk(C”)) < Hﬁ)HB, contradiction. Conse-
quently,

(r+m)™

<
m)!

k+4+m
dim Py (X) € dim P (C™) = (T ; ) E™ = O(F™).
Remark. Theidea of making use of the Kreln-Krasnosel’skii~Milman

theorem for estimating the dimension of Q) goes back to [P12].

2. Bernstein and van der Corput—Schaake type inequalities on
semialgebraic curves. The main result of our paper is the following

THEOREM 2.1. Let K be a compact curve in R* with an analylic pera-
metrization {¢;} (with parometers r and ). Then the following conditions
are equivalent:

(i) K is semiolgebroic;
(ii) There exist positive constants My and 8o such that Vi (¢;(C)) < My
T'fd-ISt(C:I) 6Ly, J=1,...,7;
(iil) K has property P (cf. [P13]): there exist positive constants My and
C such that for each 5 = 1,...,7 and p € Clzy, ..., 2zn),

Ip(6(O)] < Mallplxc o dist(C, 1) < C/degp;

(iv) K admits o Bernstein type inequality (cf. [Bern]): There exists a
constant My > 0 such that for each j=1,...,7 and p € Clzy, ..., %],

H(po @) (t)] < Ms(deg p)|[p|lx.

(iv') K admits a van der Corput—Schaake type inequality (cf. [CS1], [C82]):
There exists o constant My > 0 such that for each j = 1,...,7 ondp €
R[E;, - ,mn],

|(p o ¢3)'(8)] < Ma(degp){llpli% — p*(85(£)]Y/2,

Proof. (i)=(ii). Due to the definition of a semialgebraic set, since Vg <
Vr if F C E, we may assume that K = ¢(I), where ¢ = (¢1,...,%n) :
al — K is R-analytic and ¢(I) is contained in an algebraic set 4 < R" of
dimension 1. We put

tel;

tel

Ry = [likmsup {/disty (60, P (©)]7Y, 1=1,...,m,
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. 1+ Ry 14+
R-—mm{ 5 ,h( 3 )},

where h is the inverse of the Joukowski function (see Section 1}. Since the
map ¢ is analytic, by the classical Bernstein theorem, R > 1 and ¢ extends
holomorphically to an open neighbourhood U of the ellipse

Ep={C: MOl < B} ={¢: (-1 +[¢+1] < 29(R)}-

Moreover, in view of Definition 0.3, I’ can be chosen such that ¢(UNR) = K.
Set

(2.1) R* = /2g(R) ~ 1.

Then R*Ep+ C Ex and the function ¢(R*g(()) is holomorphic in an open
neighbourhood of the annulus {1 < |{| £ R*}. Moreover, by the identity
principle, ¢{R*g({1 < [¢| £ R*})) is a (compact) subset of the algebraic set
E=Ioc{f eClz1,...,2,]: f =0 o0n A} C C". Now, if we set

1 *
M = m—; |gs|211)2* Vi (¢(R*9(¢))),

and

then, since K is a non-polar subset of A, by Sadullaev’s theorem (1.4) we
have M < oo. Let now u € £{C"), ulx £ 0. Then the function

v(€) = u(¢(R"g(¢))) — Mlog [(|
is subharmonic in an open neighbourhood of the annulus {1 < |¢| < B*}.
Since v(¢) < 0 for [¢| = 1, and uw(¢(R*9(())) < Vi (#(R*g(()) if |¢] = R,
by the maximum principle we get v(¢{) < 0 for 1 < |[¢| £ R*, whence we
derive the inequality
(2.2) Vic(¢(2)) < Mlog|h(z/R*)|, 2€ R*Eg-.

Choose now 8y = (R* —1)/2,0 < 0 < 6 < g and { =t + pe”, wheret € T
and § € R, Then
[t| + o < 1+ R*
R — 2R*
and hence, by putting € = 1 in (1.1.1) we get

t geiﬁ'
“(R*)
It + glcost9|)2] -1/2
Rm

5 14+ B\ 272 M
LA <2 s
SMMP (M*)] SNV

<1

Vie(d(t + 06)) < M log

< M-R%|sme| [1 - (

which yields (ii).
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(i)=(iv'). Choose 6 € arccos([~1/R*, 1/R"]) where R 18 defined by
(2.1). Put £ = R*cos# and t = R*sin@. For B — 1y, set ¢ = (B — B™1)
= (1 +¢%)!/2¢. Then R*g(Be*) = t. + ict, and we can write

(R g(Be)) = o(te +ict) = §(te) + ietd (t) + O(c”).
Hence, if p is a polynomial with real coeflicients, we get
(2.3)  p(d(Rg(Be™))) = p(@(te) +1etd' (tc) + O(e™))
= p(@(te)) + it grad p(@(te)) - ¢'(t) + O(?).
Assume now that ||p||x = 1 and 0 < b < 1. Then by (1.3) and (2.2) we have

log |A(bp(@(R*g{{))N)| < Mlog (],

and t. =

1
degp
where ¢ = Be®. Dividing the above inequality by &f and letting B — 1.,
by (1.1.1), (1.1.2) and (2.3) we get

(po 8) ()] < s ol - B G

(Here we have used the fact that the function I'(8) = lim;...o £~ log |A{a +
ief3){ defined by (1.1.1) and (1.1.2) is homogeneous, which permits us to
replace € by Ce with C' > 0 so chosen that the assumption |8 < 1~ |af be
satisfied.) Now, letting b tend to 1 gives

Mdegp
[(po¢) ()] < W[l“ﬁ’z(ﬁb(f))]m-
The implication (ii)=>(iii} easily follows from {1.2). To prove that (iii)
implies (iv) it suffices to apply Cauchy’s Integral Formula: if p € Clzy, . . . , 2]
and t € I, then

dt,

oo =5 | PA
|C t]e=§
whence by (iii) we easily obtain (iv) with Mz = M,/C.

Since (iv) also easily follows from (iv'), in order to end the proof of our
theorem it suffices to show that (iv) implies (i). To see this, assume (iv) and
suppose that K is not semialgebraic. Then, for at least one j & {1,...,7},
say j = 1, Ky = ¢1(I) C K is not semialgebraic. Let Pj(K1) be the
vector space of the restrictions to K of all polynomials p & Pr(C") and
let &, = dlmPk(Kl) Let €1,...,&5, be a basis of the space Py(K;). For
E = (617 agﬁk) € Kl  let

V(£) = det[€i(45)]
and let £€8%) € K% be such that
| VE)| = sup{|V(E)]: ¢ € K} >0,
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where the last inequality follows from (1.5). Let now ¢; = ¢7 (5(5’“)) NI
Without loss of generality we may assume that [t1 — t2| = mm{rt —t;] :
i# 7} Then |t —t3| < 2/(8k — 1). Consider the polynomials

Qu(@) = V(m, &™), ... ey v (glon)y,

We have deg Qr < K, Qk(f(‘s’“)) = 81; (Kronecker’s symbol) and | Qx||x, =
1= Q4 (&) ). Hence by (iv) we get

1= |Qu(9(t1)) ~ Qu(B(ta))| < Maklty — o] < 2Mak/ (6, — 1).

Since K, cannot be contained in an algebraic variety of dimension 1, by
(1.7) for each j we can find k; € N such that 6y, > jk; and, consequently,
we get

1< 2Mak;/(jk; 1),

which is impossible for j large enough. This completes the proof of the
theorem.

In the proof of “(iv) or (iv') implies (1)” we only need to know that K
is of clags C'. Hence, since by Puiseux’s theorem any sernialgebraic curve is
piecewise C* and admits an analytic parametrization, we get the following
characterization of semialgebraic curves.

COROLLARY 2.2. A compact, piecewise C* curve K in R™ is semialgebraic
if and only if it admits the Bernstein type inequality (iv) of Theorem 2.1 or,
equivalently, the van der Corpui-Schaake type inegquality (iv').

Qur version of Bernstein’s inequality on the derivatives of polynomials
also permits us to give a generalization of a classical theorem of Bernstein.

COROLLARY 2.3. If K is a compact semialgebraic curve in R® then it
admits the Bernstein theorem: for oll f in C(K), if for some 0 < a < 1,
dist e (f, Pe(C)) = O(k~%*) as k - oo, then f € Lip%(K). Here

Lip} (K) = {f € C(K) : | £(¢(1)) — F($(s))} < Mt~ s[* for all t,5 € I},
where M may depend on f.

The proof of the above corollary goes essentially along the same lines as
in the classical case (see e.g. [L, Chap. 4, Theorem 4}). For the convenience
of the reader, we reproduce it here.

Proof of Corollary 23. Fork=0,1,...,
polynornial such that

Bi(f) = distx(f, P(C™) = || ~ pallx

let pp, & Pr(C™) be a
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and let t,8 € I, t # s. Then we get
(fod(t)— fod(s)] < |f o (t) —pro ¢t + [f o d(s) — pr o ¢(s)|
+ |pk 0 $(t) — pr 0 ()|
< 2Ey(f) + [t = 5| - [(p 0 #)' ()],
for some & € (0, 1). Setting k = 2"+, by the inequality (iv) of Theorem 2.1
we can write

i
(s 0 8Y llr = (22 0 8Y — (o0 8 + 3 (pase: 06 = paco 9|

i=0

I

3
< 2MEo(f) +2M Y 2 Eyi(f)

§=0
! 2
<oM[E(f)+2B:(F)+4Y, Y. B
im=l j=2i-141]
zl
< SMZ E:(f).
i=0

Now, if we select [ in such a way that 2! < h™! < 21 where h = |t — 3|, we
shall have :

£ 0 9() - Fod(s)l < O@*0) + O (Bo(f) + T i)

1<ig1/h
1/h
<O+ O(Lh+ 0k | 27%dz = O(h®).
Q
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An irreducible semigroup of idempotents
by

ROMAN DRNOVSEK (Ljubljana)

Abstract. We construct a semigroup of hounded idempotents with no nontrivial
invariant closed subspace. This answers a question which was open for some time.

Let B(X) denote the algebra of all bounded linear operators on a (real ar
complex) Banach space X. A (multiplicative) semigroup S in B(X) is said to
be drreducible if the only closed subspaces of X invariant under all members
of § are {0} and X. Otherwise, & is called reducible. An operator P € B(X)
is called idempotent if P2 = P. In this note we answer the following question
negatively: .

Is every semigroup of idempotents reducible?

It seems that this problem was first considered by Heydar Radjavi [3].
He proved that a semigroup S of idempotents on a Hilbert space is reducible
provided & contains a nonzero finite-rank operator. The above question was
explicitly mentioned in the paper [1] by P. Fillmore, G. MacDonald, M. Rad-
jabalipour and H. Radjavi, where it was shown that a finitely generated
semigroup of idempotents on a Banach space is reducible. Recently, the
problem has also been mentioned in the survey article [4] by H. Radjavi.

Our construction of an irreducible semigroup of idempotents was in-
spired by the construction of a weakly dense semigroup of nilpotent opera-
tors (see [2]).

THEOREM. There exists o semigroup & of idempotents on the Hilbert
space 1%, which is weakly dense in B(I2). In particular, the semigroup S 1s
irreducible.

Proof If A and B are k x k matrices, then let P4 g be the 3k x 3k
matrix
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