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Higher-dimensional weak amenability
by

B. E. JOHNSON (Newcastle upon Tyne)

Abstract. Bade, Curtis and Dales have introduced the idea of weak amenability.
A commutative Banach algebra 2 is weakly amenable if there are no non-zero continu-
ous derivations from 2L to 2*. We extend this by defining an alternating n-derivation to
he an alternating n-linesr map from 2 to 2* which is a derivation in each of its vari-
ables. Then we say that % is n-dimensionally weakly amenahle if there are no non-zero
continuous alternating n-derivations on . Alternating n-derivations are the same as al-
ternating Hochselild cocycles. Since such a cocyele is a coboundary if and only if it is 0,
the alternating n-derivations form a subspace of H™ (2, ™). The hereditary properties of
n-dimengional weak amenability are stodied; for example, if J is a closed ideal in 2 such
that 2/J is m-~dimensionally weakly amenable and J is n-dimensionally weakly amenable
then 2 i (7o 4 0 — 1)-dimensionally weakly amenable, Results of Bade, Curtis and Dales
are extended to n-dimensional weak amenability. If % is generated by n elements then it
is (n + 1)-dimoensionally weakly amenable. If 2 containg enough regular elements a with
o™} = o{m™ 1)} as m -+ oo then U is n-dimensionally weakly amenable. Tt fol-
lows that if 2l is the algebra lip, (X) of Lipschitz functions on the metric space X and
o< nf{n-+1) then A is n-dimensionally weakly amenable. When X is the product of n
copies of the ¢ircle then 2 13 n~-dimensionally weakly amenable if and only if & < n/(n+1).

1. Introduction. Throughout this paper & denotes a commutative Ba-
nach algebra and X a symmetric Banach #-bimodule, that is, we have
ar = xo for all @ € A, z € X. Following [1], A is weakly amenable if,
for all X, all derivations from 2l inte X are zero. In this paper we extend
this by saying that 2l is n-dimensionally weakly amenable [Definition 2.1]
if, for all %, all alternating n-cocycles from 2 into X are zero. By an n-
cocyele we mean a continnous n-linear map from 2L into X whose Hochschild
coboundary is 0 (cf. [5]). For n = 1 this reduces to weak amenability in the
sense of Bade, Curtis and Dales. In Section 2 we show that an alternating
n-cocycle is the same as an alternating linear map which is a derivation in
gach of its variables. This enables us to show how the values of an alternat-
ing n-cocycle are related to its values on the generators of an algebra and
show in particular that if 2% has n-generators then it is (n+1)-dimensionally
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weakly amenable. We also show that we need consider only the case ¥ = %*
(Corollary 2.11). In Section 3 we consider the hereditary properties of n-
dimensional weak amenability. In particular, we show that a closed ideal J
in an n-dimensionally weakly amenable algebra is n-dimensionally weakly
amenable if and only if J/J; has dimension less than n, where J; is the
closed linear span of {jija : j1,j2 € J}. In Section 4 we extend the results
of [1]. We show that n-dimensional weak amenability is implied by growth
conditions and give a full account of conditions under which Beurling and
Lipschitz algebras are n-dimensionally weakly amenable.

2. Alternating cocycles and n-derivations. Most of the work in this
section and the next is algebraic and would apply to abstract modules over
abstract algebras, though we make no further reference to this. We shall
denote the closed linear span of the k-fold products in an algebra 2 by Uy,
the space of continuous n-linear maps from 2 to % by LA, X) and the
coboundary operator from £™(2, X) to L2, X) by 6™ (or just & when
it is clear which ™ we mean). The symmetric group S, acts on the n-fold
tensor product A& ... ® U on the right by

to = Gy(1) @ ... @ Gg(n),
wheret = a; @ ... ® a,.
The adjoint action makes £7(%, %) a left 8,-module. An element T of
L7(A, X) is alternating if
ol = (Sgno)T
for all & € S,,. The higher-dimensional analogue of weak amenability is then
DEFINITION 2.1. The commutative Banach algebra A is n-dimensionally

weakly amenable if for every symmetric Banach 2-bimodule X, every
bounded alternating n-cocycle from 2 into ¥ is 0.

Since every element of L1(%,%) is alternating, 1-dimensional weak
amenability is just weak amenability.
The alternating cocycles have a much simpler description,

DEFINITION 2.2. An element T of £™(%, X) is an n-derivation if for
k=1,...,n, a1, .., 0n, 0f € 9,
T(al,...,akaﬁc,...,an)=akT(al,...,aﬁﬂ,...,an)-l—T(al,...,ak,...,an)a}u.

Thus T is an n-derivation if and only if it is a derivation in each variable.
If T is alternating then it is an n-derivation if and only if it is a derivation
in one of the variables.

THEOREM 2.3. Let U be a commutative Banach algebre and X o symmet-
ric Banach A-bimodule. Then T € LM, X) is an olternating n-derivation
if and only if it is an alternating n-cocycle.
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Proof. Suppose that T is an alternating n-derivation. We have

(6T (a0, - .., a.) = agT(ay,. .. )G )
n
+ Z(—«l)jT(ag, e G104, .. Oy)
=1

+ (=)™ T (ao, ..., an_1)an.

If we express each term in 37 as a sum of two terms using the n-derivation
rule, all the terms in 67 cancel, so §7° = 0.

Conversely, if T' is an alternating n-cocycle and 0g, .-, 0 € 2, define g4
for the other values of § to make {a; : j € Z} an (n + 1)-periodic sequence.
Put

tj = (=1)"T{ajaj41, 0542, ..,050n), 8= (=)™ T(aj1,. .-, Bi4n)-

Because n(n + 1) is even, {s;} and {#;} are (n 4 1)-periodic. The formula
6T = 0 gives, using the alternating property of T,

t{,"-}-l + ok tj+n =z Sj+1 — Sj.
Adding these equations for j = 1,...,n and subtracting the 7 = 0 equation
n -~ 1 times gives
ntg = n(sg — 81),

from which we see that T is a derivation in the first variable. As T is alter-
nating, it is an n-derivation.

CoOROLLARY 2.4. {i) & is n-dimensionally weakly amenable if and only
if AL is.
(ii) If A iz n-dimensionolly weakly amenable then dim(A/As) < n.

Proof. (i) If A is n-dimensionally weakly amenable and 7 is an al-
ternating n-derivation on % with values in X then X becomes a symmetric
unital A'-module and T extends to an alternating n-derivation on A if we
define T'(by, . .., by) = 0 when any of the b; lie in €1, so T' = 0.

If 2 is n-dimensionally weakly amenable and T is an alternating
n-derivation on A with values in X then T|% = 0 and T(b1,...,b,) = 0 if
aty of the by is 1, by the derivation identity, so T = 0.

(i) With trivial action, C is an %-module. If dim{/%Us) > n, let
aj,-..,al, be elements of /A which are linearly independent modulo 2, and
ot fi,. .., fn € 9" with f(2g) = 0 and fi{a}) = &;;. Then

T{a1,-..,an) = det f;(a;)

is a non-trivial continuous n-linear map into € which is an n-derivation
hecause each side of the derivation identity is 0.



icm

120 B. E. Johuson

COROLLARY 2.5. If U is n-dimensionally weakly amencble then it is
p-dimensionally weakly amenable for all p > n.

Proof. An alternating p-derivation becomes an alternating n-derivation
if we hold p — n variables constant.

COROLLARY 2.6. Let T be an alternating n-cocycle. Then

T(by, ..., bs)
= Zmlo(l) - .mna.(n)al?“'l . a;’"f’a;(ll) - cz;"(ln)T(aa(l), ey (J.,,(,,L)),
where:
(i) p is a positive integer and ay, ..., a, € 2.

(i) [mss] is an n x p matriz of integers with my; > 0 for all 4 if a; is
singuwlar.

(1il) m.y = 30 my; and by = a™ L ap?.

(iv) The sum is over all functions ¢ from {1,.. an}to{l,...,p}.

(v) If a; is singular then ala;t is interpreted os a7 if m > 0 and as
0 if m = 0 (in which case the coefficient of the term is 0 anyway).

Proof. It follows from the derivation identity that

T(ck, ca,. .. ¢n) = k2P ey, 03, cesCn)

for positive integers k and, if ¢; is non-gingular, for all integers k. Repeated
application of this gives

ki K k Fey w1 -
Tley* o’y yeqm) =k kpel™™ L B0y ey).
The n-derivation law also gives
T(by,...,b,)
— Ty M.p —Mig(1) —Mng(n) Mix(1) Mg (n)
Zal Sl TaL YT e T(aa(l) SRR aviat ),

which, together with the identity in the previous sentence and the fact that
1 is alternating, gives the required result.

COROLLARY 2.7. (i) If p < n then T(by, ..., by} = 0,
(i) Ifp=nthenT(by,.. ., by) = det[my;la7 "L .. ape~ 1 (ay,. ., an)

Proof. (i) If p < n then o is not injective so that, because T is alter-
nating, T(ap(1), .. ., 8p(n)) = 0 for all .

(ii) If p = n we can omit the terms for which o is not injective, The
result follows because for o € Sy, o7 = (Sgn o)7.

COROLLARY 2.8. If % is generated (polynomially or rationally) by n
elements then A is (n + 1)-dimensionally weakly amenable.

. Proof. Ifaj,...,a, € U and the polynomials in ay,...,a, are dense
in 2L the result follows from 2.7(i)
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For the set of rational functions in a4,. .., a,, that is, the set of elements
P/ when P and ¢} are polynomialsin ay,. .., a, and @ is a regular element

of 2, the result follows in the same way.

In considering the connection between n-dimensional weak amenability
and cohomology the following is useful.

Prorosrrion 2.9. If T is an alternating n-coboundary, that is, an al-
ternating element of 6L A, X), then T = 0.

Proof. Let R e L%, %) with §R = T. We have seen that L™(2(, X)
is a unital Sy-module and so it is a unital £}(5,)-module. Define z € £1(S,)
by

z=(n))"! Z(Sgno)a.
Then z is idempotent and S € £*(¥, X) is alternating if and only if 28 = 5.
Ifr eS8, then 27 = (Sgn7)z. Thus if § is symmetric in two variables so
that 7.9 = 9 for some transposition then 28 = 278 = 28, that is, 25 = 0.
Similarly, if 7 is the n-cycle 7(§) = 7 + 1 (modn) then z(§ + (—1)*78) =
28 — 28 = 0 because 27 = (~1)"*'z. Thus 2T = z6R = 0 because the
first and last terms in 6R give 0 by the previous remark and all the other
terms are symmetric in two of the variables and so give 0 as well. Hence

Te=zT=0.

COROLLARY 2.10. The quotient map ker§ — H™(U, X) is injective on
the alternating cocycles.

This shows that if H™*(2,%X) = 0, or more generally if H*(A,Y) = 0
for some symmetric Y-module g for which there is a continuous %-module
injection from ¥ into 2), then there are no non-zero alternating n-cocycles
from R into X.

COROLLARY 2.11 {cf. [1, Theorem 1.5]). If every alternating n-cocycle
Jrom 2 into A* is 0 then % is n-dimensionally weakly amenable.

Proof. If dim(2/%s) = n and f € 2* is non-zero but fAz = 0 then
A+ Af is an Y-module map from C with trivial action into A*. If we
compose this with the cocycle in the proof of 2.4(ii) we have a non-trivial
alternating n-cocycle from 2 to A*, Thus dim(A/As) < 7.

Let 7' be an alternating n-cocycle from 2 to X and let f € X*. We define
a map « from X to 4" by

a(z) = flax).
It is easy to check that this is an fl-module map, so @ o T =0 because it is
an alternating n-cocycle with values in 2*. This shows that

f(a.T(CL;, ‘e ,ﬂ.ﬁ)) =0
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for all f € X* and a,01,...,a, € A Thus aT(a1,...,a,) = 0 so that, by
the derivation identity, T'(a1,...,an) = 0 if one of the a; lies in 2y, Thus
T gives an alternating n-linear map on the space /2y whose dimension is
less than 7. This shows T = 0.

3. Hereditary properties of n-dimensional weak amenability

THEOREM 3.1. Let 2 be a commutative Banach algebra and let J be a
closed ideal in .

(1) If A is n-dimensionally weakly amenable then so is %/J. More gen-
erally, if B is a Banach algebra and ¢ : A — B is g continuous algebra ho-
momorphism with dense range then B is n-dimensionally weakly amenable.

(1) If A is n-dimensionally weakly amenable then J is n-dimensionally
weakly amenable if and only if dim(J/Jp) < n.

(ii) If J is m-dimensionally weakly amenable and 2/J is n-dimen-
sionally weakly amenable then 2 is (m 4 n — 1)-dimensionally weakly amen-
able.

Note. The casen =1 of (ii) is Corollary 1.3 of [4].

Proof of 3.1. (i) If T is an alternating n-cocycle on B with values in
a symmetric B-module Y then, using ¢, Y becomes a symmetric A-module
and composing T with ¢ gives an alternating n-derivation on 2 which is
0 by the n-dirensional weak amenability of 2. This shows that T () is
zero, so T = 0 by continuity.

(i) If dim(J/J2) > n then by Corollary 2.4, J is not n-dimensionally
weakly amenable. Assume that 2 is n-dimensionally weakly amenable and
dim(J/J2) < n. Let T be an alternating n-cocycle in J with values in J*.
For each a1,...,a, € A we define Alay, . . ., a,), an n-linear map from J to

J*, by
Alar, ..y a0)(Jry. -y dn) = ngngFQ,
where the sum is over all subsets g of {1,...,n}, sgno = (—1)le! and
Fym= (b1 b )T(c1d1, . . ., nn)
where if ¢ € p then b; = identity and ¢; = a; whereas if i & p then b; = a4

and ¢; = identity (b; and ¢; lie in 2" if A has no identity). Ifaq,...,a, € J
then

A(a'la . -1an)(.711 .- 'Jj'n.) = T(G‘lz s :an)jl v 'j'!h
and A is introduced as a form of extension of T to 2.
First of all we prove that for any k in J and § € {1,...,n}

() Alay,...,a¢n)1,. .., 5ik,. cesdn)
=3 A(G;l,. ..7an(j1,-- -7j'i)' . :jﬂ)k

1
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We consider only the case ¢ = 1 because the other cases are similar. If
0 C{2,...,n} and ¢ = pU {1}, the terms on the left of (+) corresponding
to g and o' are

sgn ol(by . ba)T(arjik, caje, . - -, Cadn)
— (aaba .. .0 )T (irk, cofe, - - - Crin)]

i

sgn g[(e1d1ba . . bp)T(k, c2ja,. -+ Cnlin)
+(by...bp)T(asd1, c2da, . - - Cnln)k

— (a1bs . . .bnj1)T(k,coga, - - -, Cnln)

~ (a1by . . . b )T (41, 292, - - - s Cnn) ]
sgn gl(ba - .- ba)T(avj1, C2J2, - - -, Endn)
—(a1bg . .. bn)T{J1, cojzs - - -+ CnJn)iks

]

which are the terms on the right of (*) corresponding to ¢ and ¢/, so (x} is
proved.

Now let J be the closed subspace of J & ... 8 J (n factors) spanned by
tensors j1 ® ... @ jy, where all the j; are in J and at least one is in Ja, and
denote the restriction of Ales,...,an) to J by A(‘?}’ .oty Gp ). We shall sho?v
that 4 is an alternating n-cocycle from % into £(J, J*) with the symmetric
Y-module structure

(@S)(t) = aS(t), e€, SeL(J,J, tel
We have seen that S, acts on the right of J ®...® J and clearly J is a

submodule, so £(J, J*) is a left Sp-module. By (%),
Alay, ... 2 an)(gik, Jas e - yin) = Alaz, .- :a'n)(jlaj% s :j'n.)k
= A(a].) sy a‘n)(jlajZk:: - ;jn)
= _A(&l, . '1an)(j1j23 k:j37 e )jﬂ)
= A(al, .. ,Cln)(jz,j;_k, nee 1j’ﬂ-)'

Thus ((}-A(“’L: o »a“n))(jlkaj?, e 1jn) == A(alﬂ e a?*f)_(jlk=j2= s :-771) if
o = (1,2) and similarly if ¢ = (1,m). Since the transpositions (1,m) gener-

ate Sy, this holds for all o in Sp. It follows that
Alag,. .. an)(to) = Alar;. .., an (1)
i ] i ; least one of the 7; lies in Ja,
for any simple tensor ¢ = j; ® ... @ j, where at . _
80 tha?‘; o-A](:)al, o) = Alay; . . ay) for all o in S, It follows from the
definition of A and the alternating property of T' that

A(acr(l): e 7a'a'(n))(ja'(1): s :ja(n)) = Sgna—A(a’la v a’ﬂ)(jls v 1.7n)
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80, by what we have just shown,
Alao(1yy - -+ Oam)(t) = SgnoA(ay, ..., an)(t)

for any ¢ = j1 @ ... ® Jp, with at least one j; in J and hence for all ¢ in J.
This shows that A is alternating.

We now show that A is a derivation in its first variable. Let Gly.ee .y ln, 0
€U f1yeverdnydi € J. As in the definition of Alet o C {1,...,n} and
(by,cy) = (1,ay) or (¢}, 1) depending on whether 1 € g or not. The derivation
condition for 7' shows that

(b1 ... bnbi)T(Clcg_JlJéa Cafaye .oy cnjﬂ)
= ale . anlT(ciJis CZj?i ey C'njn) -+ a;_bl B bnjiT(Cljlz ey ann)~
Multiplying by sgn ¢ and summing, the first terms give
a‘ljl-d(a”;l_a 22 PR a'n)(jiajl’r ree 1.7?1) - a‘l‘d(a"_:g: a2,..., an)(jljians R 1.7“"-)
and the second terms give aj A(ay,. .., an){J130 d2,- - Fn)-

Thus A(aral, ae,...,0,) = a1d(el,...,a.)+a]A(ay,. . .;@p) on tensors
of the form j17; ®J2®. . .®Jn and hence, using the symmetry of A(as, ..., ay)
in the J variables, for any ¢ in the spanning set for J and hence for all ¢
in J.

Thus A is an alternating n-cocycle and hence is 0. Using the fact that if
Bi,...,kn € J then

A(kls L. 7kn)(j1: .- 7.711) = T(kl: ey kn)jl . Jn

this shows that T'(k;,...,k,)j = O whenever j is the product of n + 1
elements from J, and hence

(3} (T'(k1,...,kn), ) =0

(where (-, ) denotes the pairing between J and J*) whenever j is the product
of n-+2 factors from J and, more generally, if j € J,,1.p. Using the derivation
law we see that (#+) holds for all j in J if one of the &; is in J,.y. Thus
(*+) holds if any of the §,ky,...,k, is in Jniz, and s0 gives an alternating
n~cocycle from J/ Jp 1z into (J/Jp10)* I 31, . . ., m form a basis of J modulo
Ja then m < n by hypothesis and J/J, 19 is generated by the m elements
Ji + Jnn, so that T'= 0.

(iii) Put p = m+n~1 and let T be an alternating p-cocycle from 2 into
2A*. We shall prove by downwards induction on { that for 0 < I < m if at
least [ of the variables ay,...,a, lie in J then T'(ay,.. G lp) = 0. The case
I = m follows from the m-dimensional weak amenability of J because if we
restrict m of the variables to lie in J and fix the other n — 1 then we have
an alternating m-cocycle on J.
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Suppose that the result holds for some ! > 0. Let a1,...,a1-1 € J and
for all ay,...,ap put

Tg(a,g, P ,a,p) = T(al, . .,ap).
Then Ty is O if any of @y, ..., ap lie in J. By the derivation rule, if j € J then
Tolas, ... ap)d = Tolar, ..., apj) — Tolat, ..., ap—15)ap = 0.

Thus the values of Tp lie in J3 = (/Jy)*, where Jy = closed linear span
{aj:ae®, j&e J} As U/Jy and hence (RA/Ju)* are symmetric A-modules
on which J acts trivially, they become (2(/.J)-modules and Ty gives a (p —
I+ 1)-cocycle from 2A/J to (A/Jy)*, where p — 1+ 1 > n. It is easy to check
that Ty is alternating and i3 a derivation in each of its variables becanse T
is. Thus, because %/J is n-dimensionally weakly amenable, T = 0. Thus
T(ay,....aGn) = 0ifa1,...,a;—1 € J and hence, by the alternating property,
if any I -1 of a1,...,a, liein J. This completes the induction and the case
[ =0 gives T' = ( as required.

ExaMPLE 3.2. To show that the dimension m + n — 1 in (jiii) above
cannot be improved in general, consider the m + n — 2 zero algebra 2.
Because dim(2/%p) = m+n—2, Ais not (m+ n — 2)-dimensionally weakly
amenable, but if J is an (m — 1)-dimensional subspace then it is an (m - 1)-
generated ideal and so is m~dimensionally weakly amenable, and AT is
n-dimensionally weakly amenable for the same reasons.

For amenability, a closed ideal in an amenable Banach algebra is
amenable if it has a closed complementary subspace (or even if it is weakly
complemented [3, Theorem 3.7}, Thus a closed ideal which has finite dimen-

. gion or codimension in an amenable algebra is amenable. For n-amenability

the only corresponding result is

PROPOSITION 3.3. Let U be o weakly amenable Banach algebra and J o
closed ideal of finite codimension. Then J is weakly amenable.

Proof Consider first of all the case where J is maximal. We have
g = A, 50 J is modular and R/J == C. By Theorem 3.1, we need to show
that Jy = J, so we suppose Jy # J. Dividing out by J we can assume
Ja = 0. Thus 2 is a singular extension of the C-module J by €. The action
of C on J is determined by the operator P from J to J given by P(§) = 1-J.
The associative law shows that P is idempotent. Any P-invariant subspace
of J is an ideal in 2 so, dividing out by a P-invariant hyperplane, we can
assume that J is one-dimensional and the action of 2/.J on J is either A-j = 0
or A-j = Aj (with j € J, X € %/J = C). By [6, Theorem 2.3.9, p. 58] the
clement 1 of 2/J can be lifted to an idempotent in 20 which generates a
subalgebra complementary to J. Thus 2 is isomorphic to €2 with one of the
products (X, w}(X, g} = (AN, 0) or (AN, Ay’ + X' ). However, the first case
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is impossible because 2y = %, and the second by Corollary 2.4(i) because
it is the algebra obtained by adjoining a unit to the one-dimensional zero
algebra. Thus J = J and J is wealdy amenable.

For the general case we can form a chain
A=do2hD..DJu=J

of closed ideals where each J; is maximal in J;..1; this works without the
assumption of modularity because J has finite codimension. It then follows
by induction using what we have proved that J; is weakly amenable for each
value of i.

FxaMPLE 3.4. The non-unital algebra 2l generated by a single element
S with §* = 0 is 2-dimensionally weakly amenable becanse it is singly gener-
ated. The ideal 2y is a 2-dimensional zerc algebra and so is not
2-dimensionally weakly amenable though it has finite dimension and codi-
mension.

EXAMPLE 3.5. We give an example of a weakly amenable Banach alge-
bra with a one-dimensional annihilator ideal J such that J is not weakly
amenable. To do this it is enough to find a weakly amenable Banach algebra
with non-trivial annihilator ideal J because any subspace of J is an ideal
and dividing out by a closed subspace of codimension 1 we get the example
we want.

We begin by defining a norm || |jp on the subspace cgp of ¢p alge-
braically spanned by the standard basis vectors €1, eq,... Let K C ¢pg be
the absolutely convex subset generated by ep,es,... and fi, fo,... where
fi = 2(e; — e;41). Then K generates a seminorm || ||o on cpo. To see
that || ||o i8 & norm, consider the projection Py of cgo onto the span Ej of
€1,. .., given by Ple;) = e; if1 £ § £ k and P(e;) = e, if § > k. We have
P(f;) = f; if 1 < kand P(f;) =0 if j > k. This shows that K is closed
under P so P is a contraction and K N Ky, is the absolutely convex set Ky
generated by ey,...,ex and f1, ..., fr—1. The seminorm on Ej generated by
K is thus the restriction of || ||o and clearly is a norm. Any z in eqp lies in
one of the By so || |ip is a norm on cgg. We have ||eg|lp = 1 for all k because
the linear functional F on cgp defined by F(a) = Y 5o, a; has F(e;) = 1
and F(f;) = 0 for all j, showing ||F'|| < 1 and hence ﬁejﬂg >l Ase; e K
we have ||;||o = 1. Let B be the operator on ¢y given by Be; = 2%¢; and
define a new norm on cgp by |lal| = ||Ballo. We will show that || || is an
algebra norm with respect to the pointwise product. To do this it suflices
to show that the unit ball B~1K is closed under multiplication, and this
follows if we show that the product of any two elements B~le; = 2~%e,
and B~ f, = 27%%(e, — ep1) is in BTLK. Most of these products are 0;
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the exceptions are
(B7le;)? = 270, =273 g~ 1e,,
B7le;B7 f; = 27%¢; = 272 g e,
B lej 1 BT fi= =270y = —07% 3B e,
Bl B fpg = 270 = 272 B ey,
(B7' i) = 27" (e, — Hewy1)
=27 (er ~ Tepp) + 27 0Te,
— g thplf 4o k3. 7. B lep
where the last product has norm less than 272k 47.2-8-3 < 2-247.274 < 1,
Thus ¢py with the norm || || i& a normed algebra, and we denote its

completion by 2. As cgp and hence 2 is generated by the idempotents ex,
% is weakly amenable. The elements B~le; (j = 1,2,...) form a Cauchy

sequence in 2, because || B~le; — B e p1]| = |lej—esptllo = 27| f3]| < 277,
and hence converge to an element 7 of 2. As [B™te;|| = lejllo = 1 we have
|#|| = 1, in particular r % 0. For j > k, we have e B~'e; = 0, so exr = 0.

This implies that ar = 0 for all a in 2, completing the proof.

THEOREM 3.6, Let % and B be commutative Banach algebras with 2y =
A, By = B. If U is m-dimensionally weakly amenable and B is n-dimen-
sionally weakly amenable then A ® B is (m + n — 1)-dimensionally weokly
arnenable.

Proof. Suppose that % and %8 are unital and I'is a p = (m+n —Al)—
alternating cocycle on % & B. Because 2 & 1 is a subalgebra of A & B
isomorphic with 2, if ¢1,...,¢p € A @ B and m or more of the ¢; lie in
A1 then T(cy,. . ., cp) = 0 because % is m-dimensionally weakly amenable.
Similarly, T(cy, - . - , &) = 0 if n or more of the ¢; lie in 1@8B. Ifc; = a;@b; =
(a;@1)(1®b;) (1 <4 < p) with a; € Aend b; € B then using the derivation

law in each variable, T(ci, .. .,¢p) can be expressed as the sum of 2P terms
T{c},. .., ¢,) where ¢ € (A®@1)U(1@%B). For each term, if fewer than m of

the ¢f lic in 2 ® 1 then the rest, of which there are at least p— (m—1} = n,
lie in 1 ® % and so, either way, the term is 0. Thus T'=0 and the result is
proved.,

T£9 or 9B do not have identities let 2T = 2 if 20 has an identity and At =
AL otherwise, similarly for B+. Because there are norm one projections from
A+ and B onto A and B respectively, A ® B is embedded isometl;"ically
in 2+ @ B+, and is an ideal. Since Az = A, By = B we see that (AR B)a
= A @ B. Because 2 is m-dimensionally weakly amerfuble, so is UT; simi-
lazly, B is n-dimensionally weakly amenable. So A+ Bt is (m+ n— 1)-
dimensionally weakly amenable by what we have proved and so A ® B is
(m +n — 1)-dimensionally weakly amenable by Theorem 3.1.
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ExaMPLE 3.7. The conditions % = Uy, B = By are essential for this
result. Of course, if m =n = 1 then automatically % = s and B = By, so
this condition can be omitted. However, if we take 2 = £*(Z), B = {}(N)
with convolution multiplication in both cases then AR B = £(Z x N)
and (2 ® B), consists of functions supported on {(r,s) : r € Z, s = 2}.
Thus the codimension of {2 & B)y in A & % is infinite and hence A ® B
is not p-dimensionally weakly amenable for any value of p, whereas % is 1-
dimensionally weakly amenable (in fact amenable} and B is 2-dimensionally
weakly amenable because it is singly generated.

4. Growth criteria for n-dimensicnal weak amenability—
Beurling and Lipschitz algebras. We now look at the extension of [1,
Theorem 1.4] to n-dimensional weak amenability.

TaeorrM 4.1. Let m € N and suppose that U is unital.
(a) If A contuins a subset E such that

(1) E is a subgroup under addition,
(i) 2L is the smallest closed subalgebra generated rationelly by E,
(iii) for each a in F,

€™} = o(m™ )Y gs m — oo,
then R is n-dimensionally weakly amenable.
(b) If A contains a subset G such that

(i) G is a group under multiplication,
(i) 2 is the smallest closed subalgebra rationally generated by G,
(iif) for each o in G,

[a™]| = o(m™®+1y 45 m — oo,

then QU is n-dimensionolly weokly amenable.

Proof. (a)Let T bean alternating n-derivation on 2 with values in 2*.
Then, by the derivation identity, for ay,...,am € E,

T(e™, ..., ™) = m”emc“”"""”'”)T(al, ey G )
This shows that
IT(ar, . ., a)]| = mjemmm+-taniemes | gmany)|
<mT*| T [em| [le™ ] .. [[e™m ],
where ap = ~(a; + ...+ a,) € E. Using the growth condition on |[e™®|| we
see that the right converges to zero as m — o0, so T(a1,...,a,) = 0. By

Corollary 2.6, this implies that T = 0.
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(b) This is proved in the same way using the identity

art. .o T (ay,. . SGn) =m a7t sty (e, . L, a™)

k23
for elements ay, ..., a, of G.

The same argument gives a number of different results—for example,
(i)-{iii) of (a) could be replaced by

. - —X P ) Wy G
nf A7l Moo A | M = 0

for all ay,...,a, in 2L

We now consider the n-dimensional weak amenability of Beurling alge-
bras. These are defined in [1]. Even if we restrict ourselves to abelian groups
which are discrete, there is a range of such groups and a considerable variety
of weights on each group. They are of theoretical importance because any
commutative unital Banach algebra 2 is a quotient of a Beurling algebra
(just take G to be the group of regular elements, w(g) = ||g||, and the identity
map on & extends to a continuous algebra homomorphism of £ (G, w) into A
which is surjective because each o in 2 can be expressed as a = (a— A1)+ AL,
which is the sum of two elements from G if |A] > ||a||). However, this is more
a cominent on the complexity of quotients of Beurling algebras than a simpli-
fication of Banach algebra theory. Theorem 4.1(b) immediately shows that
if the weights satisfy w(g™) = o(m®/{"*1)) as m — oo, for all g in G, then
£ (@, w) is n-dimensionally weakly amenable, and Corollary 2.8 shows that if
G is generated by n elements then £1(G,w) is (n + 1)-dimensionally weakly
arnenable. We shall consider only the case G = 7F. For p = 1, £1(Z,w)
is 2-dimensionally weakly amenable by the above remarks and is weakly
armenable if and only if sup k/(w(k)w(—k)) = cc. This last result includes
[1, Theorems 2.2 and 2.3] and is the case p = 1 of Theorem 4.2 below.
Though we will not prove it, £1(ZP,w) is weakly amenable if and only if
sup ||&||/ (w(k)w(—k)) = oo, where the supremum is over k € 77 and || | is
the Buclidean norm on R? (or in fact any other norm, as they are all equiv-
alent). Theorem 4.2 can be extended in the same spirit to give a necessary
and sufficient condition for £* (ZP, w) to be n-dimensionally weakly amenable
when n < p.

THEOREM 4.2. The Beurling olgebra U = £1(ZP,w) is p-dimensionally
weakly amenable if and only if the weights satisfy

sup det K/ (w(ky) . . . w(kp)w(—ka)) = oo,

X
where the sup is over all p X p matrices of integers K ky,.... kp are the
rows of K and ke = ky + ...+ kp.

Proof. Let z1,...,2, be the standard generators of 7Z*. By Corollar-
jes 2.6 and 2.7, an alternating p cocycle from 2 to A* is determined by
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T(zy,...,2p) € A" and thus by the numbers
t(l):(zfl...zp_lT(zl,...,zp),l), [eZr.
Hence
(T(k1,- .. kp), 1) = t(ke + 1) det K
where ks = k1 + ...+ kp and K is any p x p matrix of integers. Here we
are considering G = ZF as a subget of & but need to bear in mind that
the algebra multiplication restricted to & is the group operation---that is,
addition.
We have
{T (k1 k)l D] S T )lw () - . wlkp)w(D).
This shows that
(%) sup t{ke -+ 1) det K
w |wlke) . w(kp)w(l)

Thus if % is not p-dimensionally weakly amenable there are values of the £(1),
not all zero, for which this supremum is finite. Conversely, if there are
such values of the #(I) then the above equations define (T'(k1,....kp), )
in such a way that it can be extended to (T'(a1,...,ap), b) for all ay, ..., ayp,
b in 2 and so gives a p-linear map T from A to A* with |T|| not greater
than the supremum. It is straightforward to verify that T is an alternating
p-derivation. Thus 2 is p-dimensionally weakly amenable if and only if the
only function ¢ making the supremum in (*) finite is ¢ = 0.

Replacing [ by [ — ke we see that 9 is p-dimensionally weakly amenable
if and only if there is no non-zero £ with

( |det K|

sup
l

sup

HD)| < co.
% w(k) . w(kp)w(l — k.))' (B <o
If
S'IIl{pidet K|/ (w(k) .. wlkplw(—ke)) < 00
then this inequality is satisfied with ¢(I) = 0 except for I = 0, so 2 is not
p-dimensionally weakly amenable. If this inequality is satisfied for some non-

zero t then choosing ! with #(I) # 0 we have supy |det K|/(w(ky) ... w(k,)
x w(l — ka)) < 0o. However,

w1t s;p |det K|/ {w(ki). .. wlkn)w(—ka.))

i

sup det K/ (w(k1) ... w(kn)w(—ke (1))

iA

stflfp det K/{w(ky)...w(ks)w(l — k) < o0,

which concludes the proof.
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We now consider the Lipschitz algebras 2( == lip, K introduced in [1,
§3]. In the proof of [1, Theorem 3.10] the authors show (without using the
hypothesis that « < 1/2) that if & is a real-valued function in Lip; K then
lexp(inh)|| = O(n®) as n — oco. Thus using Theorem 4.1(a) with E as
the set of such elements h we see that if @ < n/(n + 1) then lip, K is
n-dimensionally weakly amenable. If 2 is generated by n elements, so that
K is homeomorphic with a compact subset of C*, then lip, K is (n + 1)-
dimensionally weakly amenable. As for weak amenability, to go beyond this
depends rather more delicately on the metric, so we only get further results
in special cases.

THEOREM 4.3. Let K = T" and let « € (0,1). Then A = lip, T™ is
n-dimensionally weakly amenable if and only if « < nf(n+1).

Proof. Put o = n/(n + 1). First of all we show that A is not
n-dimensionally weakly amenable if @ > ¢. Define an (n + 1)-linear func-
tional 7 on C*(T™) and an n-linear map 7' from C* to (C1)* by

afi
T(fO: . --afn) = (fO:T(fla”-:fn)) :Sfl)det ey dz,
3
where fo, ..., fn € C*(T") and dz is Lebesgue measure on T* (normalised

to give a total mass of 1). These are continuous multilinear maps. If f; =
exp(i(z - my)), where m; € Z* (j = 0,...,n), then

{0 ifmg+ ...+t mn #0,
o fo) = ()ndetmy, i g + ...+ Mg = 0,

This is an alternating function of my, ..., m, and an elementary calculation
shows that in fact it is an alternating function of my, ..., m,. Because the
trigonometric polynomials are dense in C!, v is an alternating (n+ 1)-linear
functional. Another elementary calculation shows that 7" is an n-derivation
which is clearly not zero. Thus C? is not n-dimensionally weakly amenable.

We shall use interpolation procedures to show that 7 is continuous in the
lip,, norm and so gives an alternating n-derivation from 2L to A*. Denote by
S the set of elements s of (R )**! for which there is a constant C (depending
on 5) with

7(fos - » Fa) S CllfollZs - - I fnll2as

where | || is the norm in the Sobolev space Hp on T7 2, Definition _6.2.2].
Clearly, H = L, and by [2, Theorem 6.2.3], C' C H} is a continuous
embedding onto a dense subspace. A simple calculation, together with the
definition of T, shows that for fo,..., fa € CV,

7 (or- s fo)l < Ol fl g - Flih

Thus (1,0,0,...,0) € S. By the alternating property of 7 we see that all
the standard basis vectors of R*t! lie in §. The interpolation theorems (2,
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Theorems 4.4.1 and 6.4.5(7)] show that S is convex (in 6.4.5 the restriction
Sg # 81 18 clearly not necessary if py = p; since the interpolation gpaces are
all the same in this case). Thus S contains (o, ..., o), that is, 7 is continuous
with respect to the Hj,, norm on each variable.

To complete the proof of this part of the theorem we show that if 0 <
s < a <1 thenlip, C By ;; € H;,, with continuous embeddings. The
first of these follows from [2, Theorem 6.2.5| with N =0, m=1, p=n+1
and ¢ = 1. We have w} (¢, f} < [|fllat®, so that 0 < t™*wl (¢, /lt~! <
[l fllat® =1, which is integrable over [0, =], showing that || ||, dominates
Il ll5+1,1- The second embedding is (2, Theorem 6.2.4(9)).

To show that lip, T" is not n-dimensionally weakly amenable if v =
n/(n +1) first of all we show that 7 above is not bounded with respect to
this Lipschitz norm. Let { € N and r = 27%, where o = n/(n + 1), and put

h(f) = Z;=1 riexp(27i6) (f € R). As 0 < a < 1wehave1/2 <7 < 1, s0

1
Il < —
—r
independently of I. Also, for k € {1,...,1},
k !
o C (op)E k1
ey - nid)i = (P2 )lo-gl+ 3 2t < Bljg g4 20
o Poraf T — lL—r

If |8 - ¢| <, choose k with
2Fr <0~ <27 i |6-¢| > 27
and k =1if |§ — ¢| < 27'x. We have (2r)% = 27*(a—1) < |9 _ g|o=1(2qy)1-
and if |0 — ¢| = 27 then 2rF*tl = 2r . 275> < 9pr—2|g — ¢|*, 50 that
2,”.)1—5«
1(6) - hie)) < |
@) - he)l < | E

By periodicity this holds for all #, ¢ in R and shows that h € lip, T and the

lip, norm of A is bounded independently of I. We now define functions in
lip, T" by

2r@T @ o
- T |6 — $|=.

Fol@s, ..., 80) = h(—(61 + ... +6,)),
fm(f1, ..., 0) =h(0y), m=1,...,n
Clearly, the Fourier series of these functions are
L . !
Z v exp[—2%4(fy ... +6,)] and er exp(27ifp, ).
=1 Jj=1

A straightforward calculation using the orthogonality of the functions exp (76}
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shows that
l .
T(for-oos f) = Y 2md,
j=1

Now let [ — co. As the lip, norms of fj,..., fn are bounded and the right
hand side tends to infinity because 2r > 1 this shows that 7 is not bounded
with respect to the lip, norm.

Now suppose T' is a continuous alternating n~-derivation from 2 into 24*.
As in our discussion of the Beurling algebras, T gives rise to, and is deter-
mined by, a complex-valued function ¢t on Z™ defined by

tM) = (a7t 27 (21,5 20 )y Fol
where ‘
folBy,. .., 0n) = exp(i(lify + ... +1n6,)),  2(01,...,8.) = exp(it;).

Let ¢ € T and denote the corresponding translation operator, which is an
isometric algebra isomorphism, on 2l by S,. Putting

To(fis. s fu) = 83T (S fr,- - -, Safn)
we get another alternating n-derivation and, because Syz; = {exp(ig;)) 24,
the corresponding I-function is
ty(1) = (exp(i(l- $)))E(1).

Now consider W = { Ty d¢, which exists because Spa is a continuous function
of ¢ for each a in 2. It is clearly also an alternating n-derivation and the
corresponding ¢-function w is given by w(0) = #(0) and w(l) = 0 if I # 0. For
trigonometric polynomials fa,. .., fa,

(W{fr,- s Fa)s fo) = 7(for- - F)HO)

since this obviously holds if f; = 2; (j = 1,...,n) and fo = exp(¢{l - 8)),
and so for any trigonometric polynomial fo. As each side represents an
alternating n-derivation from the frigonometric polynomials to their al-
gebraic dual and, by Corollary 2.7, these are completely determined by
their values om zy,...,%n, the equation is established. However, the left
is continuous in the lip, norm and 7 is mot, so #{0) = 0. If we had put
W = (exp(i(k - ¢))) {(exp(~i(k - ¢)))Tp dgp for some k € Z7, the same argu-
ment would apply except that we would have w(0) = t(k) and conclude that
t(k) = 0. Thus all the ¢(k) are 0 and so T is 0.

COROLLARY 4.4. Let m,n € N and a € (0,1). Then & = lip, T is
n-dimensionally weakly amenable if and only if m < n, or m = n and
a<n/in+1). _

Proof By Corollaries 2.5 and 2.8, because A has m generators, it is
n~dimensionally weakly amenable if n=m+1 and hence for all n > m.
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Suppose that m > n and a < n/{n + 1). 2 is generated by the m
generators z;(6) = exp(if;), j = 1,...,m, and, by considering functions
which are constant on the other 8y, each n-element subset of these generators
lies in a subalgebra isomorphic with lip, T”, which is n-dimensionally weakly
amenable. Thus if T is an alternating n-derivation with values in a symmetric
Banach ¥-module, by restricting to the subalgebra we see that 7" is zero for
any n-generators, and so by Corollary 2.6, 7' = 0.

Suppose that m > n and a > n/(n + 1). By restricting to {6 : # &
T, Opyr = ... = b, = 0} we see that lip, T" is a quotient of lip, T™
and so by Theorem 3.1{i) the latter is not n-dimensionally weakly arnenable
because the former is not.
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Hereditarily finitely decomposable Banach spaces
by

V. FERENCZI (Paris)

Abstract. A Banach space is said to be HDp if the maximal number of subspaces
of X forming a direct sum is finite and oqual to n. We study some properties of HDn
spaces, and their links with hereditarily indecomposeble spaces; in particular, we show
that if X is complex HDy, then dim(£(X)/S(X)) < n?, where S(X) denotes the space of
gtrictly singular operators on X, Tt follows that if X is a real hereditarily indecomposable
space, then £(X)/S(X) is a division ring isomorplic either to R, C, or H, the quaternionic
division ring.

1. Introduction

General introduction. The problems discussed in this article came as
natural questions after the article of W. T. Gowers and B. Maurey ([GM])
solving the unconditional basic sequence problem. In a Banach space X, a
sequence (en)nen is said to be a basis if every vector z in X can be written
uniquely in the form ¢ = 25_20 Aie;, where the )\;’s are scalars. It is an

unconditional basis if there is a constant C such that the inequalities

IS nie| < 03 ne
e E i==0

hold for all subsets E of N and all coefficients A;. A sequence is a basic
sequence (resp. an unconditional basic sequence) if it is a basis (resp. an
unconditional basis) of its closed linear span. Details about these notions
can be found in [LT].

A lot of classical spaces have an unconditional basis (spaces lp, for p > 1,
have one) but for example Iy does not have one; an example of a Bana(?h
space without a basis is even harder to find, but was given by P. Enflo in
1973 ([E]). On the other hand, it is a classical result that every Banach
space contains a basic sequence; but the question “Does every Banach space
contain an unconditional basic sequence?” has remained unsolved for many

1091 Mathematics Subject Classification: 46820, 47B37.

[135)



