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Standard exact projective resolutions
relative to a countable class of Fréchet spaces

by

P. DOMANSKI (Pozaf), J. KRONE (Iserlohn)
and D. VOGT (Wuppertal)

Abstract. We will show that for each sequence of gquasinormable Fréchet spaces

{Bn)nen there is a Kéthe space A(A) such that
Ext!(A(A), A(A)) = Bxt' (MA), Br) = 0
and there are exact sequences of the form
oo ALA) = A{A) = A{A) = A(A) — Br — 0.
If, for a fixed »n € N, By, is nuclear or a Kdthe sequence space, the resolution above may
be reduced to a short exact sequence of the form
0 — A(A) — M4) — By — 0.

‘The result has some applications in the theory of the functor Ext! in various categories
of Fréchet spaces by providing a substitute for non-existing projective resolutions.

Let us recall that Ext'(E, F} = 0 for Fréchet spaces E, F means that
every short exact sequence

0 FLHGSE—0

of Fréchet spaces splits (i.e., g has a continuous linear right inverse). We will
prove the following main result:

MAIN THEOREM. Let (Fn) and (Fy,) be two sequences of quasinormable
Fréchet spaces. There exists a Kothe space A(A) such that:
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(0) A(A) & A(A) = A(A,A(A)) = A(4);

(1) Bxt!(A(4),A(4)) = 0;

(2) Eixt! (A(A)zEn) = 0;

(3) For everyn there is an exact sequence

() coo—= MA) = A(A) = AMA) - A(A) = F, = 0.

(4) For every I, which is o reduced projective limit of Banach spaces I
we have a shorl eract sequence

0— AMA) — MA) = F, = 0.

Moreover, the space A(A) may be chosen Schwerlz, whenever all Fy, are
Schwartz spaces.

The result is a far reaching refinement of an unpublished result of the
second named author [Kr, 2.2.4]. In view of Th. 2.1 below the obtained
theorem is optimal (recall that a guotient of a quasinormable space is quasi-
normable). Although we believe that the result is interesting in itself we
explain some external motivations for it.

There are two main sources of motivation for the result. First of all,
it provides a substitute for non-existing projective resolutions for the class
of quasinormable Fréchet spaces. Let us recall that a locally convex space
(les) X is called projective in the class £ of lcs if for any Y € £ and any
topological quotient map ¢ : ¥ — X, the operator ¢ has a linear continuous
right inverse. Moreover, the following topologically exact diagram is called
a projective resolution of X in L:

Py =P P =X -0

if P are projective in L. Gejler proved [G1] (see also [G2]) that, contrary
to the Banach case and the LB-space case (see [K1], comp. [D1]), in many
classes of Fréchet spaces (like the classes of nuclear, Schwartz or Montel
spaces) there are no infinite dimensional projective spaces. In particular,
there are no projective resolutions. The latter fact produces an annoying
asymmetry in the theory of the functor Ext? for Fréchet spaces (as developed
in [P1], [V6] or [V5]): we may use injective resclutions but we cannot apply
homological constructions based on projective resolutions.

Our result gives a resolution (*) for any countable class £ := {F, :
n € N} of quasinormable Fréchet spaces, and (if we take B, = F,) (%) is
“relatively projective” for £ in the sense of condition (1) and (2), which
suffices for applications.

The authors are mainly interested in applications to the theory of the
functor Ext! in the category of “graded” Fréchet spaces [DV]. Using our
Main Theorem we can obtain an essential ingredient of that theory: the fact
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that if Ext* (B, F) = 0, then Ext'(E, @) = 0 for any “graded” quotient G
of F. The theory of Ext! for “graded” Fréchet spaces allows to give a proper
splitting theory of short exact sequences containing spaces C°°(£2) and a
splitting theory of differential complexes. It i3 also a base of a structural
theory of the space C°°(£2). For more details see [DV].

The Main Theorem could also be applied to the classical theory of Ext!
in the category of Fréchet spaces. For example, we can get an analogue
of [VB, 1.1] (and the asymmetry mentioned above disappears). The fact
that our resolution is “short” in case of locally-Ij-spaces amounts to the
known equality Extz(E,F ) = 0 for E nuclear or locally projective [V5,
1.4] or [V6, 1.2, 1.6}, which in turn implies some permanence properties
for Ext' (see [V5, 1.5 and 1.7] or [V6, 1.6 and 1.7]). The theory of the
functor Ext' for Fréchet spaces has proved its importance in the struc-
ture theory of Fréchet spaces (see [A2], [V2], [V3], [V5], [VWI1], [VW2]
ete.).

The second source of motivation comes from the problem whether a
Fréchet space of a certain class is a quotient of a “nice” Kdthe sequence
space. This problem serves to reduce some questions on general Fréchet
spaces to questions on Kéthe spaces, where we have methods of calcula-
tions with matrices at our disposal. There are some known positive results
([A1], [VWd], [W]), in particular, it is known that each nuclear, Schwartz or
quasinormable Fréchet space is a quotient of a nuclear, Schwartz, or quasi-
normable Kéthe sequence space, respectively, see [W], [VWd] and [MV1].

We make another step in this direction: in our result F' is a quotient
of A(A), where also the corresponding kernel is “nice”, in the locally pro-
jective case even isomorphic to A(A) and the spaces involved have nice
splitting properties. Moreover, for any countable class of F' we find a uni-
versal A(A). Our proof in the Schwartz locally projective case is modelled
after a proof of a result of that type due to the second named author [Kr,
2.2.4]. :
N]OW, we suminarize the content of the paper. In Section 0 we introduce
some (known) definitions and in Section 1 we describe a construction of
Kéthe sequence spaces Ag(a). In Section 2 we prove a splitting theorem for
As(cr) and in Section 3 we construct some auxiliary short exact sequences
containing Mg (). Section 4 is devoted to the proof of the main result (based
on results of Section 2 and 3) in the case of (F,,) being Schwartz spaces and
projective limits of [; Banach spaces. Section 5 ghows how the general case
follows from the special one,

We should point out that our method of proof uses certain elements of
the proof of [Kr, 2.2.4] and some other results from that unpublished paper
of the second named author. Nevertheless, we give here a selfcontained proof
of cur main result.
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0. Preliminaries. By an operator we always mean a linear continuous
map. A Kothe space will be defined as follows:

A = {o = @dier € K : ol = Y laslais < oo},
iel
where I is an arbitrary set and A = (a;) is a matrix of positive numbers
such that a;p < a;5+1 for i € I, k € N. In our definition A(4) always is a
Fréchet space with a continuous norm. A Kéthe sequence space is separable

iff T is countable and then we assume I = N. If (E, (|| - ||P)rnen) is a Fréchet
space, then

N4, B) = {2 = (@) € B : [al i := Y llnalfas < oo}.
i€l
We call A(A) shift stable, stable or tensor stable if
A(A) = AMA) x K, A(A) = A(A4) x A(A4),  MA) ~ \(4, A)),
respectively, If A(A) is tensor stable, then the Pelczyriski decomposition
method implies (see [V4, Lemma 1.1] applied to A(E) := A4, E)):

PROFPOSITION 0.1. Let A(A) be tensor stable. If E is a Fréchet space
isomorphic to a complemented subspace of A(A), and if E contains a com-
plemented subspace isomorphic to A(A), then E ~ A(A).

We will be interested in Kéthe spaces of the form A(B) = I;(J) @ A(4),
where A{A) is a separable Kdthe sequence space and

zﬂnm{m=maekimﬂp=§:@4<m}
ie]
It is eagily seen that for 7 = J x N we have
B = (bj,n,k)(j,n)ef,kENs bj,n,k = G ks
A matrix A is called regulor if T = N and Qik/Gik+1 iS decreasing as
1 — 00. A projective limit proj(E,,:t) is called reduced if
VEIlYm >1:  ip(F) D i (B,

where i, : B — Ej is the canonical map. Finally, we call 2 sequence of
Fréchet spaces and operators

e Ty Lo
A Gy S Gl Gy —

exact if im T} = ker Tj_; for each ! € N. For example,
(0.1) 0-FLESE 0

18 said to be short (topologically) ezact if j is a topological embedding, gis
a topological quotient map and ker g = im j.
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One can find more about the functors Ext* for Fréchet spaces in [Vé],
[V5], [MV] or [P1].
For other unexplained functional analytic notions see [J] and [K].

1. (fo-spaces with increasing transition functions. From now on
we denote by o = (@;) an increasing unbounded sequence of positive num-
bers and by & = (¢1,¢y,...) an increasing sequence of functions ¢ : R, —
Ry such that

(1.1) 2 < éi(r) < dalr) < ... for any 7 € B
Let us define ¢™ = ¢, © Pt ¢ ... 0 1. We call a Kothe sequence space
A(A), where
@40 ' Qs Gt = Prpr(aar),
8 (oo-space with increasing transition functions and we denote it by As(e).

Remark. We should point out that without changing the space Ags(w)
we may assume that: (1) (1.1) holds only for large r (i.e., for r > R); (ii) (¢;)
are continuous; (iii) (¢;) are strictly increasing; (iv) ap =1; (v) ¢:(1) = 1.

There are two typical examples of Ge-spaces with increasing transition
functions:

(a) any power series space of infinite type A (&) =~ As(x), where a; :=
2% () = r;
(b) any Dragilev space of infinite type Ls(&, o) =2 Ag(a), where
a; = exp(f(@)),  ¢ilr) = exp(f(2f " (logr))).
The following easy proposition summarizes elementary properties of
)\45 (oz) ’
ProrosrTioN 1.1. Let o end @ be as above.

(1) do(e) is a Schwartz space. '

(2) Ag(c) is regular whenever ¢i(r)/r is increasing for each i € N. .

(3) If 8Upen @np1/Cn < 00, then Ag(a) and L(J) @ As(a) are shift
stable. 5

(4) If sup, ey Can/om < 00, then Ag(a) and 11 (J) ®+ As(a) are stable.

(5) If supnen tns/0n < 00, then Ag(a) and Li(J) @r As(a) are tensor
stable.

Remark. We call sequences o satisfying conditions from (3), (4) and
(B) shift stable, stable and tensor stoble, respectively.

2. A splitting theory for Ag(a). We characterize those Fréchet spaces
B for which Bxt* (Ag(a), E) = 0. The characterization will be given in terms
of the so-called 2-type conditions introduced in [VW1, Def. 3.2] {cf. [MV1]).
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From now on % : R, — R, is an increasing function and (Upn)nen is a
decreasing O-neighbourhood basis in E.
The space F satisfies the condition (£2,) if

(2.1) Yu kYK 3C >0Yr >0: U, € C¥(r)Ux + %Uu.

The space E satislies the condition ({2g) if

(2.2) Vu Ik VK In,C>0Vr>0: Uy CCP"(r)Ux + gUu.

It is clear that ({2,,) implies ({25) whenever ¢ > 9 and ({2) implies (£2)
whenever

(2.3) VYn 3RVr > R: ¢(r) > ¢"(r).

Thus we get by [MV1, Th. 7] and [V5, 5.11]:

THEOREM 2.1. For any Fréchet space E the following conditions are
equivalent.

(1} E is quasinormable.

(2) There is ¢ such that E satisfies (£25).

(3) There is ¢ such that E satisfies ({2y).

(4) There is a non-Banach Fréchet space F such that Bxt'(F, B) = 0.

The following theorem is the main result of the present section:

THEOREM 2.2 [Kr, 2.2.2]. Let E be a Fréchet space and let a be shift
stable. The following conditions are equivalent:

(1) The space E satisfies {§2z).

(2) Ext’(A\g(a), E) = 0.

(3) Ext™(1.(J) &x Aa(), B) = 0.

For the sake of completeness we give the proof based on the following
splitting result of Vogt [V6, 3.1, 3.4, 2.5] (comp. also [KrV]):

THEOREM 2.3. Let A(A) be a Kéthe sequence space and let E be an
arbitrary Fréchet space.

() Ext'(A(A), E) = 0, whenever (A(A), E) satisfies the following condi-
tion (S51):

(24) 3pVu 3k Ym, K, R>0n,SVie N:  a,,Ux C Sa,-,nUKﬁ;é—PUu.

(b) If Ext'(A(A), E) = 0, then the pair (AA), E) satisfies the following
condition (5):
(2.5) Yu 3k, pVYm, K Ejn,S’ VieN: a;mUs C S(L-,;,nUK -+ Sa,q-,,pUu.
Proof of 2.2. We may assume that o; > 1, ¢;(1) = 1 and apply 2.3.
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(2)=+{1). We apply (Sz2) for A(A) = Ag(a) and m == p+ 1. Dividing (2.5)

by a;m we obtain

Qi a;

Up € 8——Ug + S—E-U,.

Aipt1 Qipt+1
Since ¢pi1(r) = 72 and oy > 1, we get 8ip/Gipr1 < 1/aip < 1/oy and
ai,p+1 = 1. Moreover, shift stability implies that for large i we get

aim = ¢™ () <™l ) < 0" oy ;) = Qim1,n+1-

Hence increasing S, we obtain, for all 4,
)
Up © Sai_1n1Use + —Ul.
21
Let -y €7 < @y Then ajg ny1 < 9" (r) and we get

Yu Ik VK 30,8 > 0Vr > ap: Uk C S¢™H(r)Ux +.§Uu-

In order to get the same inclusion for all » > 0, it suffices to increase &
appropriately.

(1)=(3). We take p = 1 and we choose k for any u according to (f2z).
Then for K we find n, C again as in ({25). We put 7 := CRa;m in (£25):

1
Raim
Since g an/ i m+z — 0 as & — oo (sce Prop. 1.1(1)), for large i we obtain
aim®"(CRaim) < armd™(@i,m+1) < (0™ (@s,m+1))?
< " i me1) € i mepnto-

Hence putting S suitably large we obtain, for all £,

Uy C C¢™(CRaim)Uk +

Uy

0
aimUk € S6i mant+2Uk + ;%p U,

Now ‘taking B = (bj,'r?,k:)(j,i)ef,kEN: I=Jx N, bj,.g,k = Qj,k, WE obtain (Sl)
for (M B), B), where A(B) = l;(J) &x Xs(a).

(3)=>(2). This is obvious, since Ag(c) is a complemented subspace of
U(J) & Aa(c).

COROLLARY 2.4 [Kr, 1.2.5 and 1.1.2]. For arbitrary o and & as in Sec-
tion 1 we have

Ext!(Ae (), Aa(e)) =0 and  Ext*(li(J) & Ae{a), l1(J) @ Aa{a)) = 0.

Proof. We assume that o = 1 and ¢;{1) = 1. It suffices to show that
both Ag(a) and Iy (J) & As(a) satisfy (2s). Since the two cases are nearly
identical we consider only Az (a).



G

282 P. Domatski et al

Wetake k = u-+1,n =K, C =1and U := {£ = (&) : ||&: =
Yoo @ (as)]&i] < 1} Let ayy <7 < b1, & € Up. We take £ = n+ ¢ where
= (51:62:"':'51'0503-"): C:= (O:O: v1055i0+1;fiu+21--')-

Obviously

il = Z¢K o)l < ¢ (o, Z

i=0 i=0
On the other hand, since r¢%(a;) € oi¢™(a) < (%(@;))? < ¥ (ew) for
£ 2> t0+ 1, we get

i<l = Z #*(au)lés] = Z ¢u+1( )¢”+1(aa)irfz|<

i=tp+1 i=ig+1

&l < 5 (r)

1
T

3. Auxiliary short exact sequences. First we show that each locally
projective Schwartz Fréchet space is a reduced projective limit of spaces
As(ex) for arbitrary @ and suitably chosen .

ProrosiTion 3.1. Let (F,) be o sequence of Schwartz Fréchet spaces
which are reduced projective limits of 1. Then there exists o fensor stoble
sequence o such thaot for each n € N, F, is a reduced projective limit of
As(a). In particular, there is a short ezact sequence of the form

0—=F, — H As(c) — H)\gs(a) — 0.
ieN ieN

Proof. The last statement follows from the previous one by a Fréchet
analogue of [V5, 1.3] or [V6, 1.1] (see also [P1, Cor. 5.1]).

Without loss of generality we may assume that each F, is a reduced
projective limit of spaces !, with compact linking maps.

Let T': Iy ~ Iy be an arbitrary compact map. The image of the unit ball
T(By,) is relatively compact, thus contained in a closed absolutely convex
hull of a null sequence (z,). As easily seen, there is a real (monotonic) null

sequence (&) such that (a;1,,) is still null. We take maps R : Iy — [; and
& 1y — l; defined by

Rlen) =o'z, and ofen) = anen.

Since Roo(By,) 2 T(B,,), thereisamap § : Iy — [y such that T = Rogos.
As is easily seen o and hence also T factorize through a finite type power
series space. Now, it suffices to show our proposition for a sequence (Fy) of
Schwartz spaces F,, = A\(A™), where A" are regular matrices.
We construct a tensor stable sequence « satisfying
(3.1) ¥, k, 1 3C(n, kD) Vi e N: ¢l oy) € Cln, &, ) —2EtL "°+1
1, k'.
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First, we obtain easily a sequence § = (8;) € ¢y decreasing to zero and

satisfying
ay,
Vn, k Ji(n, k) Vi > i(n, k) 1 Bz ——
@ k1
and an increasing function ¢ : Ry — Ry satisfying
p(1)=1, VEICKk)Vr>1: ¢*(r) < Ck)é(r).

Now, we take simply oy = min(¢~1(1/4), 2apan ) for 27" <4< 22",
A reduced projective spectrum representing F, is given by (Ag(o))ken
and linking maps of ™ 1 Ag(a) — As(a) are defined by
CT;;H((%)MN) = ((azk/a'in,k+l)wi)iEN'

The following map is an ispmorphism:

W MA™) — proj(ds (@), o™ C H As (o W{(2:)ien) = (a7 5T:)i k-
keN
Indeed, W is continuous since
| (a; k‘UZ)mGN”
| in A(A™)
= 3 Paleilale < Oln b p) Y 5ot = Cln k) ) L.
=0 i=0

Moreover, W is open since

Ao
O™ = S atied < 3 abeleolas = |(afasden .
=0 i=0
This completes the proof because the image of W contains the space of all
finitely non-zero sequences which is dense in proj(Ais(a)).

PrROPOSITION 3.2 [Kr, Proof of 2.2.4]. Let o be tensor stable and let
r)/r increase monotonically for anyi € N, & = (¢;). Then there exists o
short exact sequence

0 — Ap(a) = Ag(@) = As(a)¥ — 0.

The first result of the type above was proved in [V1, proof of Lemma 1. 6]
for the space s. Now, there is a whole family of similar theorems very useful
in the structural theory of Fréchet spaces (see [VW2, Th. 2.3 and 2.4], [V3],
[V7, Th. 3.2]). Our result follows from the following theorem due to Apiola

[Al, Prop. 2.3]:

TumoreMm 3.3. Let MA) be @ Schwartz Kothe sequence space with a
regular matriz such that (aik)ien increases for each k € N. Assume that
there ewists o bijection 8 : N® — N such that:
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(1) B increases in each variable and j < £(0,3,0).
(i) vk 3p(k), C > 0 Yn < & apin,jiv1) e S Capin,ga,pie) -
(iif) V& Tp(k): 32320 €5(0,0,)8/26(0,0,),p(k) < 00
(iV) Yk Hp(k), C>0vn<k: A5(n, 4,0}k < C’aj,p(k).
Then there exists a short exnct sequence
0 — A(4) — A(A) — MAN = 0.
Proof of 3.2. It suffices to check the assumptions of Th. 3.3 for Gy ) =
(), ap = 1.
First we have to define 4. Assume that cg; < Cay for each 1 € N. For any
% there is [ = 47 such that 2Co; < ay < 20%0;. We can construct inductively
an increasing sequence K; = 4% Ky = 0, such that
(3.2) 200k, € ak,,, < Sax, forieN§ =208

We order all natural numbers not of the form (2§ + 1}K; for { > 0 in an
increasing sequence (s(4)). Obviously 7 < s(7) < 2§ +1 for § > 0. We define
a bijection § : N — N:

[ s()) fori=0, jeN,
6(4,5) = {(gj +1K; fori>1, jeEN,

and

(3.3) Aln,j,i) = 22260, 5) + 1) — 1

_ {2ﬂ+1s(j) +2n —1 for i = 0,
UG (25 4+ 1) +2" =1 foré > 1.

The condition (i) of 3.3 is obvious. In order to show (ii) we first observe that
(3.4) Bln, jyi+ 1) < max(8(6(n, 4,0))*, 2K7,,).

Ini?ed,'if 27425 + 1) < Kiya, then S(n, j,i+1) < 2K?, . Otherwise, if
27727 + 1) > Kiyq, then B(n,j,i+1) < 8(8(n, 4,012
By the tensor stability of « we find a constant M such that

A(Bns00)? S Mg and apgr < Mag,,,.

Since ax; < Cig(n, ), We find by (3.2) and (3.4) a constant I > 0 such that
@8(njii+1) S Ltg(nj,y  for any m, j, 4.

Finally, for Qp(n,j,0) > L we get agn jip1)6 < G8(n,3,0),k+1- Laking a suitable
constant C'(k) we obtain (ii) for all A(n, 7,1).
We now prove (iii). Since ¢y (r)/r increases du{2r) > 2d5( g
. 2 2¢x(r) and ¢*(2r
> 2¢%(r). Moreover, 30, 0,4) = 2K; and, by (3.2), )

¢k(aﬁ(°'°$i+1)) = ¢ (oary,) > 6 (200k,) = 20*{0ax,) = 205'“(04;3(0,0,1'))-
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Because ¢y 1(r) > r2, we obtain
2 " (ap0,) = 1 > 1
L 28000] o <3 < co.
?;3 P*tHea0,0,4)) ; #*(0tp(0,0,4)) ;’:'6 2°¢* (ctp00,0,0))

Finally, we prove (iv). We have B(n, j,0) = 2"Hs(j} +2" — 1 < 27125 +
27t2 For § > 0, n < k and some M > 0 we have Qg(n,j,0) £ Qonts; < May.
Thus for a; > M we get

(3.5) g, 0) < " (ay).
For j such that either @; < M or j = 0 we obtain (3.5) multiplying the
right hand side by a suitable constant C(k).

This completes the proof of 3.2.

4. Proof of the main result for locally projective Schwartz
spaces. We assume that all F,, are reduced projective limits of I3 spaces
with compact linking maps (i.e., Schwartz spaces).

By Th. 2.1, we find easily ¢ = (¢;), where ¢;(r)/r increases as r increases,
such that each E, and F), satisfies (£2s). We define o according to Prop.
3.1. By 2.2 and 2.4,

Ext*(Az(a), As(c)) =0, Ext'(As(a), Bn) =0,
Ext* (Mg (a), Fr) = 0.

Now, by 3.1 and 3.2, we obtain the first row and the lagt column of the
following commutative diagram with exact rows and columns:

0 0

(4.1)

0 s I, — 22 g (o) = Mg ()N —— 0

id @2 92
0 B e iy —=Fs g (@) >0
Jz J'a

As(a) —4— s ()

0 0

where H = {(z,9) € da(e) x As{a) : uz = v},
JZI,(IL‘) == (jliﬁ,o), Jz(m) = (O:jZ:B): Ql(m:y) =1, QZ(m)y) =
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By (4.1), H =~ F, ® As(c). Similarly, we obtain another commutative dia-
gram with exact rows and columns:

0 0
0 Ao () Ae(a) @ Fr — Ag(a)N —0
Tid
0 Ag (CE) G Ag(a) —=0

By stability of @ and (4.1), G ~ Ag(c). Finally, we get a short exact sequence
0 — As(@) — Ap(a) 5 Ag(a) @ F, — 0.

Since Ext'(Ae(a), Ag{e)) = 0, the space K = g~ 1(F,) is complemented in
As (@) and

0—dala) = KU R, =0
is exact. Multiplying the above sequence by

0— Aa(@) 5 Agla) = 00

Ag{a)). This completes the proof of the Main Theorem for locally projective
Schwartz spaces.

we obtain the sequence we are looking for (by Prop. 0.1, K @ Mg(a) =

We conclude this section with a simple consequence of the above case of
the Main Theorem.

PROPOSITION 4.1. If all F, are of the form L{J) & A(D™), where
A(D™) are Kdthe Schwartz spaces, then the Main Theorem holds for A(4) =
L(J) @4 MAD), MA®) is a Kéthe Schwartz space and the resolution (%) ds
short as in (4).

Proof We apply the locally projective Schwartz case to the sequence of
spaces A(D™) instead of F,. We find a Kéthe Schwartz space A(A%) = Ag(a).
Thus for any n € N there exists a short exact sequence

0— A(4%) 5 A(4%) S A(D™) — 0.
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It is known ([J, 15.7.3]) that the tensored sequence

0 = 13(J) Be MA®) ZH 1, (J) B A(AY) — 1, (]) B A(D™) — 0

is exact as well. Obviously (0) is satisfied for A(A) = I;(J) @, A(A4?), when-
ever it is satisfied for A(A%). By Th. 2.2 and Cor. 2.4, we get (1) and (2)

5. Proof in the general case. We will use the following two results:

THEOREM 5.1 (Vogt and Walldorf [VWd]). Buery Schwariz Fréchet
space 1§ isomorphic to o quotient of o Schwartz Kothe space.

THEOREM 5.2 (Meise and Vogt [MVL, Prop. 7}). Every quasinormable
Fréchet space is isomorphic to a quotient of a space I1(J) ®x A(D), where
A(D) is a nuclear Kéthe space.

Proof of the Main Theorem. For every n € N we define induc-
tively, by use of 5.1 or 5.2, short exact sequences, setting K, o == Fj,:

(5.1) 0— Kpgi1 = Ang — Kng — 0,

where Ay = I (J) @5 A(D™*), \(D™*) nuclear K&the spaces, or (if all F,
are Schwartz spaces) A, x are Schwartz Kothe spaces.

We then apply the special case of the Main Theorem to the spaces Fy,,
n € N, on one side and An g, 7,k € N on the other side. We obtain A(A)
fulfilling (0}, (1) and (2) which in case of Schwartz spaces F, is Schwartz as
well. We proceed as follows. We set up the following diagram:

0 0
0 ——> K pt1 Ank Kok 0
Yg
0 = L g1 AMA)—— Kpn g 0
MA) — A(A)
0 0

Here the upper row is (5.1), and the middle column is the short exact se-
quence obtained from (4). '
For every m, k € N we obtain exact sequences

0— )\(A) vt Lo — Kp g — 0
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and
0 — Ln gt = A(A) = Knjp — 0.
We use these to set up the following diagram (like the diagram (4.2)):

] 0
0 /\(A) Ln,k Kﬂ.,k 0
0 A(A) Hn A(4) 0

id
L jeg1 —5 L ey

Since the middle row splits on account of (1) and A(A4) @ A(4) = A(A) we
obtain for all »,k € N an exact sequence

0— Lpg+1 — MA) — Lpy — 0.
Putting all these together we get a long exact sequence
co= AA) B4 B AN B F, 0,

where A(A) is either of the form As(a) or I1(J) @ As(c).
Now, assume that F, is a reduced projective limit of Banach spaces I;
and consider a short exact sequence

0 — ker gy gg)\(A) B R, -0

We then obtain an exact sequence of the form (see the condition (III) in
[V6] or [P1, p. 49])

0 — L(Fn kergq1) — L(A(A),ker q1) — L(ker gp, ker ¢, )
— BExt! (F,, ker q1) — Ext*(A\(A4),ker g} — Ext (ker ¢o, ker 1)
— Extz(Fn,kerql) ~ Ext?(A(A), ker q) = ...

Since A(A) has property (f2¢) which is inherited by quotients, the space
ker gy =imgp has it as well. Thus, by [V6, Cor. 1.5] and Th. 2.2,

Ext?(Fy,kerq;) =0 and Ext'{A(A), kerqy) = 0.
Hence Ext' (ker go, ker g1) = 0 and the sequence

0 — kerg; — A(A) kY kergp — 0
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splits. This means that ker g is isomorphic to a complemented subspace of
A{A). Finally,

0 — kergo ® MA) 2y o rA) 22X F, S0

is the short exact sequence we are looking for because ker go @ A(A) = A(4),
by Prop. 0.1.
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The splitting spectrum differs from the Taylor spectrum
by

V. MULLER (Praha)

Albstract. We construct a pair of commuting Banach space operators for which the
gplitting spectrum is different from the Taylor spectrum.

Let A;,..., A, be mutually commuting operators in a Banach space X.
The Koszul complex of the n-tuple (Ay, ..., Ay) is the complex

0 ba i &1 -1 n
0 — A%X,e) — A X, e) — ... — A" (X,e) — 0

where AP(X,e) denotes the vector space of all forms of degree p in inde-
terminates ey, ...,e, With coefficients in X and the linear mappings &, :
AP(X, ) — APTY(X, e) are defined by

n
5p(m6i1 /\.../\ﬁ-ip) = ZAjmej Nepg Ao he,.
J=1

It is well known that 8,118, == 0 for every p. The Taylor spectrum
or(A4y,...,A,) is the set of all n-tuples (A1,...An) of complex numbers
for which the Koszul complex of (A1 — A1,..., An — Ay) is not exact 5]

Instead of the Taylor spectrum. it is sometimes useful to use the follovx.r—
ing variation (see e.g. [1], [3], [4]). We say that the n-tuple (41,...,4n) is
splitting-regular if its Koszul complex is exact and the ranges of the opera-
tors 6, are complemented in APTH( X €). Equivalently, there exist oper‘ators
gy APTY(X, e) — AP(X,e) (p=0,...,n—1) such that epbptbp—18p—1 is the
identity operator on AP(X,e) for p=0,...,n (formally we set &1 mén:O)n.
The splitting spectrum og(Ay;...,Ay) is the set of all (M, . An) € C
such that the n-tuple (A; — Ag,. .., 4n — An) is not splitting-regular.

The splitting spectrum has similar properties as the Taylor spectrum.
Cleatly, or(Ay,-- ., An) Cos(A1, .., Ayp). For Hilbert space operators ’Fhese
two spectra coincide and the same is true for n-tuples of operators in £
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