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Two-sided estimates of the approximation numbers
of certain Volterra integral operators

by

D, B EDMUNDS (Brighton), W. D. EVANS (Cardiff)
and D, J. HARRIS (Coardiff)

Abstract. We consider the Volterra integral operaior T : LP(R*) — LF(R™) defined
by
&
(7)) = o) | u(t) F(£) di.
0
Under suitable conditions on » and v, upper and lower estimates for the approximation
numbers s (T) of 1" are establishod when 1 < p < 00, When p = 2, these yield
o
lin naee (1) = S ()] dt.
ok (3 s

¥

We also provide upper and lower estimatos for the £% and weak £ norms of {an (T')) when
l<a<eo.

1. Introduction. In this paper we study the approximation numbers of
the Volterra integral operator T' given by
iy
(11) (TF) (=) = v(w) | ult)f(2) db
0
for € R* == [0, 00) and f & LP(R*). Here 1 < p < o0, and w,v are real-
valued fanctions, with w ¢ LE (R*) and v € LP(R"); as usual, p’ = p/(p-1).
The paper is a continuation of our earlicr work [4], in which we gave a
necessary and suflicient condition for T': LP(R*) — LP(RT) to be compact
and also provided a scheme for obtaining upper and lower_ estimates for
the approximation numbers of 7. As an illustrative example we showed
that when u(z) = ¢4* and v(z) = ¢~ ?®, where 0 < A < B, then the
nth approximation number a,(71") of T' is bounded above and below by
positive moultiples of n~t. However, the general scheme mentioned above

1991 Mothematics Subject Classification: Primary 47G10.
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was somewhat cumbersome to use in all but the simplest cases, and it wag
clearly desirable to have easily checkable sufficient conditions on the weights
% and v which would enable the behaviour of the ¢, (T) to be determined
without great labour. This is just what we do here.

We give conditions under which

(12) lim nan(7) = ;rl- { luo())at
0
when p = 2; and when p £ 2,
(1.3) iap [ u(eyot)lde < liming na(T)
0

e.=]

< limsupnan(T) € ay S |u(t)u(t)| dt
n—o0 0

for some constant o, depending only on p.

Both (1.2) and (1.3) hold for the compact map T if, for example,
|| /|u[P~* is non-decreasing and bounded away from zero on RT. Thus for
the case of exponential weights mentioned above, our analysis shows that
when p = 2 we have the asymptotic formula

im nan(T) =7"HB - A)~*,

L i ]

which sharpens the inequalities obtained in [4]. The general results (1.2) and
(1.3) also hold if 37, o < oo, where

Ek-}-l P s +
on = ( ES Upfp’(t)‘v(t)lpdt)”= U(z) = {lu(®) dt
. 0

and & € RT is defined by U(&) = 2%7'/P, The particular case p=2 u=1
of this recovers the special instance v = 1 of the asymptotic formula given
by Newman and Solomyak [8] for the singular values of the operator Ty
given by
v(z) T
| T g(m — 8 dE (v > 1/2).
While this operator is more general than our map 7' in the sense that it
contains the term (2 —¢)¥~1, by way of compensation we have the function
u and can also deal with p # 2 so far as two-sided estimates are concerned.
Moreover, the Hilbert-space methods of [8] are very different from our own.
We also show that the sequence (o) plays a key role in the behaviour of
T its £°° norm is equivalent to ||T'|}; T is compact if, and only if, o ~— 0 as
k — co; the £% and the weak £* norm of (o) give upper and lower estimates

(Tt/,vf)(m) =
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of the £* and weak £% norm respectively of (ax(T)); and if (oy) € £* then
(1.2) and (1.3) hold. These results were established in [8] for the operator
T, acting in L% in that case, the £% norm of (ax(T},.)) is simply the
Sehatten a-norm of T, .

For background information on singular values and approximation num-
bers of integral operators we refer to [2] and [7]; more developments will be
found in [5], [9] and the references listed in (8).

Tt is a pleasure to thank Michael Solomyak for his encouragement: his
ingistence that our techniques in [4] could be pushed further was vital. The
ICMS Edinburgh Workshop on Harmonic Analysis and Partial Differen-
tial Equations (July, 1994) and the Paseky Conference on Function Spaces,
Differential Operators and Nonlinear Analysis (September, 1995) provided
further stimulation.

2. Preliminaries. Throughout the paper we shall assume that p &
(1,00), that p’ is defined by 1/p’ + 1/p = 1, and that u and v are given
real-valued functions which satisfy

(2.1) we L (R")
and
(2.2) v € LP(RT).

At the cost of soine technical complications it would be possible to estab-
lish the main results of the paper under the assumption that v € L*(z, 00)
for all # > 0, rather than the condition {2.2) which is used in [4]; certain
changes in the arguwments of [4] would then be required. As we are mainly
concerned to present the central ideas in as simple a form as possible, rather
than to ait for maximum generality, we shall suppose that (2.2) holds.

Given any interval I in RY and any f € LP(f), we write

LS pr = (S () f’d'f.)l/p_
1

For any a & RK* we set

T N 1/p
(2.3) Ju=wup { (Vlutn)l” ay) " (] ot dz) "}
®20 1 b
The integral operator T' that we shall study is, as cxplained in the In-
troduction, given by
o

24 (T1)(z) = v(z) | ult) f(t) dt

0
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for f € LP(R*) and = € R*. It is shown in Theorems 1 and 2 of [4] that T is
a bounded linear map from L*(R™) to itself if, and only if, Jy < oo; and that
if Jy < oo, then T is compact if, and only if, lim,_, o J, = 0. Qur interest
in this paper lies in the approximation numbers of T, viewed as a map from
LP(RT) to itself, We recall that given any m € N, the mth approzimation
number of T, ap, (1), is defined to be

(2.5) am(T) = inf |T — F||

where the infimum is taken over all bounded linear maps F : LF(RT) -~
LP(RY) with rank less than m (m € N). When p = 2 these numbers coin-
cide with the singular values of T'. General information on approximation
numbers may be found in [3]; here we merely note that our map 7T is compact
if, and only if, am(T) — 0 as m — oo.

Next, we introduce some quantities used in [4] which will play an im-
portant part here also. Given any interval I C R* and any f € LP(R"),
put
(2.6) UT, fiu,) = (| ‘U(m)v

11
If no ambiguity is possible, we shall write I(1, f) for I(I, f;u,v). Note that

¥ 2
@) | F@®u(t) dtl dz dy.

(27) i1, 7) = §§ | 10u00 @ dute) i),

IT =
where p is the finite measure defined by

(2.8) dp(z) = |o(z)Pdz, so that u(I) = ||v(z)P da.
I
With
(2.9) Flz)={f(tu(t)dt (z € RY),
0

it follows that

(2.10) i, f) = Shﬂw F(@)|P du(z) du(y).

Moreover, application of Holder s inequality to (2.7) shows that

(2.11) WL ) < |15 (1),
Define
(2.12) L(I) = L(I;u,v) = (sup{(Z, £)/u(I) : || fllpz < 1})V/7.
By (2.11),
(2.13) L(I) < Null, 1P () = |[ullge 10|,z

icm
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LEMMA. 1. Define

(2.14) ple) = (Ol dt (2> 0),

O ey &

let I = [a,b) C RY, put A= pfa), B = u(b), I* = [A, B) and sei
woul|

Ur == m‘v a “wllp‘:‘f.

(2.15)

Then w € L7 ([A, X]) for all X € [A, B), and

(2.16) L{u,0) = L{I"w, 1).
Proof. Let X € |A, B). Then

x pUX) /
(2.17) S w? (7) dr = S lu(6)|P d.

A th
If f € LP(RY), then from (2.7), after natural changes of variable, we see
that

BR Y

- |(u o =) ()] g
(2.18) UL, fu,v) M ji(f@,m 1)(T){W}d7 dX dY.
Moreover,
B »

ot {Jop 1)(5_} !
(2'19) Hfl s (’U o U )( ) ”f”p %y
where f(X) = (f o p~Y)(X)/(v o p~)(X). Thus (2.12), (2.18) and (2.19)
give .
(2.20) L{J;u,0)

BB Y 1
= [sup {2 - )1 § || Feryur yar| axav |7 <1}
AA X

= LI w, 1),

When w and v are constant over an interval I, L(I;u,v) has a simple
form, ag the following lemuna shows.,

LeMma 2. Let w, v be positive and constant over an interval I < Rt
with end-points a and b, a < b. Then

(2.21) L(I;u,v) = apuovo(b - a),
where wy = u(a), vy = v(a) ond
(2.22) ap = L([0,1];1,1).
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Proof The proof follows easily after making the change of variables
(2.23) a)X, y=a+0b-a)Y, t=a+(b-a)e.

Tt is easy to determine cip. From [4], Lemma 6, we see that

2
]} = —,

2
the final step following from the variational characterisation of the least
positive eigenvalue of the Neuwmann Laplacian. Hence

(2.24) o = V2.

To conclude this preliminary section we introduce a quantity which ig
often easier to handle than L(I) but is equivalent to it. This is

(2.25) J(I) = J(J;u,v) = inf{max(A4., B.) : ¢ € (a,b)},

where I has end-points o and b,

z=a+(b-

1
of =sup {2 P oy : | F()dt =0, | F' a0, =
0

(2.26) A, =as<1£c{(§|u(tnp' dt) 4 (élu( )P dt)l/p}
~ 'u(ﬂ)|(u,o ~1)(t)|p’ 1/p' ’“(_‘?)‘ 1/p
ni‘i‘ic{(“({) o ) (1@ |
(©) "
- ([ wen) s
@27)  B= sup ( g u(t)P de) v (§ (o) ) Y "
& , 1/p'
= swp {( | w'(a) (B-5)H),

ple)<S<8 u{e)

and A = p(a), B = u(b). In [4], Lemma 6, and the remark following that
lemma, it is shown that there are positive constants Ky and Ky, depending
only on p, such that for all intervals I C R,

(2.28) K L{lu,v) € J(Tu,v) € Ko LT u,v).

Since A, increases from 0 as ¢ increases from a, and B, decreases to 0 as ¢
increases to b, it follows that

(2.29) max(A,, B.) attains its minimum on (a,b) when A, = B..

Tyvo final pieces of notation will be of use to us. For non-negative ex-
pressions (functions or functionals) Fy, Fy the symbol Fy < Fp means that

icm
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F, < CFy for some constant ¢ € (0, o) independent of any variables in Fy
and Fyo. If Fy < Fy and Fy S F) we shall write Fy < F.

3. Estimates for the approximation numbers of T'. To obtain these
we need additional notation and results from [4]. The quantity L(T) is defined
by (2.12) for any iuterval I < R*; if I has end-points o and b (a < b), we
shall also denote L{J) by L{a, b}, when convenient to do so. Given any e > 0,
we define numbers ¢ by the rule that

(3.1)

with the convention that inf ¥ = oo. The numbers cx are said to form an
(¢, L)-sequence. For a given ¢ the (g, L)-sequence may be finite or infinite;
n [4], pp. 482 483, it is shown that if it is infinite, then the map T (given
by (2.4)) 18 not compact. For the compact maps T with which we shall
be dealing, it follows that there exists N € N, called the length of the
(e, L)-sequence, such that

ep = 0, G = nf{E > e s L{cg, t) > e},

ey << e €< ey K CNpL 00
and in [4], p. 482, it s shown that
for k=0,1,.

Lk, Chp1) =& LGN =1,

3.2
(32) Lien,eny1) <&

If the (¢, L)-sequence is infinite, then litig.oo ¢k = 00 (see [4], p. 483). Given

any € > 0 and any = € [0, 00, we shall write
(3.3) Nz, &) = max{k € Ny : & < z}.
Two preparatory leminas are needed before the frst key result.
LuMMaA 3. Let I be any interval in R and let vy, vo € LP(RT). Then
(3.4) LTy 01) = L{L3w,v2)| € 3oy = vallp,rfiullp 1
where L{l;u,vy) 49 defined by (2.12) and, as always, u sabisfies (2.1).

Proof. In what follows the supremas are paken over all f with || f|lsr < 1.
We have

Ll u,wy) = D u,ve)]
v P e 4
< sup {|(1] [ty § sty @] dmay) ™ a3
I 2

- (SS |fu2(m fuz('u)Sf(t u(t dt‘ da dy) /pHWH;j'}
17
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¥

= lnliz el b sup { (55 [os @yos hvata) § syttt dm ay az)™”
Ir x

|
- (§§§r ift)u dt|pd,ud'udz) /p'}

<\|m||,,,_r||vzr|p,1sup(§ [ loa(z)en (o)
rrr

1/
— vy (z)va(x ) (y lp‘ f)ult) dt‘p dwdydz) g

5,
Sj

Now write
va(z)ur{w)ur (y) — v1(z)va(z)va(y)
= {v1(z) — va(z)}or (y)va(2) + valz)va(2){v1 (Y} — v2(¥)}
+ va(z)va(y){va(z) — va(2)}

and estimate Sz F{tyu(t) dt by means of Hélder’s inequality. The result fol-
lows immediately.

We now investigate the effect on I of changing v as well as v.

LeMmA 4. Let I be any interval in R and let vy, vy € LP(RY), ug,up €
L{’oc(R+). Then
(3.5)  |L(Tyup,v1) = L{I;ug, ve)|

< Jlur = wallp rvallp s -+ 3wzl rllvr = vallpr.

Proof. Since L(I;-,v) is a norm on L¥ {I) and depends on |ul, [v| rather
than %, #, with the help of Lemma 3 we deduce that

|L(Z; w1, v1) — L(T; uz,u9)]
< |L(Tuy,vr) — (T ug, )| + | L(Lue, v1) = L{T ug, vg)!
S LI fur — gl v1) + 8lluallpr,rlloy = vallp,r
< lwa = wallp,zllvelp.r -+ Slluallp, rllvr = walip,s,
the final step following from (2.13).

THEOREM 5. For all z € RY,

(3.6) EEIE)1+ eN(z,8) = §, lu(t)u(t)| de,

where N (z,€) is defined by (3.3).
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Proof Without loss of generality we may suppose that u,v > 0 a.e. Fix
z € RT. For each n > 0, there are step-functions u,, v, on [0, %] such that

il'u; - “n“p’,[ﬂ,w]i H'U - ’U"TIEP:[O)m] < -

We may assume that

e
@ uy= ZEJXW G Ve = Y MXwin
p

where the W (7) are (llbl_]()ll:l't closed subintervals of [0, z] with characteristic
functions xw (4)-

Now let ¢ > 0 and consider the (g, L)-sequence ¢, ¢1,...,cn+1, with
0= <o < ...< ey < eygr = o0 and with the properties given
n (3.2). Let Ip(e) = [en,cher] if kb < N(z,6), and L(g) = {c, 2] if &k =
N(z,e). If W(J} is contained in some Iy(e) for arbitrarily small values of
g, then L{W(5);u,v) == 0. It follows that wv = 0 a.e. on W(j). To see
this, we simply observe that by (2.24)-(2.27), either v = 0 a.e. on W(j) or

el e |0 | poges gy == O for all y € [ey, €], where
1 .
wllew, ¢) = 5u(W(5)),

and similarly on [, cgp1]. Note that, as observed in [4], pp. 477 and 480,
J(I) = max(A., B.) for this choice of ¢.
Let e = inf{e > O: there exists 7 such that [;(g) D Wy} and put
§ = min{ey : & > 0}. Then if 0 < ¢ < §, it follows that for all j and %,
k) € I;(e). Also, with 57 denoting summation over those k € {1,...,m}
for which. {y;, ., u(t)v(t) dt # 0, we have
[

(3.8) { futyo(t

0

) dit — SZ EmkXw (i) (1) dt\

= | i{w)vw =ty (£)g (B}
0

< fullp 0,010 = vyllp,0.0) + (K "-‘fﬂ“p’,(ﬂ,m)“'”n“p,(o,m)

% Ul e + 10llp, 0.0 + 710
However, Sw(k) w(t)o(t) dé # 0 implies that e > 0. Thus f 0 < & < 6, we
see with the help of Lewmma 2 that

(39) aplim|W (kY < > LI
L(g)CWh

+ L{Is () 0

); €y i)+ LTy iy (€) N W (k)3 €y M)

W(k);§k7nk)1
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where 71 (k), j2(k) are such that the left-hand end-point of W(k) is interior
to Iy, (r(€), and the right-hand end-point of W(k) is interior to I, (e).
Of course, one of these terms involving j1(k) and ja(k) may be zero as the
corresponding interval might be veid.

Hence, with the aid of Lemma 4, we see that

(310) a3 &emlW (k)|

k
< Z L{I;(£); un, vn)
JEN ()
+ > {L(Ljy (k) ()3 s V) + LIy (ay (8) 090 ) }
k
Nz,
< Z L{I;(e); w, v +Z{L 528 (€)1 )+ LTy 00 (8); 1, v) )
i=0
N(z.g)
+ > Il = wylly @ 0llp 5 o) + lully, 20V = vgllp, 1,0}
=0

2
+ 303 v —ugllp g, @110 p,15, ) + Moz, @10 = opllp, 00}
k i=1

< {N(z,e) + 1+ 2m}e
+3{][w = uglipr 0, |91, 0,2) + 3 ullar 0,0 1~ vallp, 0,00}
= {N(z,e) + 1+ 2m}e + O(n).
Combination of (3.8)—(3.10) now shows that

]

ap gu(t)v(i') dt < {N(z,&) + 1+ 2m}e + O(n).
Thus
o u§ w(t)u(t) dt £ limgﬁf eN(z )+ On),
and so 0
(3.11) iu(t) )dt < limint <N (,6).
0
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Next, let 0 < & < & and put X = {j: there exists k with I;(e) < W(k)}.
Then #K > N(z,&) — 2m, so that, using Lerama 4 again,

(3.12) {N(z,e)~2m}e
< ST L), 0)) € 3 LI (); i 1) + Oln)
jek Jex

&

<apy_ Emylli(e) + On) = ap L un(Bun(t) dt + O(n)
J

0
Wy S ’M(i)’U(L) dt + O("'I)
0

This shows that
Hid

(3.13}) lim sug) eN(z,8) € ap S w(t)v(t) di
g-~+{)- 0

and completes the proof of the theorem.
COROLLARY 6, Suppose that
(3.14) lm inf na, (1) < 0.

Thoor 0

Then wv € L'Y(RT).

Proof. In view of Theorem 5 we see that for all z > 0,

o
oy é |u(t)u(t)|dt = EE:%{F eN(z,e) < llslflﬂéﬂf eN(oo,€)

< const - lim inf na, (T7),
Thoaed 0

the final step following from Lemma § of [4]. Hence uwv € L*(R™).

The next group of results show what can be established if it is supposed
that the function w is non-decreasing.

Lumma 7. Let I = [a,b) ¢ RT, put A = p(a), B = u(b), I* = {4, B] and
assume that the function w given by (2.18) is non-decreasing on I*. Then

| [ 1z
(3.15) Azg%ﬂ { ( ; w? (t) dt) L/r (B~ Y)l/p} = Agg{%B{(B - -X)'w(X)},

where the constants implicit in the symbol < are independent of‘A and B,
Henee
(3.16) JI%w, 1) S §wyd,  TGu) S §lu)e)] d.

~

I I
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Proof. Since w is non-decreasing, if z,y € I and z < y, X = pu(z},
Y = pu(y), then
! ¥ y 1/1'9, Y ' 1/?9’
(¥ - X)w(x) < ([ @) #) " < ( | w?'(t) dt)
X A

Thus
¥

(3.17) W { (iw’" (1) dt) i (B — y)l/p}

>w(X) sup {(¥Y - X)J‘/J;'(B _y)Vr)
X<Y<E
= (B — X)w(X)p~2e(p) VY,

On the other hand,

(lg/wp’(t)dt)”"'g{ sup (B~ X)u(x)}(§(B - %) ax) e
A

A<X<B

ok

<{ sup (B - X)w(X)}Hp
ALX<LB

-1 1/1@(3 Yyle,

which leads to
Y

sw {( }1 w? (1) dt)lpr(BwY)lf”} < (p/p' )" L5 {(B=X)u(X)}

A<Y<B
The lemma follows.

COROLLARY 8. Suppose that w is non-decreasing on [0, u(co)].
T : LP(R*) — LP(RY) 4s compact if, and only if

1
w(X) = ol ——— as X -+ p(oo)—;
) (u(oo)—X> pHeo)
that 1s, if, and only if,

[u(@)l/jo()P = o(1/ { ()P dt) a5 @ - oo,

Proof. The result follows immediately from Lemma, 7 and the fact that
T is compact if, and only if, J, — 0 as a — oo (see (2.3)).

THEOREM 9. Suppose that |u|/|v|P~! is non-decreasing and that T :
LP(R™) — LP(RT) is compact. Then

(3.18) E£I61+EN(OO, £) =ay, § wu(t)u(t)| di.

Then

icm
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When p = 2,
1 o
(3.19) lim na,(T) = - é |u(tyu(t)| dt.
When p # 2,
1 o0
(3.20) 70 §] u(te(8)] dt < lim ind na, (7)
=]
< limsup nan(T) < e | |u()v(t)] dt.
=00 0

Proof. Suppose that liminf,..o4. eN(00,¢) < cc. Then from the proof
of Corollary 6 we see that wu ¢ L*{RT). Thus given any 5 > 0, there exists

z € R* such that S w(t)v(t)|dt < n. On using (2.28) and (3.16), we obtain
N(oo,£)
{N{oco,€) -~ N(z,g) = 1l}e < Z L(Ig;u, v)
BN (,8) b 1
N(oe,5) o0
xS T(Iiw) S | ju()
he=N{w,e)-rL Y

Moreover, from Theorem 5 we know that there exists g9 > 0 such that for
all € € (0,eq),

‘E‘N(:I’I,E) - ozp | [u(t)u(t)] dtl < 1.

Y e B

From these last two estimates (3.18) follows immediately.

If lim inf,..o4. N (00, £) == 00, then since & S §, [u(t)v(t}|dt by (3.16), it
follows that &N (0o, &) 5 §°° [u(t)u(t)| dt and we conclude that wv & L*(RT).
Thus (3.18) again holds.

When p = 2, we know from Lemmas 7 and 8 of [4] that
‘ ang2(T) Sefmy,  an(I) 2z e/m
where N = N{oo,z); (3.19) follows immediatoly from this and (3.18). The
case p # 2 is tronted i the same way, again nsing Lemmas 7 and 8 of [4].

The following theorem is a variant of Theorem 9.

THEOREM 10. Suppose that w 8 of bounded variation on [0, p(cc)) and
that its variation W (W ()= VFw in standard notation) is in L*([0, u(co)]).
Then the conclusions of Theorem 9 hold.
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Proof Givenn > 0, let z be such that Sﬁg;‘;) W(t)dt < m. Then as in
the proof of Theorem 9,

{N(00,€) = N(z, &) ~ 1}e < J{{n(z), u{o0)); w, 1)

pl(00)
S I(ule),u(e) W) S | wydt <.
piz)
Furthermore, (3.6) still holds and
o0 #(co) #{oo)
§lueldt= | wya< | wydr<n.
@ w(z) ey

The proof may now be completed just as for Theorem 9,

THEOREM 11. Suppose that |ul/|v[P~! is non-decreasing on R*, Then
there is a positive constant § such that as e — Oy,
¢~ (eb)
N(oo,e) =1 = O(E"l [ w) dt),
i
where
$(X) = sup  {(u{o0) - V)w(¥)}.
X <Y <p(eo)
Proof By Lemma 7,

J([X, uloo});w, 1) S 9(X),
and with cps = ¢~ (e),
L{lear, m(00)) w, 1) < ef(enr) = s
for some constant ¢. Let ¢’ = cz. Then Lllear, u{oo));w, 1) < &'

For :k’ =1,..., M define ¢} by L([ek...1, cu]; w, 1) = ¢, cp > 0; we see that
N(00,€") < M + 1. Hence, using (3.16) we have

M

&' (N(o0,e') - 1) < ZL([Gk-Ltack!]§w, 1)
k=1
) $ (e fe)
5 S w(t) it = S ’LU(C) dt,
0 0

which. proves the theorem.

As an illuftration of these results, suppose that u(z) = e4*, y(z) = ¢~ 8¢
for all z € R™, where 0 < 4 < B. This is the case discussed in detail in [4],
where it was shown that for all p, g, (T) = n™'. Here we observe that w/vPl
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is non-decreasing, that uv € L*(R*) and that T is compact since Jo < o0
and limg e Jo = 0 (see (2.3)). Hence by Theorem. 9, if p= 2,

1
Jim nan(T) = g
and if p # 2,
(B ~ A)na,(T)/ap € [1/4,1].
We now give some results which avoid the hypothesis that w is non-

decreasing and enable us to link up with the work of Newman and Solo-
myak [8]. To explain these we begin by setting

(3.21) Ue) = 3 @) d (v € RY)
1]

and define £ € Rt by
(3.22) U(G) =24/,

Here k may be any integer if u ¢ P (R*); if w € LP (RT) it is supposed
that & is defined for all k € Z less than a certain number. Corresponding
to each admissible k we set

Lt

" t 1/p :
(3.23) or={ | UFOR@Pa] . Ze= (),
Ex
8o that
Ehop1, £k
(3.24) 2t | |u()Pdt < of < 2** [ )P de.
£n 3

For non-admissible k we set oy = 0.

LeMMA 12. Let ko, ki, k2 € Z with ko < k1 < kg, and let I; = (aj,bj)
(5 = 0,1,...,1) be non-overlapping intervals in RY with end-points a;, b,
such that I; C Zg, (4 = 1,...,1), a0 € oy Do € Zhy let z5 € I (j =
0,1,...,1) and z0 € Z,. Then ifa =1,

l zj

(3.25) g i Z ( S |u(t)|’;’ dt)a/pr(bsj‘ tu(t)? dt)a/p

4=0 oy

< 9%/P(2*/P 4 1) max oF
12t



74 D. E. Edmunds et al

Proof. 'We have, with the aid of Jensen’s inequality (sec [6], Theorem 19,
p- 28) and Hoélder’s inequality,

Eig b1 Ehn+1
1 2 /P

Sg( | |u(t)|1‘"dt)a/pf( { |v(t)J”dt)a

£xg sy,

+ 5: ( { (e dt) Q/p’( S lu(t) P dt) a/p
=1

I; b
(ka+1)p' /P _. okop’ Y& N AN
5(2 1 PPHQOP/P)W/P(Z:Z_:_)

n=k

9 a/p
< glkatl)afpl £ v P
- 2k gy <n<hy, "

+( | iu(tw”dt)"‘“"(zs ey ae) ™

kg P

< 9%efe ! (k2+V)a/p o jnkga/p
- klf’fgkz In+2 gk2/2 '

The result follows.
LEmMMA 13. The quantity Jy deﬁﬁed by (2.3) satisfies
(3.26) Jo S 2VP(2Y7 4 1) sup o < 22/P(21/P 1 1) ;.
k

Proof By Lemma 12,
Jo < 2Y/P(21% 4 1) sup 0.
k
Also,

Ega
ap S 2 )P dt < 2FLIR U (6) = 2R
I3

COROLLARY 14. The norm of T« LP(R*) — LP(R™) satisfies
17N = (&) oo,
where [{(ok)]|co means the £ norm of the sequence (o).
Proof. This is immediate from Lemma 13, and Theorem 1 of 4],

~ CoroLLARY 15. The map T : LP(R*™) — LP(R*) is compact if, and only
if, imy, e 0 = 0.
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Proof. Asin the proof of Lemma 13, and with the quantities J, defined
by {2.3), we sec that

Je, S2/P(2YP 1 1) sup oy,
n>k

and :
of < 2JF (127722l > g,

Hence limg..o0 Jo = 0 if, and only if, limy..eo 0 = 0. The corollary now
follows from Theorem 2 of [4].

THEOREM 16. Suppose that ), .y on converges. Then the conclusions of
Theorem @ hold.

Proof. From Lemma 12 we have

N{oo,2) ] =]
{N(oo,e) = N(fx,e) ~1}e < Y L{Imiu,v) S on.
me=N(Exe)—1 n=k

Together with Theorem 5 this shows that

£x oo
i — ayp | N dt <
0< glmlftIﬁp eN{(00,€) — ap é lu(tyu(t) dt < nz:;ccrn.
Hence
=]
Jim eN(oo,2) = ap g lu(t)u(t)| dt.

The rest of the theorem, namely (3.19) and (3.20), follows as in the proof of
Theorem 9.

With some more effort, various norms of the sequence of approximation
numbers of T' can be estimated by means of corresponding norms of the
sequence (o). Some preparatory lemmas are needed.

LEMMA 17. Given any interval I € RY with end-points a and b, let
b

) =g {(J1ur? )" (Sirr )"}

B(r)milé@{( |u(t)|”'dt)1/p’( ey at) ).

(In the notation of (2.25), (2.26), A(I) = 4y, B(I) = Bq.) Then for all k,
AT U Zig) = 2P (1 — 270 /PP gy
‘B(zk U Eh-l-l) 2 Zwl/p(l - z_p’/p)1/p’o.k+l.

B e o D

=~ i > =
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Proof The estimate for A follows, with the aid of (3.24), from
_ . ) Eby 1/p
A(ZiU Brn) 2 (U(r2) — UG )7 § Poo)IP at)
£k
> {olk2)p'/p _ Uk 1)p' [pA1/P" 5 0= (k+1)/p
and that for B, in the same way, from
B(Z, U Zpy) = (U000 /P 2kp’/p)1/p’dk+12—Uc-l-2)/p.
LeMMA 18. Let I be an interval in RY with end-points a and b, define
J{I) by (2.25), lete > 0 and suppose that
(3.27) S(e):={k € Z: Zx C I, g > 24/P(1 — 27F//p) =1/
has at least 4 distinct elements. Then J(I) > &.

Proof. Let ¢ € (a,b). Since #5 > 4, at least one of the intervals (a, ),
(c,) contains 2 members of S. If (a,¢) has this property and k; = min{k :
k € 5}, then Zg, U Zy, 41 C (a,¢) and by Lemma 17,

A((0,0)) > A(Zh, U Bipa) 2 2/2(1— 2P /Y0 g 5 22l 5 .

A similar argument shows that if {c,b) contains 2 members of §, then
B({(c,b)) > e. Hence max{A((a,c)), B((c,b))} > € and the result follows
from (2.25) and (2.29).

COROLLARY 19. Let ¢ > 0 and suppose that #5(zpe) > 4, where § 4s
defined by (3.27) and e, eguals 1 if p = 2 and equals 2 otherwise. Then
L{I) > e. :

Proof. This is immediate from Lemma 18 and [4], Lemma. 6.

LEMMA 20. Let £ > 0 and let N = N(e) be the length of the (¢, L)-
sequence (cx) (see the discussion just before (3.2)). Then

#{k€Z:ox > ce} S EN(e) + 3,
where
(3.28) ¢ = 24P (1 — 27 fry-1/r
Proof. Bvidently
#{k € Z: ¢; € Z}, for some 4, 1<i< N} <2N,

and for every k € Z not included in the above set, Zj C I; = (¢i, ¢pny) for
some %, 1 <4 < N. Then by Corollary 19,

#{he€Z:oy>ce) 2N +3(N +1) = 5N + 3.
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LemMMA 2L. Let v, equal 1/v/2 if p = 2 and 1/4 otherwise, and let ¢ be
given by (3.28). Then for allt > 0,
#{k€Z:op >t} S5#{k €N ar(T) 2 vpt/c) + 3.
Proof. By Theorem 9 of [4],
#{k € N: ap(T) = vpe} = N(e).
Hence by Lemma 20,
#lkeZ: oy >t} SEN({/e)+ 3 <54k e N:ap(T) 2 npt/c}+ 3.
LEMMA 22, For all e > 0,
() gy < 5t @n (T %y + 3R Gy
Here the (quasi-) norms have their natural meaning, ond ¢ is given by (3.28).

Proof. By Proposition I1.1.8 of [1],

o0

1(o%)||ga(z) = @ S t* Yk € Z: oy > t}di.
0
Put 8 = [|(ok) || ooz Then from Lemma 21 we have

8
(x| (zy = o S ke Loy >t dt
0

o0
< ba | 197 g {k € N1 ax(T) > wpt/c} dt + 35°
0
= 5(e/vp)*[{an(T)) |7y +35%
COROLLARY 23. For any o > 0, there exists a constant C such that
[(o%)llenizy < Clitar(T))lga (-
Proof. By Corollary 14, ||(gk) |l emegry < |||l Since
171 = ay(T) < [[(an (Tl oy
the result follows directly from Lemma 22.

To obtain an inequality reverse to that of Corollary 23, let & > 0,
let the intervals Iy = [ch, cpa] formed by the (e, L)-sequence be gr_m.lpecl
into families F; (j = 1,2,...) such that each F; consists of the mammfﬂ
number of those intervals satisfying the hypotheses of Lemama 12: they lie

within (&g, , &x,-1) for some kg, ko and the next interval I intersects Zg1-
Lemma 12 and (2.25)~(2.28) tell us that there is a constant ¢ > 0 such that

F: <o max op = o, say.
eHF S0\ 25, T T O
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Thus "
#F; < [cow, /el = ny (say) = E:ll,
and -
(3.29) N(g) = Z#JCJ <> 21
j =
=Z Z 1= Z#{j:cakj/sgn}

n=lj,m;2n n=1
o0
< Z #{k: o, = ne/ch
Thus if (o%) € £* for some & € (1, 00),

o0
(3.30) o [t*7'N()
0

[o s I oa)
<o Yt (ko) > nt/chdt
0 n=1
[s- oI e u]
=ac® | $on="e® gk ok > s} de S ow)lE
0 ne=l

Moreover, by Theorem 9 of [4],
#{heN:ap(T) > enp} S N(e)+ 1
where 7, = 1 (p # 2), 2 = 1/+/2. Hence

I(ar(T)g = o § £27 4 {k € No : a(T) > t} e
0
[F4)

Sa | *"HN@/np) + 1} db
0

S Hallieagay + 1T1% S I{on)lFgay:
the last two steps following from (3.30) and Corollary 14.
We summarise this conclusion and that of Corollary 23 in the following

THEOREM 24. Let o € (1,00). Then
Iow)llexczy < [ (@n(T)) o= ny

A similar result can be obtained for the weak £* spaces £3 (£*°° in the
Lorentz scale). We recall that £%(Z) is the space of all sequences z = (k)

icm
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such that

lelieg (z) = 31;13@(#{!4 €Z: |y} > t})9),

and that || - fleg(z) is & norm on £5(Z) when o > 1. The space £%(N) is
defined analogou%ly Insofar as the oy are concerned, see the convention
about admissible &’s made after (3.22).

THBEOREM 25. Let o € (1,00). Then

1(ow)legy 2y > Ml (@r{T)) e -
Proof. First suppose that o = (o) € £2. Then from (3.29),

2N (¢ Zt“ {k:op>mnefe} < Z \

n=1

From Theorem 9 of 4],
[l (ax (T2

Now suppose that (ax(T") € £%. Lemma 20 and [4], Theorem 9, imply that
F{k ok >t} <5k an(T) 2 vpt/c} +3

S supt*N(t) < lof|Za
t>0 w

and so
supt*#{k : o > t} < Ssupt*{#{k: ar(T) 2 vpt/c} + 3}
£>0 >0

Since #{k : ay(T) = vpt/c} > N(t/c) 2 1, it follows that
supt®#{k : on >t} Ssupt®#{k: ap(T) > wpt/c},
>0 t>0

and thus

Ion)llegzy S [{an(TDllegim -
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Some Ramsey type theorems
for normed and guasinormed spaces
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Abstract. We prove that every bounded, uniformly separated sequence in a normed
space contains a “uniformly independent” subsequence (see definition); the constants in-
volved do not depend on the sequence or the apace, The finite veraion of this result is true
for all quasinormed spaces. We give a counterexample to the infinite version in Lp(0,1] for
gach 0 < p < 1. Some consequences for nonstandard topelogical vector spaces are derived.

0. Introduction. We are concerned with the following problem: given
a bounded sequence in a quasinormed space V' whose terms are uniformly
far apart, can we pass to a subsequence such that each term is uniformly
far from the subspace spanned by the remaining terms?

I V' is a normed space, it is well known that the answer is “yes”. We
strengthen this result by showing that the distance of each term from the
subspace spanned by the other terms can be determined rather uniformly;
in particular, it need not depend on the geometry of the given sequence. The
finite version of thig result turns out to be true for all quasinormed spaces,
and it is tempting to conjecture that the infinite result is also true for all
quasinormed spaces. However, we give a counterexample to this conjecture.

Before continuing the discussion we introduce some definitions and no-
tation:

) 1091 Mathematics Subject Classification: Primary 48A16, 46B20; Secondary 05D10,
46520,

Key words and phrases: normed apace, Banach space, quasinormed and ¢uasi-Banach
gpace, p-norm, biorthogonal sequence, uniformly independent sequence, irreducible ge-
quence, Ramsey’s Theorem, nonstandard analysis.
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