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STUDIA MATHEMATICA 118 (3) (1906)

Divergence of the Bochner-Riesz means
in the weighted Hardy spaces

by

SHUICHI SATO (Kanazawa)

Dedicated to Professor 8. Igari on the occasion of his siztieth birthday

Abstract. We costruct functions in HL (w € 4;) whose Fourier integral expansions
are almost everywhere non-summable with respect to the Bochner—Riesz means of the
critical order.

1. Introduction. Let w be a non-negative locally integrable function
on R™. We say that w € A; if there exists a constant ¢ > 0 such that
M{w){z) € cw(z) a.e., where M denotes the Hardy-Littlewood maximal
operator. Let f be a measurable function on R". We say that f € Ll
if |fllzy, = lIfwili < oo, where | - |1 denotes the ordinary L'-norm. Let
& € S(R") (the Schwartz space) satisfy {& = 1. The weighted Hardy space
HL (w € A;) is the class of functions f € L, such that

|Fllay, = Jsup s % £(@)w(z) de < oo,
>0

where . (z) = e"®(ex). (For the weighted Hardy spaces HE, p > 0, see
[12].) When w = 1 (a constant function), the space HJ, will be denoted
simply by HE,
Let
S4(F) (@) = { (1 = R™|g[M)EF(€)e*m " dg
be the Bochner--Riesz means of order § on R™. In this note we assume n 2 2.

Put Sp(f) = S5~ ).
The following result is due to Stein [9] (see also (1], [8]).

THEOREM A. There exists an f € H* such that
limsup |Sr(f)(z)| = oo almost everywhere.
R0

We shall prove the following results.
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262 S. Sato

THEOREM 1. We consider Sy (f) for m € N (the set of positive integers),
Then there exists an f € HY N L' such thot

lim sup |Swm (f}(z)] = o0 almost everywhere,
m—o0

THEOREM 2. We can find a g € HL N L' such that Sn(g) (m € N)
diverges almost everywhere bui

(1.1) sup |Sr(g){z)| < oo almost everywhere.
R>0

Recalling Kolmogorov's theorem and Marcinkiewicz’s theorem on point-
wise divergence of 1-dimensional Fourier series (see [14, Chap. VIII] and [3]),
we note that Theorem A and Theorem 1 are analogues of Kolmogorov’s the-
orem {unbounded divergence) and that Theorem 2 is a Bochner-Riesz means
version of Marcinkiewicz’s theorem (bounded divergence).

Remark 1. Let {R;}52; be a sequence of positive numbers such that
inf;>1 Rj+1/R; = ¢ > 1. Then it is known that the lacunary maximal
function sup; |Sg,(f)| satisfies

sup Aw({z € R™ : sup [Sr, (f)(2)] > A}) < ewllfllay,
A=0 ]

where w(E) = {;w(z)dz, w € Ay (see [7] and also [4], [5]), but by Theo-
rem 1 or Theorem 2 we see that the maximal function sup,, ey |Sm (f)|, and
hence sup .o |Sr(f)|, does not satisfy the same estimate.

Remark 2. Let 0 < p < 1and é(p) =n/p— (n+1)/2. Then we have

sup Mw({z € B* : sup [S57(F)(@)] > A}) < cpmal 1|
A0 R>0 w

for f € HE NS, w € Ay. (See [6] and, for the case w =1, [10].)

Theorems 1 and 2 are imnmediate consequences of results for more general
weights.

DEFINITION. Let w be a non-negative locally integrable function on R®
such that M(w) < oo a.e. Suppose f & L*(R™). We say that f € H,, if

1l = 1£llzg, + 3 IR (Dllzy, < o0,
J=1
where the operators R are the Riesz transforms: (R;(f))"(£) =i|¢|~1¢; 7€)
(f e L' nL?).
We shall prove the following.

THEOREM 3. We can find an f € H,, such that

lim sup [Spm(f)(z)| =00 (m €N) almost everywhere.
M—0o
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THEOREM 4. There ewisis a g € M, such that Si(g) (m € N) diverges
almost everywhere but

(1.2) ?‘tup |Sr(g)(x)| <oc  almost everywhere.
>0

If w e Ay, then M(w) < oo ae. and we have the characterization of
the space K. in terms of the Riesz transforms (see [13] and also {12]); so
Theorems 1 and 2 immediately follow from Theorems 3 and 4, respectively.

Let Qg for integers k, be cubes in R™ defined by Qs = [—2%,2%)". To
prove Theorems 3 and 4, we shall use the following lemma.

LemMa 1, For k, N € N, we can find positive numbers ty, Mg), Ly,
functions fj(\';c} € Hy NS and measurable sets Egﬂ), Fg“ ) ¢ Qr such that

(1) M /8 & N, Timy 0o M = oo

(2) limy oo Ly = 00;

(3) 1301 < 2™ and 15, < cti2¥™

(&) supp(F) < (M /8 < €] < 3MPY; k

(5) SUP 19 ¢ <2 2g () |Sm(f§v))(sc)\ >mLy (meN) forallz € EJ{V), for
some congtant v, > O

(6) SUPg ¢ pgo0m ) ]Sn(fﬁf))(m)i < Ly forallz € Ff(\;"’), Jor some con-
stant v2 > 0;

(1) 1Qx \ B®)| < 2% /Ly +27% and |Qx\ F| < 2%/ L.

Assuming Lemma 1, which will be proved in Sections 4-6, we shall prove
Thecrems 3 and 4 in Sections 2 and 3, respectively. To prove the principal

part of Lemma. 1, we shall use the techniques of Stein [9]; however, we need
some modifications.

2. Proof of Theorem 3. Let tk,Mﬁf),LN and f](\f) be as in Lemma 1.
We select a sequence {Nj}52, of positive integers satisfying the following
conditions:

oo
(2.1) Z T Rgkn(t 41) < 0o, where Ji = Ln,;

k=)
(2_2) 2&11/Jk < 2-k;
(2.3) Byy1/8 > 3By, where By = f\:ch);

k k '

2.4 ~12p N S g2l <1, where Ry = £
(2.4) U SR(IZ; J; M) ?;;J' ¢||w <1, whe LA

We note that (2.4) is feasible since Sg(f) converges uniformly on R* if
fes.
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Put f = 32, Jflmhi. Then by Lemma 1(3) and (2.1) we see that
f € Hy. Put I = [Bg, 28] N N. Then for k > 2 we have
sup [Sm(f)(z)

i (ZJ'W (@) + S(T7 ) (2],

since Sm (35 pit J"Wh) = 0 for m € I by Lemma 1(4) and (2.3). By
(2.4) the right hand side is greater than or equal to

]ZJ””%, |

i=]

sup |8 (g, i T

mel %
Thus, by Lemimna 1(5) we see that
k-1
sup |, (1) (x)| 2 n? =3I )| -1 foro e B,
mely i=1
Note that there exists a measurable set F' C R™ such that |R” \ F| =0

and
sup|ZJ 1/2

k22
(

Put E = limsupy..... £y

‘<cm<oo for x € F.

3. Then we have

sup |Sm(f)(z)| = ’)IlJ;Jc‘/z —c;—1 forzeENF
et
for infinitely many values of k. This implies
limsup |5 (f)(z)l =00 (meN) forze ENF.
TN-—O0

Thus, the proof of Theorem 3 will be finished if we prove |R™ \ B| = 0.

Put D = liminfg_, o0 EN For the sake of the proof of Theorem 4, we prove
a stronger assertion:

(2.5) R\ D = 0.

To prove (2.5) it is sufficient to show |Qg \ D| = 0 for all k. Let m 2> k.
By Lemma 1(7) and (2.2) we see that

@\ DI = |\ [J (28] =[@xn () Ue)
=1 i=i j= 12'"3
1U QmEE(’)’<c22"‘<c2“m

Letting m — oo, we have |Q \ D| = 0. This completes the proof of Theo-
rem 3.
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3. Proof of Theorem 4. We choose a sequence {N;}32, of positive

integers satisfying (2.2), (2.3) and
(3.) 124, + 1) < oo
k=l
k k
32 sup HSR ) = S0 ] <yge,
( ) R>Bup /8 (?2; ?‘) ; o ’7]_/

where we have used the same notation as in §2.
Define g = 30y J7 ' hi. Then g € My, by Lemma 1(3) and (3.1

P o= {un e R™ : sup ’ i‘]zflhi(mﬂ < oo},

k21 i=]

). Put

Fp={z eR": J7 hi(z) — 0 (i —» c0)}

and D = liminfy, .00 F( N, & = lim sup,c,_,oo E( ). We note that |R™ \ F;| =0
(i=1,2), R*\ D| =0 and {R*\ E| =0 (see the proof of (2.5)).
Let #f € C§° be such that
supp(f) < {l¢| £1/2}, ¢} =
Then by Lemma 1{4) we have
(3.3) Se(Ji hi) = I e # g

Here we recall that nr(z) = R"n(Rz).
Iz e DnEy, by (4), (6) of Lemma 1, (2.3), (3.2) and (3.3) we see that

sup  |Sr(g)(=)|
41

By <R<RB;,

(1= lgHm72 st el < 1/4.

for R > 208y

k-1
Se(3 77 k) (m) + SrlI; ha) @) + Sa(Tky hata) (@)

fu,

== sup
Bya R Buyy

oo
Sn/t+ | U @)+ s ISR(I ) @)
dazl,

By S RE203,

+ eM(J7 ) () + sup
Bry [8ERE By

hil) (@)

ISk(J 1) (@)

< e -l—cM(iJfl
izl
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for some ¢, > 0 independent of k > 2, since z is contained in F](J:c) for all
but a finite number of values of k. Therefore supp.q [Sr(g)(z)] < oo ae,
since 37 J;* k| € L' and the maximal operator M is of weak type (1, 1).

On the other hand, by (4), (5) of Lemma 1, (2.3) and (3.2), setting
I = [By, 2B NN, for ¢ € E N Fy we have

sup |Sm{g)(®) — SByye/a(g) (@]
> sup |Sm(Jy ha) ()|

meTy
k—1 k~1 .
—1 -
- sup SM(ZJi hi)(m)—;‘h hi(a)|

Zth ‘

— I ()] - |SBk+1/s(ZJ h) @)

==l
>y =1 f4— I he(@)] — /4
= /2 — I hi(2)]

for infinitely many values of k. From this we conclude that Sy, (g)(z) diverges
for ¢ € E N Fy, since J; *hy(z)| = 0 (k — o0) for z € Fy. This completes
the proof of Theorem 4.

4. Proof of Lemma 1 (part 1). In this section we construct the
basic measure supported on @y and prove a key estimate for it (see (4.12)).
Kronecker’s theorem will be used in the proof (see [3], {8], [9]).

Decompose
N-1

[~2%,2%) = | [—2% + a2+ /N, 2% + (i + 125N = Uf(’“) say,
de=0

and consider a partition:

N“r'l.
4y Q= - U 19 o1 =,
(":1:"-:":n)e{oplv":N_l}" fe=l

where {Q( )} =1 Is an enumeration of the family {1 () % .. x If:’)} of cubes.

Let
Fr={z € Qr: M(w)(z) > tx},

where 1y, > 0 will be determined in the sequel.

G = Qi \ Fi,
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Ifz € Q) and 0 < 25 < n'/22k, then we see that
(4.2) " ‘
a<|e—y|<2s
e 3""’ S
$< |-y <28
> ¢ ~ coM(xr,)(x),

where ¢p, cp are positive constants depending only on the dimension.
For & € (0,1), put

Xay, (¥} dy

xo W) dy - s |
s<|w—y|<2s

xF, (¥) dy

Ff ={o e Q: Mxp)(2)>c}, CGp=Qx\F.
If 2 € GF, 0 < 25 < n*/22% and if ¢ is small enough, then by (4.2) we have
(4.3) g7 S xa, (V) dy = e1 — cog > 1 /2.
s<|w—y|<2s

Since M{w) < co a.e., we can find t) large enough so that
(4.4) |Fp| < ce™H|Fe| < 275,

Define a set of indices

Ty = {i: Q¥ N Gy # 0},

For each ¢ € Zj, we take (and fix) a; € ng) M . Then we have
(4.5) M{w)(ay) < tg.

We can find a set Ey C @y such that |Qx \ Fo| = 0 and for each z € Fy
the numbers |2—a;| (i € Zx) and 1 are linearly independent over the rationals

(see [1] and [11, Chap. VII]).
We use Kronecker’s theorem in the following form.
Levma 2. Let real numbers 0y, ...,0,,1 be linearly independent over the

rationals. Let &,w be positive numbers. Then there ewists ¢ positive num-
ber M depending only on 8,w,01,...,0s such that for any real numbers

Q... we can find integers £,p1, ..., Ds, depending on §,w,0y,...,8,,
Ly eeosy Cly, SO that
(1) w < &g M;

(2) 1€0; — py =] <6 (F=1,...,8).

Here we show how we can take M independent of o, ..., a,; except for
this assertion, Lemma 2 follows from Hardwaright [2, Theorem 442], First,
we can assume that oy € [0,1), §j = 1,...,5. Let @ = [0,1)%. Decompose
Q = | J; R, where R; = Qg"l) +(1/2,...,1/2) with 1/N < §/2 (see (4.1)

with n = g). Take and fix o&? = (od”, ..., 0l") € R; for each i. For each a?,

by [2, Theorem 442] we can find integers &, p& e pg) such that £; > w
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and {46, —pJ 1')|<6/2 (j=1,...
take Ry, such that o € Ry, Then

,8). For any a € (ay,...,0;) € Q,
144065 — P — 5] < [£3,85 — o™ — o) + | — oy
<6§/24+1/N < 4.

Thus, we can take M = max; {;.
Now we return to the proof of Lemma 1. Let € Fg. Then by Lermma 2

there exists an M (z) > 0 such that for any real numbers 3; (4 € Iy), we can
find integers m and p; (i € Ij), depending on z and 3; (i € Zy), so that

(4.6) H, <m < M(z), where H,;= sup |z — a,”"l;

ey

{4.7) Im|z — ag) = p; — Bi| < 107 for all 4 € I

We assume as we may that M(z) is a measurable function on Ej. Take
Mj so that My/8 € N and

(4.8) {z € By : M{z) > Mo} £ 1/N.

Put Fy = {E e By M(ﬂ’:) < Mo}

Let x € Ey. By the substitution 8; = —Mp|z ~— a;| +n/4 in (4.7) we have
(4.9) Hy < m < Mo;
(4.10) [(m - Mg)|z — as| —n/d4 —p] <1070 (i e Iy)
for some integers m,p;. Define the measure p by

o= 2fm N Z 5@1‘:
€Ty
where 6,, denotes the Dirac § measure concentrated at ;. Put
Dr(y) = |y ™" cos(2mRly| — n7/2) (y € R").
Then by (4.9) and (4.10) we have

sup | D, ()]
Mo+ Ha<mS2My, melN

= sup ghn Ny = Z cos(2rm|z — ay| — nor/2)|m - @ ™"
Mo+Hy $m<2My, meN bt
> 9~ 1ghn y—m Z |z —a;|™™ =1, say.

€Ty,

Suppose & € E; N G}. Let I (2) denote the set of those i &€ Zj for which
we have Q™ N {y : |y ~ x| > nt/22F2N -1} & ). Note that if i € Zy(z) and
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yE ng), then |z — a;| ~ |z — yi. Thus
Iz 27tk N §7 g gy
e Z S |z ~y|™"dy = II, say.
iGIh(m)QEN)

Next, note that Gy C ez, ng}. So we have

(4.11) Gy N {y: ly —a| > a2 N1 o | Q.
€T, ()
Put
Ay(z) = {y 1 n* PPN =1 5 |y | > 1228002 N1 (4> (),

Then, if N > 8, by (4.3) and (4.11) we see that

II>e¢ S
|y—az|>ni/32kt2 N-1

2c > | xe.@lz -y dy

xax (W)le — y| ™" dy

2ELN/B Aeln)
e Y. amtmpmReNm [ ye (y)dy > clog N
2<N/8 As()
We have thus proved
{4.12) sup | Dy * pp(z)| 2 clog N ifz € By NG} and N > 8.

Mo<m<2Mp, meN

5. Proof of Lemma 1 (part 2}. In this section we introduce the
functions fl(\f) and we deal with Lemma 1(5}.
Let &, € C§°(IR™) be such that
supp($) < {1/8 < [§] < 3},
Pl +w(6) =1
Note that if M < R < 2M, then
(L= B2l b7

supp(¥) C {|¢ < 1/4},
if ¢ < 2.

= (1 __R~2|£{2)$—1)/96(M~1€)+(1 2|E| )'ﬂ 1)/2 P(M _lf)

= (1= B¢ )M 18) + R EN(M ),
where 7 is as in §3. Consequently, we have
(5.1) Kp(z) = Kn* oum(z) + g * Ya(),
where K (z) = (1 — [¢|2){" ™1/ 2e2riet 4.
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By a well-known property of the Bessel functions J, (see, e.g., [11]) we
see that

(52) K(2) = n= V20 ((n 4 1)/2)|a| 2T,y ya(2r]a)
= 7= H/2D (4 1)/2)[o] " cos(2miz| ~ nr/2) + (),

where |r(z)| < (1 + |z}t if |z] 2 1.
Let the measure p and the function Dg be agin §4. Then, if M < R <2M,
by (5.1) and (5.2) we have

(5.3) Kp*pm*p+nrepsp=71""TU20((n+1)/2)Dr*p+rp*p,

Let the positive integer Mp (depending on k, N and w) be as in §4
(see (4.8)). Put

FP (@) = pug # ple) = 25PN 3 gy (@ - @),

eIy
O\ (@) = gy * ) = NS gy (2 - a2).
iedy

Then by (4.5) we see that
[P @)w(z) de < 2N 3 {loas (@ ~ ai)w(z) do
EET

< PPNT Y M(w)(ai) < 24ty
1€l

Similarly we have
JI12; (7)) (@) (e) do < 2,
since

Ri(f{) () = 2N 3 6 (@~ a;)
€Iy

for some #1) € &. Therefore, we see that f_,(\?) € My and ||fj(\;°) |7, € €25,

Let the measurable set Ey be as in §4. Then, if My < R < 2M; and
z € Ey, by (5.3) we have

Kp* f{(z) = 77020 ((n 4+ 1)/2) D # p(@) — na % 550 () + Cr # i),

where (g(x) = R"b(Rz)(1+ R|z})~™! with some b € L*, since R|z —a;| >
Mo|z — a;| > 1 for z € By (see (4.9)). Thus, for z € Ey we have
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(5.4) sup Ko * f7 (@)
My<m<2Mp, meN
> MDD ((n 4+ 1)/2) sup | D * ()|

Mo<m<2Mp, meN

~ M (g} (x) ~ eM(p)(z),
where M{p) is the Hardy-Littlewood maximal function for a measure:
M(u)(z) = suppyo B u(B(z, R)), Bz, R) = {y : |z —y| < R}.
Put
By =Ey\ ({=: M(gg\’f))(m) >elog N} U {z: M{(p)(z) > clog N}),

where € is a small positive number which will be determined in a moment.
By (4.8) and the weak type boundedness of M we have

(5.5)  |Qn\ Ba| £ [@x\ Eul+ By \ B

< 1N + elllgfy’ll + 1)/ Llog N

S 1/N 42"/ log N < c2""/log N (N > 2),
where |ipn|| denotes the total mass norm for a measure.

Put ES\?) =G Iz e ng) and if £ is small enough, then by (4.12)
and (5.4) we see that

(5.6} sup
Mos<sma2My, meN

for N > 8§ with some ¢y > 0. On the other hand, by (4.4) and (5.5) we have
(5.7) 1@\ BN < 1Qu \ Bal +1Qu \ G}| < c2*"/log N +27% (N 22).

| Ky fﬁ“)(m)i >cplogN —celog N > (ea/2)log N

6. Proof of Lemma 1 (part 3). In this section we deal with Lem-
ma 1(6), and then we complete the proof of Lemma 1.
Suppose N = 2. Put

Fg“) = ﬂ {x€Qr:lz—ai 2 28 N~(log NY~1/"},
€Tk
Then
(6.1) 1Qk \ F®| < c25/ log N,

We take My large enough, keeping (4.8) and the property My/8 € N, and
show that

(6.2) glp
0 RL200M,

Fixe € QO Y. Put
I}S;l) ={i €Ty d(QEk)ngf)) < 2%/N},

|Sn(ff(\;°))(w)\ <clogN forze Fff),
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where d(4, B) denotes the distance between A and B. Note that the num-
ber of elements of I,El) is less than a fixed number depending only on the
dimension.

Decompose
anN_nSGOMo('y)KR(m —ai—y)dy
=2"N | om (W) Er(z ~ a; —y) dy
[y|gN -2
4 QRN S eue (V) Er(e — a; — y) dy
ly|2 N2
=1L+ Il;, say.

If R < 20My, then, since |Kr(z)| < cR™(1+ Rlz[}™, we see that
ML < e2*" N7 | Jom(9)|BM(1+ Rz — a; — y) ™" dy

lyl2 N2
< cfrym S MZ™ (1 + Moly|)~*" dy
lylzN-2
< Czan-—n S M(;“”\yl"S" dy < c2ano—nN3'n._
lylzN-2
If we take My large enough so that 25" M ™ N4" < 1, then we have
(6.3) IIL] < eN™™ (i€ Ty).
Since |z — a4 ~ |z —a; —y| if |y| < N™2 (i € Ty), we see that
(6.4) LN § Jean @) fe— i~y " dy
ly|N-2

SNz — 0y ™" < clog N (i€ I,ﬁl)).
Next, put I,(f) =Tu \ Z{"). Note that | - a; — Y|~ |# = ai| ~ |2~ 2| if
Yl < N~2and z € Q,Ek) fori ¢ I,Ez). Thus
(6.5) Ll <e | le—yl™dy Gez).
R
If B < 20My, then by (6.3)-(6.5) we have

Sa(FEN@) = | 3 27N {or, (1) Kn(z — 0: — ) dy
€Ty

< Z L+ Z |Ii|‘|‘Z|Ifi|

sexlM ieZ® 1€Tk
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< elog N -+ | |z~ y| ™" dy
2’°N"1<]w—y|<n1/22'°+1
<eclogN,
which proves (6.2).

To finish the proof of Lemma 1, we assume as we may that N is suffi-
ciently large. Put M‘,(J”) = My (My > N42%) and Ly = log N. Then, since
we have already defined ¢4 > 0, f}f ) e Ha, El(\?) and FJ(V;“), collecting the
results of Sections 4-6 (see (5.6), (5.7), (6.1}, (6.2)), we conclude the proof
of Lemma 1.

7. Comment on bounded divergence. We have the following result.

PROPOSITION. Suppose f € L. If Sp(f) diverges almost everywhere,
then Sg(f) diverges unboundedly on o dense subset of R™.

Therefore, we cannot drop the “almost” in (1.1) or (1.2).
The proof of the Proposition is completely analogous to that of Kérner
3, §8, Theorem C.

Lemma 3. Let {fr} (R > 0) be a family of continuous functions on R".
Let Q be u closed cube in R™, If supgsg|fr(®) < oo for all z € Q, then
there exist a subcube S C Q and an M 2 0 such that |fr(z)| < M for all
B>0and forallz e 5.

Proof Put F = {x € @ : supp~¢ |fr{z)| < k}. Then each Fy is closed
in R" and @ = |~ Fi. Thus the conclusion follows from Baire’s category
theorem.,

LEMMA 4. Suppose f € LY. If § > (n—1)/2, then
R
S5(/)(@) = bR | Su( @) (B2 — )" dr,
0

where 7= § — (n ~1)/2 and bs = 206 + 1)/(L'{(n+ 1)/2)I ().

This can be proved as in [11, Chap. VII].

LEMMA 5. Suppose f € L1, Let @ be a cube in R™. If suppy | Se{f) ()|
SM for all x € @, then |f(x)] € M for almost every z € Q.

Proof If§ > (n—1)/2, by Lemma 4 we see that supg 19%(f)(2)] < M
for z €  since

p 1
bs B2 {(R? — )Y dr = bg {(1— 7)™ dr = 1
¢ 0
(see [11, Chap. VII]). From this the conclusion follows as limp—.eo S§(f)()
= f(z) a.e. for § > (n —1)/2.
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LEMMA 6. Suppose f,g € L*. If f = g in a neighborhood of z € R™,
then

Jim [Sn(f)(z) — Sa(9)(@)] = 0.
This can be found in Bochner [1, Part II, Theorem IIT].
LEMMA 7. If f € L2, then limp oo Sr(f)(z) = f(2) a.e

This follows, for example, from [11, Chap. VII, Theorem 5.1] and a trans-
ference theorem.

Proof of Proposition. Suppose f € L' If suppey |Sa(£)(2)! < 0o
in a non-empty open set, then by Lemma 3 there exist a cube @ and a
non-negative number M such that supgzo|Sr(f)(z)| £ M for all z € Q.
Thus, by Lemma 3 we have | f(z)| £ M for almost every « € Q.

Define a bounded function with compact support by

_[flz) ifze,
9la) = {0 otherwise.

Then by Lemmas 6 and 7 we see that lim Sg(f)(2) = lim Sr(g)(z) = f(z)
for almost every z € Q. Therefore, if Sg(f) diverges a.e., there exists an z
in every non-empty open set such that limsupg_, ., |Sa(f)(x}| = co. This
completes the proof.

Acknowledgements. I would like to thank the referee for helpful ad-
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