ArticleOriginal scientific textOn extremal and perfect σ-algebras for
Title
On extremal and perfect σ-algebras for -actions on a Lebesgue space
Authors 1, 2, 3
Affiliations
- Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- Institute of Mathematics, Wrocław Technical University, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Université de Provence, Centre de Mathématiques et d'Informatique, 39, Rue Joliot Curie, F-13453 Marseille Cedex 13, France
Abstract
We show that for every positive integer d there exists a -action and an extremal σ-algebra of it which is not perfect.
Bibliography
- M. Binkowska and B. Kamiński, Entropy increase for
-actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318. - J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30.
- S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343.
- S. A. Kalikow,
transformation is not loosely Bernoulli, Ann. of Math. 115 (1982), 393-409. - B. Kamiński, Mixing properties of two-dimensional dynamical systems with completely positive entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 453-463.
- B. Kamiński, The theory of invariant partitions for
-actions, ibid. 29 (1981), 349-362. - B. Kamiński, A representation theorem for perfect partitions for
-actions with finite entropy, Colloq. Math. 56 (1988), 121-127. - B. Kamiński, Decreasing nets of σ-algebras and their applications to ergodic theory, Tôhoku Math. J. 43 (1991), 263-274.
- Z. S. Kowalski, A generalized skew product, Studia Math. 87 (1987), 215-222.
- W. Krieger, On generators in exhaustive σ-algebras of ergodic measure-preserving transformations, Z. Wahrsch. Verw. Gebiete 20 (1971), 75-82.
- I. Meilijson, Mixing properties of a class of skew-products, Israel J. Math. 19 (1974), 266-270.
- V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian).
- T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350.
- T. Shimano, The multiplicity of helices for a regularly increasing sequence of σ-fields, ibid. 36 (1984), 141-148.
- T. Shimano, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226.
- P. Walters, Some results on the classification of non-invertible measure preserving transformations, in: Lecture Notes in Math. 318, Springer, 1973, 266-276.