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Invariant densities for C! maps

by

ANTHONY N. QUAS (Cambridge)

Abstract. We consider the set of ' expanding maps of the circle which have a
unique abgolutely continuous invariant probability measure whose density is unbounded,
and show that this set is dense in the space of C* expanding maps with the C topology.
This is in conirast with results for 02 or C**® maps, where the invariant densities can
he shown to be continuous.

For expanding maps of the circle which are C% or ¢ (that is, differen-
tiable with Holder continuous derivative), there is always a unique absolutely
continuous invariant probability measure whose density is continuous and
strictly positive. These functions will be called invariant densities. These
maps with their unique absolutely continuous invariant measures form ex-
act systems (see [4]). Our paper deals with the case of €' expanding maps.

Throughout this paper, let E*(M) denote the space of expanding ct
mappings of a compact manifold M to itself with the C* topology. In [3],
Krzyzewski showed that the subset A C E*(M) of those mappings which
have no absclutely continuous invariant probability measure with strictly
positive continuous density is residual or of second category in EY(M). This
means that topologically “most” mappings fail to have absolutely continu-
ous invariant probability measures which have continuous densities bounded
away from 0. Clearly there are a number of ways in which this failure can
take place: One way is for there to be no absolutely continuous invariant
probability measure. In the case where M is the unit circle, ', Géra and
Schmitt showed that this can occur (see [1]). A second possibility is that
there may be examples which have absolutely continuous invariant densities
which fail to be continuous or fail to be bounded away from 0, although no
examples of this type are in the literature. In particular, the question might
be asked as to whether there are examples of C* expanding maps which have
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an unbounded invariant density. In this paper, we use cocycles to answer
this question, showing that the set of C' expanding maps of the circle which
have invariant densities which are not essentially bounded away from either
0 or co is dense in the space of all C? expanding maps of the circle.

Another possibility of behaviour for a ¢! expanding map of the circle is
that there is a non-ergedic absolutely continuous invariant measure or one
which is ergodic but not weak-mixing. This is again in contrast with the (2
or C*¢ case (see {5] and [6] for details).

THEOREM 1. The set of C! expanding maps of the circle Dreserving a
unique absolutely continuous invariant probability measure where the density
has essential infimum O and essential supremum oo is dense in EYSY).

To prove the theorem, first note that the set of €2 expanding maps
of the circle is dense in E*(S%). It is therefore sufficient to show that for
any C? expanding map, there is a map arbitrarily close to it in E* with
unbounded invariant density. Now fix a 2 expanding map Ty of the circle.
For simplicity, we will assume that Ty is a degree 2 orientation-preserving
map. For other degrees, the proof is similar, By the results in [4], Ty is known
to have a unique absolutely continuouns invariant measure 4. The measure
4 s exact with respect to Tp and its density o with respect to Lebesgue
measure A is continuous. To prove the theorem, we will prove two lemmas,
one showing the sufficiency of constructing a cocycle with certain properties
and the other one constructing the cocycle.

LEMMA 2. Suppose F is an integrable Junction with the properties
(i) exp(F) is integrable and §exp(F)dA = 1,

(i) F(To(z)) — F(z) is equal almost everywhere to a continuous Junction
h(z), with the property that hiz) > —log inf e s Tg(y) for all z.

Then there is o C! expanding map T of the circle with an absolutely
continuous invariant measure which is measure-theoretically isomorphic and
topologically conjugate to Ty by a conjugacy 8 : S — &1 in such g way that
the density of the absolutely continuous invariant measure for T is given by

exp(—F(6(z))) o(8(z)).

Note that in the statement of this lemma, integrability with respect to
# 1s equivalent to integrability with respect to Lebesgue measure A, because
the density o is bounded above and below by positive munbers,

Proof. In this proof, we consider the circle to be labelied by points in
the interval [0,1). Define § by specifying 071 (z) = S[o 2] exp{F) dX\. Then
since F' is finite almost everywhere, we see that  is a ’homeomorphism of
the circle. Then T is defined by §-1 o Ty o 8. It follows that T preserves the
push-forward of 4 under 672, that is, the measure pod.
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Clearly, 671 is absolutely continuous. We now show that € is also abso-
lutely continuous. Define the absolutely continuous measure v by dv/dA(z)
= exp(F(z)), where A is Lebesgue measure. Then »([0,z]) = 6~ (z) =
MO, 871 (z)] = Aob71([0, z]). It follows that v = Xof~!. Since 0 < exp F < oo
almost everywhere, it follows that »(A) = 0 if and only if A(A4) = 0. There-
fore A has Lebesgue measure 0 if and only if §7!(A) has measure 0 and
taking A = 6(B), it follows that B has measure 0 if and only if #(B) has
measure 0. Hence 8 is absolutely continuous. It therefore follows that T is
absolutely continuous.

A quick calculation shows that the derivative of T is given almost every-
where by Th(0(c)) exp(F(To(8(x)))) /exp(F(8(x))) = Th(6(z)) exp h{8(x)).
Since T is absolutely continuous, it follows that the derivative of T' is equal
to Tp{f(x)) exp h(8(z)) everywhere. The density of o 8 at x is given by
o(6(x))0' (x), which equals p(8(z)) exp(—F(8{z))), proving the lemma. =

LEMMA 3. There exists an integrable function F whose essential supre-
mum i3 oo and whose essential infimwm is 0 on the circle and such that
F{To(x)) — F(z) is equal to a eontinuous function h(z) almost everywhere
and exp F' is integrable.

Proof. We may assume (by relabelling if necessary) that 0 is a fixed
point of Ty. The preimages of 0 are then 0 and ¢ for some point ¢ € (0,1).
Write 77 and g for the inverse branches of T, mapping the circle onto [0, )
and [c, 1) respectively. Let g : $* — [—1,1] be a continuous function such
that

(i) The conditional expectation. E,[g|T 18] is 0;

(11) g|[0,'r1:,(c)) > 0 and g](n,(c),'rn(c)} < 0.

We now check that such a function exists. To satisfy (i), it is necessary, for
any z, with preimages yz, and yg, that g(yz)e(yr) +9(yr)elyr) = 0. This is
satisfied if we set g(7z(z}) = k(z}/o(re(z)} and g(Tr(z)) = —k(z)/e(Tr(2)),
where % is any continuous function on [0,1). For continuity of g at 0 and «,
we require k(0) = —k(1). To satisfy (i), we require % is positive on [0,¢) and
negative on [¢, 1), We may ensure that |[g|lec = 1 by scaling by a positive
constant.

Then define

b1 s
9(I5 ()
Fﬁ(w)xg P

and
Fof) = F*(z), FY(x)=F'(z), Flz)=F"(z).
First, note that g o T is orthogonal to g o T§* for all n 5 m with respect to
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the invariant measure . To see this, note that if m > n, then
{goT8)- (9o T du =Yg (goTg" ™) dp.
Since go 7"~ ™ is measurable with respect to Ty 113, this is equal to

VELlo175B] - (g0 T3* ™) du,

which is 0 as required.

It follows that FY converges in the L2 norm to F. The function F
is therefore integrable. Similarly, F, exists as an L? function with ||Fy|3
uniformly bounded above by 72/6 and F,, converges in the L? norm to 0. In
particular, ||Fy, |1 is a uniformly bounded sequence. By a similar argument
to the above, E, [g o Tf*|T; ™B] = 0 whenever m > n. In particular, letting
B, be the g-algebra T; "B, we have E,[F,|Bnt1] = Fni1. This and the
integrability of F,, prove that the sequence Fy is a backwards martingale
and so converges pointwise almost everywhere and in L' to a function Fi
(see {2] for details). This function is necessarily measurable with respect to
M Bx, but since (1%, 1) is exact, this o-algebra is trivial. It follows that Fi. is
constant almost everywhere. Since SFn dge = 0 for all », we deduce that Fg
is 0 almost everywhere. In particular, since F(z) = F™(z)+ Fy(x), it follows
that for almost all z, F(z) is the L' and almost everywhere pointwise limit
of the functions FV,

We then show that exp F' is integrable. Let

er(z) = exp (k Jlr -9 onf(x))

and note that for z € [-1,1], expz < 142422 Now set EY = exp F¥¥ and
EY = exp FN. We then have { B} dz = | e, EY, | dx, and taking conditional
expectations with respect to By1, we obtain

1 ; n
\EY dp = Kﬂu[exp((nJrlgoTo (m))l ) ¢ H)B}E 1 dp

1 ) 1
< |E, [1+mQ°TD (m)+(n+

1 2
< S (1 + (m) )Eﬁ+1 dus.

This implies that { EV dz is bounded above by [[y.., (1+1/k2). This is easily
seen to be bounded above as N — oo, so since BV converges pointwise
almost everywhere to E = exp F, it follows by Fatou’s lemma that F is
integrable, as required.

190T6’“(m)) ‘T (nﬂ)B}E,ﬁ_l dp
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Since F ig the almost everywhere pointwise limit of the FV, it follows
that for almost every z,

9(T¢ ()
F(To(= Z O A

Let the right hand side of this equation be denoted by h(z). Then this is
the uniform limit of continuous functions and is therefore continuous. We
have F(Ty(z)} — F(z) = h(z} almost everywhere, as required. Let A be the
set of # on which F(TF(z)) — F(TH(z)) = h(TP(x)) for all n. This set has
measure 1.

It remains to show that F is essentially unbounded. First, note that
72([0,1)) C [0, 72(e)], which is a compact subinterval of [0, 7y (c)}. Similarly,
(rr7r)*([0,1)) and (rg7r)2([0,1)) are subsets of the compact subinterval
[rerrTe(e), TrRTeTR(C)] Of (11, (c), TR(C)). It follows that there exists a C > 0
such that for any = € [0,1), we have g(7(z)) > C, ¢((rpmr)*(z)) < -C
and g((Tr71)?(z)) < —C. Now pick M > 0. Then there exists an m such
that Clog(2m — 4) — 5 > M. Set fI™)(z) = 52 g(T"z)/(n 4+ 2m + 1).

We then have || f™[y < ||Ff*™ 2 = (Coegmay 1/7)Y2. This in turn
may be bounded above by 1/\/%. It follows that the set 5, = {z :
|70 {z)| < 1} has positive measure.

Since u is absolutely continuous with continuous positive density, and
the maps 7y, and 75 have derivatives bounded away from 0, it follows that
A= (1)*™(Sm) and B = (7.7R)™(Sm) have positive measure.

Next, note that if z € A, we have

2m—1
F(z)= Y g(T*a)/(k+1) + f(T% ).
k=0
For k < 2m — 3, we have T%z = 72™ "z, so g(T*z) > C. It follows that
Flz)zC(1+1/2+...+1/(2m~3)) -4 > M.

Similarly, for y € B, we have F(z) < —C(1+1/2+...+1/(2m—4)) +5

< —M. Hence F is essentially unbounded above and below as required. =

Proof of Theorem 1. By the above, there exists an F which is es-
sentially unbounded above and below with the properties in the statement
of Lemma 3. Next, note that since h(z)} = F(Tp(z)) ~ F(z) is continu-
ous, it is bounded. Define A,,(z) = F(z)/n and B,(z) = exp An(z). Then
Bn(z) converges pointwise to 1 as n — oo. The sequence is dominated by
max(exp F(x),1) so we have || B — 1] — 0 as n — co, where 1 denotes the
constant function with value 1. Now let Cp(z) = An(z) —log § B, dp.

Tt follows, using C, in place of F' in Lemma 2 to get a conjugation fy,
that 61 converges uniformly to the identity as n — co. Then 8, converges
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uniformly to the identity and T, defined by Ty, = Bn_loTo ofl, converges uni-
formly to Tp as n — oo. Now T%(z) is given by T}(0a(z)) exp(nth{fn(2))),
which may be seen to converge uniformly in z to Tj(z) as n — co. Then we
have shown that T}, converges to Tp in the C1 topology. Since the invariant
density of T}, is given by exp(~-n~1F(8(z)))o(8(x)}, the conclusion of the
theorem follows. m

I thank Chris Bose for suggesting the problem and for useful discussions
leading to its solution.
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A non-locally convex topological algebra with all
commutative subalgebras locally convex

by

W. ZELAZKO (Warszawa)

Ahbstract. We copstruct a complete multiplicatively pseudoconvex algebra with the
property announced in the title. This solves Problem 25 of [6).

All vector spaces and algebras in this paper are either real or complex.
A topological algebra A is a (Hausdorfl) topological vector space provided
with awn associative jointly continucus multiplication. It is said to be locally
convex or locally pseudoconvex if the underlying topological vector space has
this property. A locally pseudoconvez space X is a topological vector space
whose topology is given by means of a family (]| - ||o) of py-homogeneous
seminorms, 0 < p, < 1, i.e. non-negative functions # — |||, such that
lo + ylle < |la)le + [¥lle and [Az]a = |AP>||2]lo for all z,y in X, all
scalars A, and all indices « (see [3] and [4]). A locally psendoconvex algebra
A s called multiplicatively pseudoconver (briefly: m-pseudoconvex) if its
topology is given by means of a family of submultiplicative p,-homogeneous
seminorms, i.e. seminorms satisfying [|zylla < lzlo/ly)|e for all z,y in A
and all indices «. For more information on topological algebras the reader
is referred to [2], [4] or [5].

In [6] we asked whether a topological algebra with the property that all
of its commutative subalgebras are locally convex must itself be a locally
convex algebra (Problem 25}, In this paper we give a negative answer to this
question by constructing a complete m-pseudoconvex algebra which is not
locally convex bud all of whose conunutative subalgebras have this property.
In the coustruetion wo use some methods introduced in 1] and [7].

Let X be areal or complex vector space and let p satisfy 0 < p < 1. The
maximal p-convex topology T8, on X is the vector space topology given
by means of all p-homogeneous seminorms. It is known (see [1], Theorem 1)
that this topology makes every vector space into a complete (Hausdorfl)
topological vector space. Let (he)aes be a Hamel basis for X, so that each
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