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Complementation in spaces of symmetric tensor
products and polynomials

by

FERNANDO BLASCO (Madrid)

Abstract. For a locally convex space E we prove that the space of n-symmetric
tensors is complemented in the space of (n + 1)-symmetric tensors endowed with the
projective topology. Applications and related results are also given.

In this paper we obtain complementation properties of spaces of con-
tinuous homogeneous polynomials on a locally convex space E that have,
in particular, consequences in the study of the property (BB)y s recently
introduced by Dineen [7].

As was pointed out by Ryan in his thesis [14], the completion of the space
g}i n-symmetric tensors endowed with the projective topology (denoted by

&, ) is a predual for the space P("E) of all n-homogeneous continuous
polynomials on E. Using this we prove results for spaces of polynomials from
results we obtain al)gut symmetric tensors. .

We prove that &, , B is a complemented subspace of @, B and
from this we show that, for locally convex spaces F and G, the space
P("E; @) of all n-homogeneous continuons polynomials from E into G is
a complemented subspace of P(*"1E; G) when we endow these spaces with
the strong dual topology. Moreover, the complementation of P("E;G) in
P(+1E; G) for all the usual topologies on these spaces is obtained. From
this it follows that the property (BB)ns on a locally convex space implies
the property (BB)ms for m=2,...,n

We consider locally convex spaces over K = R or C. The notation con-
cerning locally convex spaces and tensor products is standard ([12, 13, 11]).
The family of continuous seminorms on the locally convex space E will be
denoted by cs(E). In order to deal with polynomials we consider the sym-
metric tensor product ([14, 8]). We say that a tensor § € E@E is symmetric
if it has a representation f = %Zﬁ;l (a; ® by + b ® a;), where N € N and
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a;, b; € E for each i € {L,..., N}. The symmetric tensors form a linear sub-
space of E @ E that we denote by F®g . F @)5,,, E will denote the closure of
E ®, E in the completion E &, E of E ® E, where 7 denotes the projective
topology on E ® E. In the same way we define an n-symmetric fensor as a

tensor § € @, F = E® =. @ E that admits a representation

N
Rak (#) (2) 4)
=2 =1 D Tolyy O Ty 8- @0,
g=1 ag€Py

whexe I, denotes the group of permutations of n elements and mgi), e ,:c:gf’ )

€ Eforeach ¢ € {1,...,N}. Welet

1
o] Z To(1) @Ze() @ .- . D Tp(n) = 21 By T2 Ba - .. Bs T
IUEPn

Note that for z; = ... =z, = ¢ we have
IR @z=20 T.®@1= ®,.z.

By ﬁfle polarization formula, any symmetric tensor can be written as a
sum » .7, €5 @, %5, with M €N, z; € E and g; € {—1,1} for each j when
K = R; in the complex case we can assume e; = 1 for each j, so a symmetric
tensor i.s written as Ej‘f__l X, z;. We define ®N’ME = I ®gx = R, B
as the linear space spanned by the symmetric n-tensors and the projective
topology on this space as the topology induced by the projective topology
on @, E = EQr 2. @ E. A fundamental system of seminorms for the
projective topology m on @ E is {@Q,a : & € cs(E)} ([13, 8]), where

N N
(Q,a)(f) = inf{za(wgl)) ‘ --a(mgﬂ)) = ngl) ®..® mgn)},
=1

=1

so the projective topology on &), . E can be defined by the restrictions of
these seminorms. Another fundamental system of seminorms for the projec-

tive topology m on @, (E is {Q),, ,: o € cs(E)} ([14]), where
N N

(®.0)(6) =it { 3 ale)" 1 0= 3@, }-
i=1 =1

The completion of @,, . E will be denoted by @n,”E.

If G is a locally convex space, we denote by P(*E; G) the space of all con-
tinuous homogeneous polynomials of degree » from E into G. When G =K
we shall write P("E; K) = P("E). For a polynomial P € P("E; @) we write

icm

Complementation of tensor products 167

P to denote the n-linear symmetric mapping satisfying P(z) = P(x, T E)
for every 2 € F. The space P("E; G) can be identified with £(®W15E; @) in
the following way: given P € P("E; ), we take P ¢ E(®W,3EE G) defined,
in the natural way, from the equality (®, =, P) = P(x} ([14]).

We require the following two lemmata in the proof of the main result.

LeMma 1. Let z,y be linearly independent vectors in E. Then, given
n=1,2,..., there exist A\1,..., Any1 € K such that

n--1

Rz = > M@, (2 + ky)-

k=1

Proof Let F be the 2-dimensional vector space spanned by = and y.

By [14], Lemma 5.1, {z ® T @ @Y ®s 7. ®sy 7 =0,...,n} is a basis
of @, sF- Since

n

®n(m -+ k’y) = Z (7:) K s \:’ Ry 2 Vs Y Bs = s Y
=)

foreachk=1,...,n+1, and

det (((z + 1) (?) ) :j:D) #0,

we conclude that {®, (z+ky) : k=1,...,n+ 1} is a basis of &, [F. In
particular,
n+1

R,z = M@, (z+ky)

k=1

for some A,..., App1 €K &

Lemma 2. Let B be a locally conves space, 8§ € &, F and ¢ € E,

@ # 0. Then there exists a representation 6 = Zf’;l £; Q) Ts with @(z:) # 0
Jor eachie {1,...,N}.

Proof. Take a representation # = 2;11 £; @, z; and e € E such that
o(e) # 0. We only have to consider J = {j € {L,. . R} p(z;) =0} and
apply Lemma 1 to each couple (z;,¢) with j &€ J. »

TueoreM 3. The space Rpsrl s 0 complemented subspace of
R0, for each positive integer n.
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Proof Fix e € E and ¢ € E’ such that ¢(e) = 1. Define a mapping J
on the tensors ), z, © € F, by

i n+1 &
. . =kl
i, z) = E :( N )(—1)’““(,0(:3)’“ @ T @ R B Ry 7 D
k=1

Easy computations give us the following formula that will be used later:
3 ®z)p(@) = @it — Qnra(z — p(a)e).

Extend the mapping 7 by linearity to each element 6 = Zi\i.1 £;Q, T &

&, F as follows: j(f) = S €:5(®, ;). The mapping 7 : &, F —
nt1,5 18 well defined and linear. ,

Next we define a projection 7 from @, £ onto &), . E by

N N
7D ei®niizi) = 3 ciole) @

The mapping 7 is a well defined linear mapping and we claim that 7 o 5 =
Mg =-
From the equality

Q1% ~ Qi1 — p(z)e) = p(2)(®, ),
we get
T(@ni1® — @1 (& ~ w(ze)) = () (1H{®,2))
ie.
p(z) @,z - ple — plz)e) @, (z — plz)e) = p(z)(7 ¢ j}(@,2)-
Since ¢(z — @(z)e) = 0, for every x € I, we have
72 j{8,7) = &,z

for’ z & ker @ and o § is the identity mapping over the tensors that can be
written as (), = with z & ker . Using Lemma 2 we write each tensor § €

®3,s£ as a sum § = }:211 €; &, #; with ¢(2;) # 0 for each ¢ £ {1,..., N},
arn en,
7T0j=Id®nn,E.

Finally, we prove continuity of the mappings 7 and =.

Choose & € cg(F) and 6 € SR IR (] }:ﬁ,:l €:®,, z; is a representation
of &, then
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@,a)i) = @nne) (L3 ("t

=1 k=1
X p(@:)* e @t e @ ni 8 By3i) )
N n+1
< 3 (3 et rateateo )
i=1 k=1
N ntl
< 3 (3 () ale)*) uples el (@)
=1 k=1
N
= CZ'F(:EZ')”,
i=1
where 7 = max{a, [p|} € cs(E) and € = 332} (*f1)ale)k. Since this is

true for each representation of ¢, we have

(®nr12)(5(8)) < C(Qn,6m)(8)
and, consequently, the mapping j is continuous.
For § == Efil & ®py1 i and a € cs(E),

N N
(®,0)(7(0)) = (®,0)( D esw(@)®,2:) < Y (Bna)(ere(:)®p:)
t=1 i=1

<

N
ozlale)™ < 3 r)™,
i i=1

with 7 = max{a, |@|} € cs(E). Taking the infimum over all representations
of & we have

N

il
-

(R, ) (()) < (Rrtr, 7)),

and the mapping  is continuous. m

The extension of the above theorem to the completed tensor product is
obtained in the usual manner.

COROLLARY 4. Let E be a locally convex space. Then for n = 2,3,...
andkeN, 1<k <n, Qo F 150 complemented subspace of &, . E.

For locally convex spaces E and G we denote by 3 the topology, recently
introduced i [7], induced on P("E; G) = LIQ), 5 - F @) by the topology 3

—

on L(Q®,, . E; G) of uniform convergence on bounded subsets of &,, ; . E.
On P("E; G) we consider, apart from 8, the following three natural topolo-
gies: the compact-open topology 7o, the topology 7 of uniform convergence
on bounded subsets, and the Nachbin ported topology 7, ([5]). Corollary 4



®
170 F. Blasco Im“

and duality imply that (P(™E), 7} is a complemented subspace of (P("E), )
when n > m and 7 = 8 or 7, (recall that (P("E), ) = (&, . .F)p and
(P("E), Tw) = (B 4 - F)i, the inductive dual). We extend this assertion in
the following proposition.

ProprosiTiON 5. Let E and G be locally conver spaces and let m € N,
Then (P(™E; @), 7) is a complemented subspace of (P("E;G), 1) for 7 =
To, To, B o 7o and n > m.

Proof It is enough to congider n = m -+ 1.

Fix e € F and ¢ € E' such that (e} = 1. Consider the mappings j and
7 in Theorem 3, and define

T L B3 C) 2 P("E; G) = L@y, B3 ©) 2 P(™IE; G),
P—Por,
and
I LR 1,65 G) = P(mTE;G) — LR, F G) = P(TE; G),
Q@ Qoj.
. Since IT o J = Idp(m g,e), we only have to prove that J and IT are con-
tinuous for the different topologiecs we are counsidering. We begin with the
compact-open topology 9. The topology induced on £(®,,, . E; &) (m € N)

by the‘compact—open topology 1o on P(™FE; &) through the algebraic iso-
morphism £{@), . F;G) ~ P(™E;{) is generated by the seminorrus

£(@p o B: G) 3 P || Pllyyg,, k = sup V(P(®,2)),
seX
where v € ¢s(G), K is a compact subset of F and ®,,. K = {®, .« :

xe K}, "
Hence

“J(P)”%@?WHK = HP o w[;.r,@mﬂ‘f{ . s:g fy(P o ﬂ‘(®m+1m))
= jg}%')’(?(@(m)®m$)) = sup o (z) P(®, 7))

< lply.x sup V(P (@) = Iiplo, || P}

V1@ K

Eor every F € P(™E;G), which implies that the mapping J is continuous
or Tp.

On the other hand,
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1Z(Q) I, %
= Qe il e, x = sup Y(QU(® )

& (m+1 k41, =170, & mktL
sup ¥ Z k (_1) QD(IL') Q(E,...,e,ﬁ, ,.’L’)

2K

k=1
m~+1
m+1 _ “ .
= (kz ( k )‘P ’;,;%)IQIT,(KLJ{E})W = Ol Q@ x>
=1
where
m+1 1
- mA 1\ eer) (mt )7 '
C—(,GZ___:L( , )|(p%K) RSy and K' =K U {e},

so the mapping IT is continuous for 7y (to get the last inequality the polar-
ization formula has been used).

The same idea, working with bounded sets instead of compact sets,
proves that those two mappings are also continuous for the corresponding
topologies 7.

To prove the continuity of J and IT for the 7., topology, there is no loss
of generality in assuming that G is normed. We then have

(P(™E; &), Tw) = h_m; (P(mEa; G): )-
atccs{E)

For a € cs(E) with o > |ip|, the mappings Jo : P(TEs G) —
P(™HLE,; Q) and I, : P("T1E,; G) — P(™E4; G), defined by J and II
above, show that (P(MEa; G),7) is complemented in (P(™' B,; G), 7).

The continuity of J and IT is a direct consequence of the commutativity
of the following diagrams:

P(MEqy; G) —— P(™E; G) P(MHE,; G)——P(™ 1 E; Q)

| | | n| .
(™1 By; G) —>P("E;G) (" Eai G)—=P("E;G)

Remark 6. The above proposition is due to Aron and Schottenloher
({8]) for B Banach and G = C using a different technigue.

For a Fréchet-Montel space E, 7 = 7, on P("E) if and only if E has
property (BB)n,s. This property has been introduced by Dineen ([7]) as an
n-fold version of property (BB) introduced by Taskinen ([15]) in relation
with the “Probleme des topologies” of Grothendieck ([10}).

A locally convex space E has property (BB)ns for n = 2,3,... if for

every bounded subset B in ®'ﬂ-:5- L there is a bounded subset C in E such
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that B is contained in the closed convex hult of @, .C = {Q,z : z € C}.
For several classes of Fréchet~Montel spaces E, g = 7, on P("E) ([1, 6, 9,
4, 7]) but Ansemil and Taskinen ([2]) gave an example of a Fréchet-Montel
space E such that m # 7, on P(2E). The following corollaries, which are
consequences of Corollary 4, give new information about property (BB), ..

COROLLARY 7. If for a givenn € N, o, = 8 in P("E; G), then 7, =
on P(™E, G) for every m with1 < m < n.

COROLLARY 8. If given n € N, n > 2, E has the (BB), ; property, then
E has the (BB),, s property for each positive integer m, 2 <m < n.

Proof. It is enough to note that for k € N, k > 2, F has proparty
{BB)y if and only if 7, = 8 in P(*E) ([7]). =

This corollary simplifies the hypothesis in some theorems; see [6], for
instance.

Acknowledgements, Thanks are due to Prof. J. M. Ansemil for all
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paper.
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