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Rotundity and smoothness of convex bodies
in reflexive and nonreflexive spaces

by

VICTOR KLER (Seattle, Wash), LIBOR VESELY (Milano)
and CLEMENTE ZANCO (Milano)

Albstract. For combining two convex bodies € and D to produce a third body, two
of the most important ways are the operation -+ of forming the closure of the vector sum
¢ +.D and the operation F of forming the closure of the convex hull of C U D). When
the containing normed linear space X is reflexive, it follows from weak compactness that
the vectar sum and the convex hull are already closed, and from thig it follows that the
class of all rotund bodies in X is stable with respect to the operation ¥ and the class of
all smooth bodies in X is stable with respect to both + and 7. In our paper it is shown
that when X is separable, these stability properties of rotundity (resp. smoothness) are
actually equivalent to the reflexivity of X. The characterizations remain valid for each
nonsepayable X that contains a rotund (resp. smooth) body.

Introduction. Except where otherwise stated, X will always denote a
normed linear space (i.e., a normed real vector space). For two subsets C
and D of X, C + D denotes the vector sum and ¢y D denotes the convex
hull of ¢ U D. The closures of ¢+ D and C v D are denoted by C T D
and C'# D respectively. As the term is used here, a body in X is a subset
that is bounded, closed, convex, and has nonempty interior. When C and
D are bodies, so are €' D and C7 D, and in fact + and 7 are two of the
most important and useful ways of combining two bodies to produce a third
body. The present paper is concerned with the extent to which the basic
properties of rotundity (== strict convexity) and smoothness of bodies are
preserved by the operations 4 and 7.

When X is reflexive and € and D are bodies in X, it follows from weak
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compactness that both €'+ D and C' v D are closed. In this case, rotundity
and smoothness exhibit the following stability properties with respect to the
operations + and ¥

(1) if C and D are both rotund, so is C'+ D;
(ii} if at least one of C' and D is smooth, so is ¢ -+ D;
(iii) if C and D are both smooth, so is CF D.

The main result of the present paper (stated in its final Corollary 4.4)
asserts that if X contains a rotund body, then condition (1) is equivalent
to the reflexivity of X, and if X contains a smooth body, then cach of the
conditions (ii) and (iii) is equivalent to the reflexivity of X. The assumptions
about the existence of rotund or gmooth bodies are unnecossary whoen X is
separable, for every separable normed linear space admits an equivalent
norm in which the unit ball is both rotund and smooth [Da).

Our arguments are somewhat technical in nature, because we have
phrased them so that the characterizations of reflexivity are valid not only
for rotundity and the usual smoothness, but also for several relatives of
smoothness. However, the reader can grasp the main ideas of the argu-
ments by reading only the statements of Theorem 1.5 and the Extension
Lemma 3.4, and then reading the statements and proofs of Theorems 4.1
and 4.3 and of Corollary 4.4.

1. Definitions and preliminary results

1.1. DEFINITION. A bornology on X is a covering 8 of X by nonempty
bounded subsets such that 3 is closed wnder scalar multiplication and under
the formation of finite unions. A closed convex set G C X with 0 € int C is
B-smooth at a point z € C if C's Minkowski functional (gauge functional)
pc is p-differentiable at z, i.e., if for all § € 3 the limit

tim polz + tv) — po(z)

t—Q t
exists uniformly for v € S. A general closed convex set ¢ ¢ X with
nonempty interior is S-smooth if each of its translates (equivalently, some
translate) Cy with 0 € int Cp is 8-smooth at each 2 € 5.

1.2. Remarks. (a) Natural choices for & are all finite sets (Gateaus
smoothness, or simply smoothness), all weakly compact sets (Haodamard
smoothness), or all bounded sets {Fréchet smoothness).

(b) The assumption that |8 = X assures that each f-smooth set is
smooth in the sense of admitting a unique supporting hyperplane at each
boundary point. (This is in fact equivalent to Gateaux smoothness.)

(¢) If € and D are closed convex sets in X such that § # int & C D, and if
C'is B-smooth at a point © € CNID, then D is also f-smooth at =. Indeed,
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suppose 0 € int . Choose f € Opp(z) (the subdifferential of pp at z; cf.
[Ph]). Then necessarily f = p[,(x), since pp(z) = pe(z) and pp(y) < po(y)
for all y. Let q{y) = po(z) + f(y — z), and note that the functions po and
g are both S-differentiable at ¢ (g is affine!), that ¢ < pp < pe, and that
g(z) = pp(x) = po(z). Hence also pp is F-differentiable at z.

(d) Suppose that ¥ and Z are normed linear spaces, and K C ¥ and
L c Z are closed convex sets with 0 € int K and 0 & int L. Suppose that Sy
and Gz are bornologies on Y and Z respectively. With 1 < ¢ < oo, consider
the closed convex set

C={{y.2) €Y x Z | px(y)? +pr(z)? < 1}

and the bornology 5 on Y x Z that consists of all finite unions of sets of
the form 4 x B with A € 8y and B € Gz. If K i8 fy-smooth and L is
Bz-smooth, then C is S-smooth. This follows in a standard way from the
fact that po{y, 2)? = pr (¥)? + pr(2)2

1.3. DEFRINITION. Let 7 be a Linear fopology on X, that is, a topology
with respect to which the operations of vector addition and multiplication by
scalars are jointly continuous. We shall say that a closed convex set C C X
with int C # @ is 7-LUR at a point z € 8C if it is true that z, — z whenever
2, € C with dist(3(zn +),8C) — 0. This is a natural generalization of
the local uniform convexity first studied by Lovaglia [Lo].

1.4. Remark. If C and D are closed convex sets in X such that § #
int C' < D, then each point of the set 8C N HD that is an extreme point of
D is also an extreme point of C.

At least for its main particular cases, the following Theorem 1.5 is part of
the mathematical folklore. We include a proof for the sake of completeness
and to show that it continues to hold in the more general setting employed
here, although our main results do not concern 7-LUR.

1.5. THEOREM. Suppose that C and D are bodies in a reflexive space X,
that + s a linear topology on X and B is a bornology on X. Then C+ D and
C ~ D are closed and the following implications hold:

(i) if C and D ave both T-LUR (resp. rotund), so is C + D;
(ii) if at least one of C and D is B-smooth, so is C + D;
(iii) #f C and D are both B-smooth, so is Cy D.

Proof. A simple weak-compactness argument implies that both ¢+ D
and C'v D are closed.
(i) To prove (i), we first establish the following

Oramd. For each e € C and d € D,
dist(c + d, 8(C' + D)) = dist(c, 8C) + dist(d, 8 D).
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Let ., = dist(c, 8C) and 74 = dist(d, D). Then, if B(z,) denotes the
closed ball of radius r centered at @, B(c,r.) € C and B(d,rg) C D, whence
Blc+d,r.+rg) C C+ D, and that proves the Claim.

Nowif z € 8(C+D), {z,} C C+D, and dist(}(z+2,),8(C+ D)) — 0,
take ¢,cn, € C and d,d, € D such that ¢+ d = z and ¢, + d,, = z, for
all n. Then by the Claim, ¢ € 8C, d € 3D, dist(1(c + ca), 8C) — O:.anl
dist (%(d + dn),8D) — 0. If C and D are 7-LUR then ¢, = ¢ and d,, — d.
Hence also 2, — 2. The rotund case can be handled similarly.

(ii) Now suppose that D is 3-smooth. Take & € §(C'+ D) and a nonzero
f € X* such that f(z) = sup f(C+D). Write z = c+d, wherec€ C, d € D,
Then

f() + f(d) = f(z) = sup f(C + D) = sup f(C) + sup f(D),
whence f{c) = sup f(C) and f(d) = sup f(D). Consequently,
f(z) = f(c) + sup f(D) = sup f(c + D)

and hence z € d(c+ D) NA{C + D). Since cleaxly c+.D € C+ D, the body
C + D is B-smooth at = by Remark 1.2(c).

(iii) Suppose, finally, that both C' and D are g-smooth, and that @ €
8(CyD). Take a nonzero f € X* with f(z) = sup f(C v D)) and write
z=(1-A)etAdwithee C,de D,0 < A <1 Then the body (1-2)C+AD
is contained in ¢« I} and

f(z) <sup (1 - A)C +AD)} < sup f(C v D) = f(=).
Consequently, z € 8((1 — \)C' + AD) N &(C ~v D). By (ii) above, the body
(1 = A)C + AD is B-smooth at' z. By Remark 1.2(c) again, the larger body
C' v D is also S-smooth at . m

We want next to show that even in a nonreflexive normed linear space,

Theorem 1.5 continues to hold when the bodies € and D are homothetic.

- A particular case of this result appears in [GKM]. We need the following
simple lemma.

1.6. LEMMA. Suppose that X is o topological vector spoce, 4 is o compact
subset of X, and B is a bounded closed subset of X. If T is a compact set of
scalars and f,g: T — R are continuous functions, then the set

Q= [JFN)A+g(N)B]
AET
15 closed in X.
Proof. Let {z,} be a net of clements of ¢ that converges to & point

z € X. We can write z, = f(A,)ay + g(A )by, where A\, € T, a, € A
and b, € B. By compactness (and passing if necessary to a submnet), it
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1s permissible to assume that ), - A € T and 0, —+ a; € A. Thus
g\ = z ~ f(Ag)ao. If g(Xo) = 0, then g(X, )b, — 0, and hence

z € f(Aa)ao + 9{(X0)B C Q.
On the other hand, if a(Ap) # 0, then

b, — z = f(Mo)eo
g(Aa)
and thus = = f(Xg)ag + 9(Ag)by € Q. w
1.7. PROPOSITION. Suppose that C and D are bodies in a normed linear

space X, with D = w+aC for someu € X and o > 0. Then the sets C'+ D
and C v D are closed and the following implications hold:

(i) if C 1is rotund or r-LUR or B-smooth then so is C + Dj;
(ii) if C is B-smooth then so is C v D,

=:bg & B

Proof. It is clear that D has all the rotundity and smoothness proper-
ties of C. It follows from (s convexity that €' -+ D = u + (14 a)C, and
consequently C + D is closed. By Lemma 1.6, C'v D is closed, for

CyD= |J (1-NC+rD)= U Gu+i-2+aen0).
AE([0,1) A€(0,1]
The rest of the proof is identical to that of Theorem 1.5. u

While Theorem 1.5 establishes the stability of certain geometric prop-
erties of bodies in reflexive spaces, our main results are Theorem 4.3 and
Corollary 4.4, which are concerned with the nonstability of these properties
in nonreflexive spaces. The tools for the constructions that establish this
nonstability are developed in the next two sections.

2. Some properties of projective transformations. A projective

transformation is a mapping of the form
- Az +b
elz)+d’

where A is a bounded linear transformation, b is a vector, ¢ is a continuous
linear functional, and 4 is a scalar. We refer the reader to [Gr], [MS}, and
[K12] for the basic properties of such transformations. Here we use only the
spocial projective transformations for which A4 is the identity transformation
and & = (. The following proposition lists the properties that are needed
here. Properties (a), (b) and {c) are standard.

2.1. PROPOSITION. Suppose that 8 is a bornology on o normed linear
space X, and ¢ € X* \ {0}. Let

Hy = ((~00,1)) and H-_p = (=1, +o0)).
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Then the transformation
z

Pz ———
1 —(x)

has the following properties:

(a) @ is o homeomorphism of Hi onto H_1, with the inverse

. F
1+ (z)

(b) If z,y,2 € Hy and z € (z,¥), then &(z) € (&(z),®(y)). Conse-
quently, & maps conver (resp. affine) sets into convex (resp. affine) sets.

(¢) When restricted to an arbifrary bounded set A such thatsup p(A4) < 1
(resp. inf p(A) > ~1), & (resp. &%) is a Lipschitz transformation.

(d) If F and G are closed hyperplanes in X with 0 ¢ F N G, then ¢ can
be chosen in such o way that (F N H1) aend $(G N Hy) are parallel and
FNnGcCe(1).

(e) If C C Hy is a closed convez set with 0 € int C, then ${C) is B-smooth
and/or rotund if and only +f C s.

i F

Proof. (a) is obvious.

(B)If z =z +py, A >0, p >0, and A+ pg = 1, then a direct
computation shows that $(z} = A®(z) + pd(y), where

5o A —el@) #(1—¢(y)

el 0 PT T o0

> 0,
and A4+7 =1.

(¢) Suppose that 4 C X, s = sup{|la|]| | a € A} < o0, and d = 1 -
sup(A4) > 0. Then for each 2,y € A we have

uﬂ@méwm=1

T B % T _ Y
&r@@) 1“mw)+(1—mm 1—waH
ol -lo(@) ~ o)l lle—gll _ (slel , 1Y,
-u—wm»uwwwn+1—wm)5(cp “d)” ull

(d) By (a) and (b), the sets ' = S(FNHy) and G = $(GNH,) are closed
hyperplanes (relative to H. ). There exist f,g € X* such that F = f~1(1)
and G = g7M(1). Put ¢ = 3(f +g), ¥ = L(f —g). It is easy to see that
F C4(1) and G ¢ ¢~'(~1). Hence ¥ and & are parallel. Moreover,
P(FNG) = {1}.

(e) The Minkowski functional pg is everywhere finite, since 0 € int . Tt
is easy to see that €' C Hy implies (x) < po(z). Keeping this in mind, we
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can write (for any z ¢ X)
po(z) = inf{t > 0|/t € O} = inf{t > 0| B(z/t) € B(C)}
. x
=inf{t>0| ——— € $(C }
{ ¢t~ p(z) )
Substituting s := £ — ¢(z), we can write the last expression as

inf{s + @(z) | s >0, z € s$(C)} = w(z) + pacy ().

Thus pe = ¢ +pg(cy. This implies that C' is S-smooth if and only if () is
B-smooth. The equivalence of the rotundity of ¢ and that of B(C) follows
directly from (a) and (b). =

3. Rotundity, smoothness, and the Extension Lemma

3.1. CONVENTION. From now on, by a smoothness property we shall
mean B-smoothness for a bornology § on X that is closed under linear au-
tomorphisms of X and under bounded linear projections of X onto closed
hyperplanes in X. (Note that this condition is satisfied by all three of the
bornologies mentioned in Remark 1.2(a).) Moreover, we shall say that a
norm on X has a smoothness property, or is S-smooth, or is rotund, when-
ever its unit ball has this attribute.

3.2. OBSERVATION. Suppose that €' is a body in X with 0 ¢ imt C. If ¥
is a closed subspace of codimension one in X, then CNY is a body in ¥
that has all the smoothness properties of O, and is rotund whenever ¢ is.

3.3. LEMMA. Suppose that Y is o nonreflerive normed linear space and
P € Y*\{0}. Then there exists an equivalent norm ||-1] on Y that preserves
oll the smoothness properties of the original norm, is rotund whenever the

original norm is, and is such that ¢ does not aftein its supremum on the
ungt ball of (Y| - -

Proof. By a theorem of James [Ja] (cf. also [Di]), there exists a norm-one
functional ¢ € Y™ that does not attain its supremum on the unit ball By
of Y. Then dist(By,¢ (1)) = 0 and By N@~(1) = @ If p is a scalar
multiple of 14, we can take || - || equal to the original norm of V. If o, are
linearly independent, there exist u,v € Y such that o(u) == ¢)(v}) = 1 and
e{v) =) =0.Define T:Y — ¥ by Ty = y+ (¢(y) — () (v —u). Then
T? = I, 50 T is an automorphism of Y. Hence T(By) is the unit ball of an
equivalent norm || - || on ¥, and || - || is rotund and/or S-smooth whenever
By is. Tt is easy to see that T maps ¢~(0) onto »~1(0) and u onto v,
and hence also ¢~*(1) onto ¢~1(1). Consequently, dist{(T(By),¥1(1)} <
| T|| dist(By, =*(1)) = 0 and T(By) N¢~(1) = T(By Np~*(1)) = 0. In
other words, ¥ does not attain its supremum on T(By}. m
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The construction used to prove the following key lemma is technically
a bit involved. However, the underlying idea is geometrically very simple:
strategic use of projective transformations in conjunctior. with an adaptation
of the #7 norming process. The reader may find it helpful first to review the
statement of 2.1, and then, with the aid of an easily made diagram, to
go quickly through the proof of 3.4 for the case in which the space X is
2-dimensional. Then reread the proof of 3.4 in detail.

3.4. EXTENSION LEMMA. Suppose that F', G, and Y are three hyperplanes
in a normed linear space X such that no two of them are parallel. With
My = FN G, suppose that My C Y and the origin belongs to Y \ M. Let
K CY\ M be a body in Y that has the origin as an interior point, and let
z be o point in F such that K v {z} does not intersect G. Then there erists
abodyC CX suchthat CNY =K, CNF={z},CNGE =0, and C has
the same smoothness properties os K and is rotund if K is. If, in addition,
K v {—z} does not intersect G, then C can be chosen so that —z € OC.

Proof Choose ¢ € X* as in Proposition 2.1(d) relative to F and G
from our hypotheses, and consider the related projective transformation
@. Using the same notation as in the proof of 2.1(d), note that the set
Y = &(Y N Hy) lies between F and &, and henee ¥ is parallel to 7 and G. By
Proposition 2.1(c), the set K = P(K) is at least linearly bounded (bounded
whenever K has positive distance from M ). The Minkowski functional p %
of K is everywhere finite on V.

For any point o € H_1 \ Y and any real g > 1 consider the “£9 half
extension” C? of K, defined as follows:

f={weX|w=§+17, ek, t>0 pa@?+9<1}.

Now set z = $(z}, and fix & > 0 such that —aZ lies in H_; on the same
side of G as ¥. Put

¢ = ciuct

—E"

The set C¥ is of course closed, its convexity is easy to verify, and we shall
show that it has the same smoothness properties as X and is rotund when-
ever K is.

Suppose that K is rotund (resp B-smooth for some bornology 4). Then

by Proposition 2.1(e), the set K is also rotund (resp. §- -smooth). The closed
convex sets

6’5U555 and Cq UC‘iaz
are rotund by a standard argument (resp. S-smooth by Remark 1.2(d)}, and
it then follows from Remark 1.4 (resp. Remark 1.2(c)) that the set C? is

rotund (resp. A-smooth).
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We claim that, for some ¢ > 1, §=1(C9) gives the desired extension of K.
To prove this, note that the boundedness of K implies that K is bounded

away from o~ *(=1), say

EU{Z}U {—a7} C o (26 — 1, +00))
for some ¢ > 0. In this situation, there exists g > 1 such that
(+) C7 ¢ e — 1, +o0)).

In fact, let § > 0 be such that e —1 < (26— 1)(1+8) (observe that 22 —1 < 0
because K contains the origin). Since the function (£,%,¢) — &7 + 19 is
uniformly continuous on [0,1]? x [1, 2], there exists § > 1 such that

pe@ +t—pp(®T-~t1<6 foral feKandte [0,1].
This implies that
(@) <é+1-1t

whenever ¢ > 0, 7 € K, and either § + £ or § + t(—aZ) belongs to CY.
From the fact that ¢(¥/(p; (7)) > 2¢ — 1 it follows that

(7)) > pp@(2e — 1) > (1 +8 —£)(2e — 1),
and consequently, for 7 € K and ¢ > 0, we have
W +2) 2 (L+6-t)2e-1)+t(2e -1 =(1+8)2e-1) 21

whenever ¥ + % € (9, and similarly p(¥ + t{—aZ)) = £ — 1 whenever
7+ t(—aZ) € C4. This means that (*) holds.

Now, set C := $~1(C%). By Proposition 2.1(a) and 2.1(D), the set O is
closed, convex and has nonempty interior. By Proposition 2.1(e), C has the
same smoothness properties as K and is rotund whenever K is. Moreover,
it is clear that CNY = K, ONF = {2}, and CNG = @, for the mapping &
is bijective. It remains to show that the set C is bounded. For ¥ € K, teR
andy-l-tzEC’f we have —a <t < 1 and

1+ (@) 1@l [¢] - 2]l
&~ 1z . — .
1T S T @ Tr o6 T 1T G+ B)
The right-hand side is bounded because (*} holds,
_ ¥ 1+n
&) = € K, and
®) 1+ (%) 1+ 9+ te(2)

Finally, the last claim in the statement is easily proved by taking o =
(1— (p(z)) /(L+p(2)) in the above construction. Indeed, in this case $(—z) =
-aZ (cleatly, @ > 0, since —aZ and 7 lie on opposite sides of V) w

—1 asn-— oo
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4. Main results. In what follows, G denotes the polar of C, i.e.,
O™ = {f € X" | sup £(C) < 1}.

Our notions of smoothness properties are the ones that were defined in
Convention 3.1.

4.1. TaeorEM. Let X be a nonreflexive normed linear space that admaits
an equivalent norm || - || with some smoothness properties. Let M be a closed
linear subspace of codimension 2 in X with the quotient mapping Qps : X —
X/M. Then there are two bodies C and D in X that have the following
properties:

¢ 0€intC;

e C and D have the same smoothness properties as || - || and are rotund
if |1l ds;

¢ cach of the bodies C + D, CFD, C™, Qu(C) is nonsmooth and non-
rotund.

Proof. Let ¥ be a closed subspace of X such that codimyY = 1 and
M C Y. Let 1 € Y* be such that M = 471(0). Since Y, in the induced
norm, is a nonreflexive normed linear space, Lemma 3.3 guarantees the ex-
istence of an equivalent norm on Y such that the unit ball By has all the
smoothness properties of the original norm, is rotund if the original norm
is, and ¢ does not attain its supremum on By. Obviously, we can suppose
that supy(By )} = 1.

Set My = 1~1(1) and choose an arbitrary point u & M;. Consider the
body I, C Y that is symmetric with By relative to the line through the
origin and u (the kernel of the symmetry being M), i.e.,

L={yeY=MeRu|y=-m+tu, meM, tcR, m+tue By}

Let f and g be two different linear extensions of 4, and set ' = f~1(1),
G = g7'(1). Take any point z € F such that g(z) < 1. Observe that the
sets By and L are both contained in the set g=*{(—o0, 1)}, for they contain
the origin and do not intersect M;. Consequently,

(ByyLy{z})nG =0

We are now in a position to apply the Extension Lemma 3.4, using its
notation, to construct two bodies C' C X and D ¢ X, assuming respectively
K =By and K = L.

Trivially, the bodies 3(C ¥ D) and C'F D contain z and are contained
in the “angle between F and G containing By”. Moreover, they contain the
point u. Indeed, there is a sequence of points yn, = my, +t,u € By (with
My € M and t, € R) such that dist(y,, M:) — 0; then —m, + t,u € L,
thu € 3(C+DYN{(CvD) and t, — 1.
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Neither the body $(C+D) nor the body C¥ D can be rotund or smooth,
since both bodies contain the segment [u, z] and both are supported by F
and G at u. The same argument easily shows that the two-dimensional

body Qn(C) in X/M cannot be rotund or smooth. Because of the finite-
dimensional situation, by duality, the same is true for the polar Qur(C )7lr in
the space (X/M)* = M™. But this polar is a two-dimensional section of C™,
and thus C7 is neither rotund nor smooth. =

4.2. Remark. The argument used in the last proof shows that, in our
nenreflexive situation, the set By cannot be symmetric with respect to any
line through the origin that is not in M, with M as the kernel of the sym-
metry.

It would be interesting also to prove, under the hypotheses of Theo-
rem 4.1, that there exists an equivalent norm |- | on X, rotund if || - || is
and with the same smoothness properties as those of || - ||, such that both
the polar |- |x+ and the quotient |- |x,5s are nonsmooth and nonrotund. In
other words, we would like to “symmetrize” the set C. However, we are able
only to prove the following result on equivalent norms {Theorem 4.3).

The existence of renormings as claimed in Theorem 4.3 was already
known in some particular cases or examples. In [K11], Theorem 4.3(i) was
proved for separable X and the usual smoothness; a particular case of this
is [Tr]. M. Talagrand {Ta] proved that C[0, 2] (where 2 is the first uncount-
able ordinal) admits an equivalent Fréchet smooth norm whose dual is not
rotund. Moreover, note that any rotund renorming of #! has nonsmooth dual
since £ is known to admit no smooth equivalent norm ([Dal, ¢f. also [Di]).

4.3. THEOREM. Let (X, ||-||) be a nonreflevive normed linear space and M
a closed subspace of codimension two in X . Then there exist two equivalent
norms |+ |s and | - | on X such that:

(i) | |s has all the smoothness properties of || - ||, but (X/M,| - |s) is not
smooth and (X*,|-|s) is not rotund.

(i) | - |- is rotund whenever || - || is, but (X/M,|-|;) is not rotund and
(X*,1|z) is not smooth.

Proof. Let ¥ be a closed hyperplane that contains M. Take ¢ € ¥~
so that M = %~1(0) and ||¢/|| = 1. By Lemma 3.3 we can suppose that 3
does not attain its norm in (Y, | - ||); in other words, the set Mj = =1 (1)
does not intersect the unit ball of (Y, |- ||). Let f,g € X* be two different
extensions of 9. Set F = f~1(1), G = g~*(1), and K = By (the unit
ball of (V.|| - [])). It is easy to see that there exists a point z € F' such that
—1 < g(z) < 1. Now we have the same situation as in the Extension Lemma,
with G N (K v {—z}) = 0. Thus there exists a body ¢ € X that “extends”
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K, has z and —z as boundary points, is contained in the “angle between F

and G which contains K7, and is S-smooth and/or rotund whenever || - || is.

(i) Define | - [ = 5(pe +p-¢). Then | - |5 is an equivalent norm on X
which coincides with || - | on ¥ and has all the smoothness properties of
| - || (it is also rotund if || - || is). By the Hahn-Banach theorem there exists

h € X*\ {0} such that M; C h™(1) and —C C h~*((—o00,1]) (note that
MiN(-C) = 0 since CNY = K is symmetric). Observe that f < pe¢,
¢ < pe and h < p_g, because

cc f"l((—oo,l]) ng H(~00,1) and —-CcC RL{(—o0, 1}).

Then the functionals f = 5(f+h) and § = }(g + h) are distinct and
My C f7Y(1) Ug~4(1). Moreover,

F=tr+n<tpo+pc)=|1s
and, similarly, g < | - |s. Thus, if we set § = {z € X | |z|s < 1}, then

8C F M (=00, 1) NG (=00, 1]},

As in the proof of Theorem 4.1, we conclude that the body @Qar(S) is not
smooth. However, this body is the unit ball of the space (X/M,|-];). Con-
sequently, (X™,]-|s) is not rotund since it contains (X/M,| |s)* = M7 as
a subspace. :

(ii) It is easy to see that the set R = C'N(—C) is a symmetric body with
the following properties:

e R is symmetric;

» R is rotund if C is;
s RNY =CnNY =K;
e RC £ ((~o0,1);
sze R

Then |- | = pr is an equivalent norm on X which is rotund if || - || is. As
in the proof of Theorem 4.1, the unit ball of (X/M, |- |,}—which is equal
to Qar{f)-~is not rotund. Thus (X*,| - ;) is not smooth, since it contains
(X/M,|-|)* as a subspace. =

For the following, recall once more that body means conver body.

4.4. COROLLARY. Suppose that X is a normed linear space, and Aisa
bornology on X that is closed under linear automorphisms and under bounded
lineor. projections onto closed hyperplanes in X. Then the following asser-
tions, concerning arbitrary bodies C, D and equivalent norms [-] in X, are
equivalent:

(i) X is reflezive;
(i) C + D is always closed;
(ii) Cy D is always closed;
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(iv) X contains a rotund body, and C T D is rotund whenever G and
D gre;

(v) X contains a B-smooth body, and C ¥ D is B-smooth whenever C
or D is;
(vi) X contains a B-smooth body, and C' 5 D is §-smooth whenever C
and D are;
(vii) X has an equivalent rotund norm, and (X*,|-|) is smooth whenever
(X,]-]) s rotund;
(viil) X has an equivalent B-smooth norm, and (X*, ||} is rotund whenever
(X,|]) is B-smooth.

Proof. By well-known renorming results (cf. [Di]), each reflexive space
admits an equivalent norm that is LUR and Fréchet smooth, hence also
rotund and F-smooth. By this fact, Theorem 1.5, and the well-known duality
between the smoothness of a reflexive space and the rotundity of its dual
{cf. [Di]), (i) implies each of the other conditions (ii)~(viii).

The opposite implications follow from Theorems 4.1 and 4.3. For (i) and
(i), note that the bodies in the proof of Theorem 4.1 are constructed in
such a way that the point u does not belong to either of the sets 3(C + D)
and C'U D but it does belong to the closure of each set. w

4.5. Remark. In the spirit of Convention 3.1, one could define a ro-
tundity property as the usual rotundity or the property 7-LUR for a linear
topology T on X that is finer than the weak topology of X. It was our initial
desire to extend our results from simple rotundity to the rotundity proper-
ties; in other words, we would have liked to obtain for rotundity properties
what we got for smoothness properties.

It is possible to prove that “~~LUR” is a 7-local property—that is,
it holds at a point =z of 3C if and only if it holds relative to some 7-
neighborhood of z, and, using this, it is possible to add the following to
the statement of Proposition 2.1:

(€) If C is as in (e), then the set C M o~ Y((a,b)) is bounded for all
—-00 < a < b < 1if and only if the set $(C) N~{(c,d)) is bounded for
all -1 < ¢ < d < +oo. Moreover, if this boundedness condition is satisfied,
then &(C) is r-LUR if and only if C is 7-LUR.

Unfortunately, if 7 is finer than the weak topology, the #9-extension ¢
produced in our Extension Lemma 3.4 is never m-LUR if dist(&,M;) = 0,
which is the only situation interesting for us. Indeed, it is sufficient to take
points y, € K such that dist(y,, M) — 0. Then dist{z + v, /2,8C) — 0
gince z € F and '

. 1 1. |
dist ("J;'"”“,ac) < dist (ZJ’Z?” F) < 5 dist(ya, F) < 5 dist(ye, My).
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But the points ¥, do not 7-converge to z since 2 ¢ ¥ and

—T ———weak
{ynt C{yn} cY.
Thus we close with the following.

4.6. OPEN PROBLEM. Let X be ¢ nonreflexive space that conteins o 7-
LUR body for a linear topology T finer than the weak topology. Does then X
contain two T-LUR bodies C, D such thot C + D is not rotund?
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Operators preserving orthogonality of polynomials
by

FRANCISCO MARCELLAN (Leganés)
and FRANCISZEK HUGON SZAFRANIEC (Krakéw)

Abstract. Let § be a degree preserving linear operator of R[X| into itself. The ques-
tion is if, preserving orthogonality of some orthogonal polynomial sequences, S must neces-
sarily be an operator of composition with some affine function of R. In [2] this problem was
considered for S mapping sequences of Laguerre polynomials onto sequences of orthogonal
polynomials. Here we improve substantially the theorems of (2] as well as disprove the con-
jecture proposed there. We also consider the same questions for polynorials orthogonal
on the unit circle.

Introduction. Call {p,}32, C P where P is either R[X] or C[Z] a
polynomial system (for short: PS) if degp, =n, n=0,1,... A PS which is
orthogonal with respect to a positive measure is here referred to as QGPS;
if it is orthonormal the abbrevation is ONPS.

1. Let o € R. Then, setting

(3) L (2) m__a(a—l)..g;;!(a—k+1)7

the (generalized) Laguerre polynomials Lga), n = 0,1,..., are defined as
usual by N o o
L (z) = g(—l)k (n N k) i YER
They satisfy the three-term recurrence relation
XL = ~(n+ DL + @n+ 14+ )L - (n+ o)L,
=0, n=0,1,...

1991 Mathematics Subject Classification: 47TB38, 33C45, 42005,

Key words and phrases: Laguerre polynomials, polynomials orthogonal on the unit
circle, linear operators preserving orthogonality.
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