ArticleOriginal scientific text

Title

On extremal and perfect σ-algebras for d-actions on a Lebesgue space

Authors 1, 2, 3

Affiliations

  1. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
  2. Institute of Mathematics, Wrocław Technical University, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  3. Université de Provence, Centre de Mathématiques et d'Informatique, 39, Rue Joliot Curie, F-13453 Marseille Cedex 13, France

Abstract

We show that for every positive integer d there exists a d-action and an extremal σ-algebra of it which is not perfect.

Bibliography

  1. M. Binkowska and B. Kamiński, Entropy increase for d-actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318.
  2. J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30.
  3. S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343.
  4. S. A. Kalikow, T,T-1 transformation is not loosely Bernoulli, Ann. of Math. 115 (1982), 393-409.
  5. B. Kamiński, Mixing properties of two-dimensional dynamical systems with completely positive entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 453-463.
  6. B. Kamiński, The theory of invariant partitions for d-actions, ibid. 29 (1981), 349-362.
  7. B. Kamiński, A representation theorem for perfect partitions for 2-actions with finite entropy, Colloq. Math. 56 (1988), 121-127.
  8. B. Kamiński, Decreasing nets of σ-algebras and their applications to ergodic theory, Tôhoku Math. J. 43 (1991), 263-274.
  9. Z. S. Kowalski, A generalized skew product, Studia Math. 87 (1987), 215-222.
  10. W. Krieger, On generators in exhaustive σ-algebras of ergodic measure-preserving transformations, Z. Wahrsch. Verw. Gebiete 20 (1971), 75-82.
  11. I. Meilijson, Mixing properties of a class of skew-products, Israel J. Math. 19 (1974), 266-270.
  12. V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian).
  13. T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350.
  14. T. Shimano, The multiplicity of helices for a regularly increasing sequence of σ-fields, ibid. 36 (1984), 141-148.
  15. T. Shimano, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226.
  16. P. Walters, Some results on the classification of non-invertible measure preserving transformations, in: Lecture Notes in Math. 318, Springer, 1973, 266-276.
Pages:
173-178
Main language of publication
English
Received
1996-08-27
Accepted
1996-12-06
Published
1997
Exact and natural sciences