ArticleOriginal scientific text

Title

Approximation on the sphere by Besov analytic functions

Authors 1

Affiliations

  1. Centre de Recerca Matemàtica, Institut d'Estudis Catalans, Apartat 50, E-08193 Bellaterra (Barcelona), Spain

Abstract

Boundary values of zero-smooth Besov analytic functions in the unit ball of n are investigated. Bounded Besov functions with prescribed lower semicontinuous modulus are constructed. Correction theorems for continuous Besov functions are proved. An approximation problem on great circles is studied.

Bibliography

  1. [A1] A. B. Aleksandrov, The existence of inner functions in the ball, Mat. Sb. 118 (160) (1982), 147-163 (in Russian); English transl.: Math. USSR-Sb. 46 (1983), 143-159.
  2. [A2] A. B. Aleksandrov, Inner functions on compact spaces, Funktsional. Anal. i Prilozhen. 18 (2) (1984), 1-13 (in Russian); English transl.: Funct. Anal. Appl. 18 (2) (1984), 87-98.
  3. [A3] A. B. Aleksandrov, Function theory in the ball, in: Itogi Nauki i Tekhniki 8, VINITI, Moscow, 1985, 115-190 (in Russian); English transl.: G. M. Khenkin and A. G. Vitushkin (eds.), Encyclopaedia Math. Sci. 8 (Several Complex Variables II), Springer, Berlin, 1994, 107-178.
  4. [BB] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).
  5. [Do] E. Doubtsov, Corrected outer functions, Proc. Amer. Math. Soc., to appear.
  6. [Du1] Y. Dupain, Gradients des fonctions intérieures dans la boule unité de n, Math. Z. 193 (1986), 85-94.
  7. [Du2] Y. Dupain, Fonctions intérieures dans la boule unité de n dont les fonctions traces sont aussi intérieures, ibid. 198 (1988), 191-206.
  8. [KM] B. Korenblum and J. E. McCarthy, The range of Toeplitz operators on the ball, Rev. Mat. Iberoamericana 12 (1996), 47-61.
  9. [N] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
  10. [R1] W. Rudin, Function Theory in the Unit Ball of n, Grundlehren Math. Wiss. 241, Springer, Berlin, 1980.
  11. [R2] W. Rudin, Inner functions in the unit ball of n, J. Funct. Anal. 50 (1983), 100-126.
  12. [R3] W. Rudin, New Constructions of Functions Holomorphic in the Unit Ball of n, CBMS Regional Conf. Ser. in Math. 63, Amer. Math. Soc., Providence, R.I., 1986.
  13. [Ta] M. Tamm, Sur l'image par une fonction holomorphe bornée du bord d'un domaine pseudoconvexe, C. R. Acad. Sci. Paris 294 (1982), 537-540.
  14. [To] B. Tomaszewski, Interpolation by Lipschitz holomorphic functions, Ark. Mat. 23 (1985), 327-338.
Pages:
179-192
Main language of publication
English
Received
1996-08-30
Accepted
1996-12-23
Published
1997
Exact and natural sciences