184

9]
0]
1]
[12]
(13]
[14]
[18]
[16]
(17}
(18]
[19]

[20]

icm

F. Weisz

R. F. Gundy, Magimal function characterization of HP for the bidise, in: Lecture
Notes in Math. 781, Springer, Berlin, 1982, 51-58.

R.F. Gundy and E. M. Stein, H? theory for the poly-disc, Proc. Nat. Acad. Sci,
U.5.A, 76 (1979), 1026-1029.

G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants,
J. London Math. Soc. 6 (1931), 8-9.

B. Jawerthand A. Torchinsky, 4 note on real interpolation of Hardy spaces in
the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232.

K.-C. Lin, Interpolation between Hardy spaces on the bidise, Studia Math. 84 (1986),
89-98.

F. Méricz, On double cosine, sine and Walsh series with monotone cosfficients,
Proc. Amer. Math. Soc. 109 (1990), 417-425.

—, On the mazirum of the rectengular partial sums of double trigonometric series
with non-negative coefficients, Anal. Math. 15 (1889), 283-280.

A. Torchinsky, Real-Variable Methods in Harmondc Analysis, Academic Press,
New York, 1986.

¥. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients,
Studia Math. 99 (1991), 221-233,

—, Martingale Hardy Spaces end Their Applications in Fourier- Analysis, Lecture
Notes in Math. 1668, Springer, Berlin, 1094,

—-, Strong convergence theorems for two-parameter Walsh-Fourier and trigoneme-
tric- Fourier series, Studia Math. 117 (1996), 173-194.

A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.

Department of Numerical Analysis
E&tvos L. University

Mizeum krt. 6-8

H-1088 Budapest, Hungary
E-mail: weisz@ludens.elte.hu

Received October 8, 1995 (3537)

STUDIA MATHEMATICA 118 (2) (1996)

A characterization of probability measures by f-moments
by

K. URBANIK {Wroctaw)

Abstract. Given a real-valued continuous function f on the half line [0, 00) we de-
ngot.e by P*{(J) the set of all probability measures 4 on [0,00) with finite f-moments
So Fle) ™™ {(dz) (n=1,2,...). A function f is said to have the identification property if
probubility measures from P*(f) are uniquely determined by their f-moments. A function
f i8 said to be a Bernstein function if it is infinitely differentiable on the open half-line
(0,00) and (=1)"f (”H)(w) Is completely monotone for some nonnegative integer 7. The
purpose of this paper ig to give a necessary and sufficient condition in terms of the repre-
genting measures for Berngtein functions to have the identification property.

1. Preliminaries and notation. This paper generalizes the results of
[11] where the identification property on [0, 00) was proved for the moment
function f(z) = 2P with p not being an integer. A related preblem for
the absolute moments and symmetric probability measures on (—o0,00)
satisfying some additional conditions was studied by M. V. Neupokoeva 18]
and M. Braverman [1]. In particular, M. Braverman, C. L. Mallows and
L. A. Shepp showed in [2] that the function f(z) = |z| does not have the
identification property in the class of symmetric probability measures.

The paper is organized as follows. Section 1 collects together some basic
facts and notation needed in the sequel. In particular, the notions of Bern-
stein functions and their representing measures are discussed. In Section 2
we describe the f-equivalence relation for Bernstein functions f in terms of
their representing measures, The final section contains a description of Bern-
stein functions with the identification property. A necessary and sufficient
condition is formulated in terms of representing measures and is related to a
generalization of the celebrated Miintz Theorem on uniform approximation
of continuous functions by polynomials with prescribed exponents (Miintz
[7], Szdsz [10], Paley and Wiener [9], Kaczmarz and Steinhaus [5], Feller [3]).

1991 Mathematics Subject Classification: 60E05, 44410,

Key words and phrases: Bernstein functions, Laplace transform, moments, identifica~
tion properties.

Research supported by KBN grant 2P03A 01408,
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We denote by P the set of all probability measures defined on Borel
subsets of the half-line [0,00). Given p,v € P we denote by p % v the con-
volution of 4 and v. For € P, [i denotes the Laplace transform of u, ie.
i(z) = Sg" e~ % u(dx) (Rez > 0). Given a real-valued continuous function f
on [0, 00) we denote by P(f) the subset of P consisting of measures u with
finite {0° | £(z)| p(dz). For brevity of notation we put my(u) = {7 «* u(dz)
and Py, = P(fy), where fu(z) = z* (k =1,2,,..).

ProPoSITION 1.1. Let 1 < k <n and py, ..., iin € Py. Then for every s
sottsfying the condition 1 < 8 < k the equalily
k)

Z("‘l)q‘ Z mﬂ(,utjl ® .k ,u,jv) == {)

r=l dlyeendr

holds, where the summation E rung over oll r-element subsets

{Jl, ,]r} of {1 sn}

Proof. Since yu; € Py, the Laplace transforms fi; are k times differen-
tiable at the origin. Consequently, the function

Y

T

g(2) = [T(1 - Bs(2))

=1

is k times differentiable at the origin and g(’)(O) = 0for s = 1,...,k
Moreover, we have the formula

92) =L+ (=1 3 (g %% p2,) (=),
=l JLronde
Taking the sth derivative at 0 of both sides of the above equation we get
the desired assertion.

Given 1 < s < k we denote by A(k, #) the set of all s-tuples (i1, ..., s) 0f
nonnegative integers satisfying the conditions j, > 1 and j1 4242+ . 87, =
k. For example, A(k,1) = {k} and A(k,k) = {{0,0,...,0,1)}. Define the
s-tuple (jl, .;Jg) belonging to A(k,s) by setting j‘l s= kif g = 1 and

R=k=s4; =14 =0forrs 1,8if s > L Put a(fy, ..., 5a) = f1+...+Js
Obhserve that

(L.1) a(jl,...,ja)<k~s—|~1:a,(jf,...,j§)

for all s-tuples {j1,...,Js) from A(k,s) other than (77,1 43). Given 1 £
§ <k <n, (j1,.-.,0s) € A(k,8) and i € Py we put

b(n. 1, ..., js) = n(n - 1)...(n—a(fi,...,ds) + 1)
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and
. m. Fr
cmbom= Y = E g ] T
.71 J l)Jr
{11000adu) EA(K,8) r=1

By a standard calculation we get the formula

k
(1.2) (™) =3 eln, k, 3, 1)
LED)

and, by (1.1),
8 fewel
n]i?;o b('ﬂ -71! 5.75) 1,
while
11m b( N1y, Jsm® F "t =0

for {j1,...,4s) € A(k, s) other than (j7,...,5°). Hence

. ke k s
Jim et by, = () o ),
which, by (1.2), yields the following asymptotic formula for (1),

PROPOSITION 1.2. Let 1 <! < k < n ond p € Py. Then there exists a
function v of I -+ 2 variables such that

m’ﬂ(.u’*n) = 1)(‘”, ka l,m,l('f.b), e ;ml—-l(.ﬂfl‘))
kY 4. - -
+ (l)n’“ Pl ()5 g () + o(n*—H1.

Throughout this paper M will stand for the set of nonnegative Borel
measures M on the hali-line [0,00) satisfying the conditions M({0}) = 0,

M([1,00)) < oo and So ™+ M(dz) < oo for some nonnegative integer n.
The least such n will be denoted by g(M). Obviously, M is closed under
addition and multiplication by positive numbers. In what follows supp M
will stand for the support of the measure M.

Introduce the notation

en(z)zi'(::ﬁﬁ"e—z (n:O,l,...).
0

It is casy to verify that the functions (—1)"e, are nonnegative and nonde-
creaging on [0, oo). Moreover, for @,y > 0,

(13) (=1)"en(m +y) < 2%H(~1)"(en(@) + en(y)).
Given M € M we define the generalized Bernstein transform (M) on
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the half-plane Re z > 0 by setting

i oo
(1.4) (M)(2) = [ eq(ew) M(dz) + | eolz2) M(da),
0 L

where g = q(M). The following statement is evident.

PROPOSITION 1.3. For every M € M the function (M) is continuous on
the half-plane Rez = 0 and analytic on Rez > 0. Morecover,

5]
(=)™ (MY () = | o™= M (d)
0
whenever n > ¢(M).
In particular, it follows that the correspondence M > (M) is one-to-one.
Now we give some examples of generalized Bernstein transforms.
ExaMmpLE L1 M(dz) = 7" 'dz (n = 1,2,...). Here we have q(M) =
n and
Y TR o S o il S Gl SEAT
(M) (2) = *— logz-I—Z vy Rl U > %)

k=l

where ' is the Euler constant.

EXAMPLE 1.2. M(dz) = z7 P~ dz, where n < p < n-+1 (n=0,1,...).
Here we have (M) = n and

B0 = Tp 4 Y L

EXAMPLE 1.3. M(dz) = z7P~1(1 + m) 1dm, wheren <p<n+1(n=
0,1,...). Here we have ¢(M) = n and

(M)(z) = - I'(-p)e*T(p+1,2) -

sinwp

+Z % (( l)k 116(p+1“’k)“ sm'rrp) zka

where I'(p -+ 1,2) is the 1nc0mp1ete gamma function and
[+9]

fle) = §

0
EXaMPLE 14. M{dz) = 7! (e® — 1)~ dz. Here we have (M) = 1 and
(M)(z) = —log I'(z + 1) + (1 - C — log(e - 1)),
where C is the Euler constant.

e"‘ﬂﬂ«‘

rp— d.

By standard calculations we get the following statements,
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PROPOSITION 1.4. Let M € M and g{M) = q. Then
: _qwl
(1.5) mll{];om (M)(z) =
(16) Jim (M)(z) = M((0,00)) g =0,
(1.7) ali{x;o eI (M) (z) =00 ifg>1.

Observe that, by (1.3) and (1.4), the inequality

M) (@ + )| < DM ()] + (M) ()| + 1)

holds for all z,y 2 0 and some positive constant b. This yields the following
assertion.

PrOPOSITION 1.5. The set P((M)) is closed under convolution.

Moreover, by (1.6) and (1.7), we have the following simple description of
P((M)).

PROPOSITION 1.6, Let M € M and g(M) = q. Then p e P({M)) if and
only if u € Py and the function

q .
A "
>~ S i) - i)
Fesl)
is M-integrable on the interval [0,1].

Here we use the notation Py = P.

Prorosirion 1.7. Let M € M and p,v € P((M)). If i = U M-almost
everywhere on [0,00), then my(p) = my(v) for k=1,...,q(M).
Proof. Of course it suffices to prove our assertion for ¢{M) = ¢ > L.
Then, by the definition of ¢(M),
1
(1.8) {29 M (da) = o
0
We conclude, by Proposition 1.6, that the function

g !
-
5~ {22 (mg ) = g ()
jwo
is M-integrable on [0, 1]. By (1.8) this is possible in the case my(u) = mx(v)
for k==1,...,¢ only, which completes the proof.

Denote by A the set of all polynomials with real coefficients considered
on the half-line [0, 00). Given g € A we denote by d(g) the degree of g. The
following statement is evident.

ProrosiTioN 1.8. Let ¢ € A and d(g) = k. Then P(g) = Pj and,
consequently, P(g) is closed under convolution.



190 K. Urbanik

A real-valued continuous function f on [0,00) is said to be a Bernsiein
function if it is infinitely differentiable on (0, 00) and
(1.9) (=)t (z) > 0
for sufficiently large n and all z € (0,00). The set of all Bernstﬁ‘ailn func-
tions will be denoted by B. It is clear that A C B and, by Proposition 1.3,
{M) € B whenever M € M. Moreover, B is closed under addition and mul-
tiplication by positive numbers. Consequently, functions of the form (M) +g
with M € M and g € A are Bernstein functions. The converse implication
is also true.

PrOPOSITION 1.9. Bvery Bernstein function f has a unique representa-
tion f = (M) +g with M € M and g € A. Moreover,

(1.10) P(f) = P{(M)) N P(g).
Proof. Suppose that (1.9) holds for n > & > 0. Then the function
(—1)* f=+1) 35 completely positive on (0, 00) and, consequently, has an in-

tegral representation
o0

(1.11) (—1k fE () = | e*72* T M(de) +a
0

with some real constant o and nonnegative measure M satisfying the con-
ditions Sé a*+t1 M (dz) < oo and M({0}) = 0. Denote by ¢ the least nonneg-
ative integer satisfying S; 9t M(dx) < oo. Obviously, ¢ < k, the functions

1 oo

hi(z) = Seq(zm) M(dz),  ha(z) =-— S e™** M(dx)

G 1+

are analytic on the half-plane Rez > 0 and

o0
(=1)F(ha(2) + ho(2)) " = | 72 M(da).
0
Comparing this with (1.11) we conclude that f = hy + ha + go for some
go € A with d{gp) < k+ 1. Since f, hy and gp are continuous at the origin,
50 is hy. Consequently, M((1,20)) < oo, which yields M ¢ M. Now applying
Proposition 1.3 and formulae (1.4) and (1.11} we get a representation f =
(M) + g for some g € A. Observe that, by (1.11), the measure M is uniquely
determined by f, which proves the uniqueness of the above representation.
It remains to prove formula {1.10). The inclusion P(f) D P((M)} N
P(g) is obvious. To prove the converse inclusion it suffices to show that
P(f) C P(g) or equivalently, by Proposition 1.8, P(f) C P, where s = d(g).
Observe that g(M) = q. If g < s, then, by (1.5),
lim = f(z) = lim #~*g(z) #0,

E—00
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which yields the inclusion P(f) CP,. If ¢ > s and ¢ > 1, then, by (1.7),

lim 7 9f(z) = oo,

L OO
which yields the inclusion P(f) € P, C P,. In the remaining case ¢ > s and
g =0 we have P, = Py = P and, consequently, P(f} C P,. This completes
the proof.

Given a Bernstein function f we define the order r(f) by the formula
r(f) = max(q(M),d(9)), where f = (M) + g with M € M and g € A.
The measure M is said to be the representing measure for f. We illustrate
these notions by some examples of Bernstein functions induced by Examples
1.1-1.4 of generalized Bernstein transforms.

EXAMPLE 1.5. {(a) The Bernstein function (~1)"2"log # of order n has
representing measure nlz " dz (n =1,2,...).

(b) The Bernstein function (—1)"2" (n < p < n + 1) of order n has
representing measure |I'(—p)|*z~P~dz (n = 0,1,...).

(¢} The Bernstein function (~1)"e*I'(p+1,2) (n < p < n + 1) of order
n has representing measure |I'(—p)| 2?1 (1 4 2)~ dz (n =0,1,...).

(d) The Bernstein function —log I'(z + 1) of order 1 has representing
measure 1 (e® ~ 1)1 dz.

(e) Let ¢ denote the zeta-function. Then for every a > 1 the Bernstein
function —((z + a) of order 0 has representing measure > oo o %oy n,
where §, denotes the probability measure concentrated at the point e.

As an immediate consequence of (1.10) and of Propositions 1.5, 1.6
and 1.8 we get the following statements.

PROPOSITION 1.10. For every Bernstein function f the set P(f) is closed
under convolution.

PROPOSITION 1.11. Let M € M,q(M) = ¢, g(a) = Y f_ga;2' and
f=(M)+g. Then for every u € P(f),

o0 o0 q (—a:)j N k
| 0wty = | (305 ) - i) ) i) + 3 gy

PrOPOSITION 1.12. Let f = (M) + g with M € M and g € A, n > r(f)
and i, ..., jn € P{f). Then

I~ mw) Mdy) = —£0)~ S~ 3§ 7(@) gy = . %35, (d),
0 j=1 r=1 Fbyeerdin O

where the summation 2 runs over all r-element subsets {41,...,jr}

of {1,...,n}.

l"'!j"’
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Proof. Put ¢ = g(M), k = d(g) and g(z) = f(0)+Z?=l a;z7. Applying
Proposition 1.11 for g = pj, * ... * p;, belonging, by Proposition 1.10, to
P(f) we have

Lo 2]

V () s, * - % . (dee)
0

= OSO (Xq: (mﬂ;;)" ma{pgy % - * 5} — (B4 *---*Mjr)’\(ﬂf)) M (dz)
b \izp &

8

k
+ Zas ma(#ﬁ ¥oo0% lu‘jr) + f(0)7
g=]

which, by Proposition 1.1, yields the formula

Zn:(_l)r Z S F(@) psy * - * py, (dx)
r=1 F1seenrdr O
=3 > N (g x vy, ) () M(de) ~ £(0)
r=1 jlr")j'r 0
— { T - 2s(v) M(dy) - 7(0),
0 j=1

which completes the proof.

2. f-equivalence relation. Let f be a Bernstein function, Two mea-
sures p and v from P{f) are said to be f-equivalent, in symbols u ¥ ¥,
if

| f(z) ™ (dz) = | f(2)v*"(de)
0 0

for all positive integers n. Here the powers of measures are taken in the
sense of convolution. Since, by Proposition 1.10, the set P(f) is closed under
convolution the integrals appearing in the above definition are finite.

PRroOPOSITION 2.1. Let g € A and p,v € P(g). Then p ~ v if and only
if mj(p) = my(v) forj=1,...,d(g). ¢

Proof For d(g) = 0 our statement is evident. Suppose that d(g) =

k> 1and g(z) = ELO ajz? with ay # 0. The sufficiency of the condition

my(p) =m;(v) for j =1,...,kis also evident. To prove its necessity suppose

icm
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that y ~ v. Thus
g

(2'1) a,j(mj('u,*n)—mj(y*”)) =0 (nz 1:2:-)
=1

By Proposition 1.2 for | = 1 and k¥ < n the left-hand side of the above
equality can be written in the form

exkn® (my (u)* ~ my (1)*) + o(n®),
which yields the equality mi (u) = m, (v). Proving our assertion by induction

assume t.hat L<l<kand me(p) = my(v) for s =1,...,1~1. Then, by
Proposition 1.2, the left-hand side of (2.1) is of the form

ck (?) n T ma ()~ () = ma (v)* g () + o(mk=1+2),

which yields the equality m;(u) = m;(»). This completes the proof.

In order to study the f-equivalence relation for an arbitrary Bernstein
function f we introduce some auxiliary spaces. In the sequel C will denote
the space of all real-valued functions continuous on the compactified half-line
[0, 00] and vanishing at the origin with the norm

1F]] = max{|F(t)] : t € [0,00]}.

Given M € M, L?(M) will stand for the space of all real-valued Borel
functions defined on {0, 0o) with finite norm

I F ll2,ar = ( ?F(tﬁ M(dt)) e
0
and the inner product
(F,Ga,pr = TF(t)G(t) M(di).
0

Put C(M) = CNL2(M). The space C(M) is equipped with the norm
1F|lag = N F]| + || F]l2,00.

Observe that C(M) is a Banach algebra under pointwise multiplication and

(2.2) IEG e < {17 1G]

for F, G € C(M). Identifying functions equal M-almost everywhere we get
a natural quotient mapping v from C(M) into L2(M). It is clear that the
set TC(M) is dense in L?(M) in the || ||z, ar-topology. ,

By a subalgebra of C(M) we mean a subset of C(M) closed under linear
cox?abmations and multiplication. We say that a subset A of C(A ) separates
points if for every pair of distinct points e, b € [0, 00) there exists a function
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F € A such that F(a) # F(b). In the sequel lin A will denote the linear span
of A. A sequence {E,} of functions from C(M) is called an approzimate
unit i limp o0 | F — FEn|la = 0 for every F € C(M).

LevMA 2.1. Let G be a decreasing positive function such thet (1-G)Fe
C(M) for some positive integer k. Then the seb

k
Ax(@) =tin { IO -G™) iny =125 j=1,...,k}
j=1

is a subalgebra of C(M) which separates points and contains an approrimate

unit.

Proof. Since functions from C(M) vanish at the origin, we have G(0)
= 1 and, consequently, 0 < G(t) < 1for t € [0, 0o). Thus

ﬁ(l—G’”) $§E nj(1~G)*,

J=1
which yields the inclusion Ax(G) C C(M}. Further, from the equality

k b
23) JJ[a-&[[a-cm)
i=1 J=1
=Y Tla-e[la-6m) [J @+ -,

jeI jet JEK
where the summation runs over all partitions of {1, ..., k} into disjoint sub-
sets I, J and K, it follows that Az(G) is closed under multiplication and,
consequently, is a subalgebra of C(M). Since the function (1 — GH* is in-
creasing on [0, c0] we conclude that Ay (G) separates points. Finally, setting
E, = (1 — G™)* we have E, € Ax(G),

(2.4) Bl €1 (n=1,2,..)
and
(2.5) nllg.lo Bp(u)=1

for every u € (0, c0). Since the function 1 — By, is decreasing, we have
IF — FE,| < [[1- Bnllmax{|F(t)| : t € [0,u]} + [ F||(1 - En(w))

for F € C(M) and u € (0,00). Observe that limy_o F(z) = 0. Combining
this with (2.4) and (2.5) we get

Lim ||F ~ FE, | =0.
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On the other hand, by the bounded convergence theorem we derive f
e ) erive from
o0
|F = FEn 3 a0 = | (L - Ba(6)2F () M{dt) — 0
0

as n — 00, which shows that {E,} is an approximate unit. The lemma is
thus proved.

‘I-JEMMA 2.2 L'et A be a subalgebra of C{M) separating points and con-
taining an approzimate unit. Then A is dense in C(M) in the || || ar-topology.

Proof. Let {E,} be an approximate unit belonging to A. Put
Ag={FE,: Fe C(M), n=1,2,...}.

1t is clear that Ay is dense in C(M) in the || |p-topology. Since A separates
points we conclude, by the Stone-Weierstrass Theorem ([6], Theorem 4E),
that A is dense in C(M) in the || ||-topology. Consequently, for every F €
C(M) we can find a sequence F, € A (n =1,2,...) such that |F — F,|| — 0
as n — co. Since F, By € A for every k and, by (2.2), |FEx — Fn.Ex|m <
| Br | ael|F = Fuli (n=1,2,...) we infer that A is dense in Ag in the || “M—:
topology, which completes the proof.

LEMMA 2.3. Let A be a subalgebra of C(M) separating points and con-
Lfaz’m'ng an approzimate unit. Let Uy be a linear and multiplicative || |20 -
wsometry from A into TC(M). Then Uy can be extended to a linear || Q,M"
isometry U from C(M) into L?(M) and there exists a Borel mappin; @
from [0, 00) into itself such that

(2.6) (UF)t) = rF(o(t)
for every F' € C(M) and M -almost every t € [0,00).

_ Proof. From the inequality || |2,z < || {|a it follows that Uy is con-

tinuous from A equipped with the || ||a-topology into L*(M) with the
| l|2,n-topology. Since, by Lemma 2.2, A. is dense in C(M) in the || ||a-
topology, Up can be extended to a linear and multiplicative || ||z, as-isometry
U from C{M) into L2(M). In particular, we have ’

(2.7) UFG) =U(F)U(G)

for F,G € O(M). Put s = g(M)+ 1 and G(t) = exp(—t*). It is clear
that G and k = 1 satisfy the conditions of Lemma 2.1, which together
with Lemma 2.2 shows that A.(G) is dense in C(M) in the || ||ar-topology.
Consequently, to prove the lemma it suffices to show that formula (2.6) holds
for F € A1(G) and a suitably chosen function .
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Setting H, = 1 — G™ (n = 1,2,...) we have A(G) = lin{H,, : n =
1,2,...}. Introduce the notation

(2.8) UH,=1-W, (n=12..)
By (2.7) we have the equality
U(HpHp) = (1 - Wo)(1 = Wn) (nm=12,.. J.

On the other hand, using the formula Hy Hy, = Hy + H,, — Hym we have
U(HpHp) =1~ Wpn = Whp + Waim (n,m=12,...),

which yields the equality Wom = W, W., M-almost everywhere {n,m =

1,2,...). Thus

(2.9) W, =W" (n=1,2,.)

M-almost everywhere. Again by (2.7), U(H}) = (1 — Wa)" = (1-wmr

(n,7r =1,2,...}. Since U is a || ||2,ar-isometry, we have

oG
§ (1 — exp(-nt*))?r M(dt) = |HZI e = 1UCED B

1]
00

= [ @ - wp@)’ M(dt).
0

Observe that for every n the left-hand side of the above equality tends to
0 as r — oo. This yields the inequality 0 < Wi(t) < 1 for M -almost every
t € [0,00). Changing if necessary the function W on a set of M-measure
zero we may assume without loss of generality that W is a Borel function
satisfying the inequality 0 < Wy (£) <1 for all t € [0, 00). Then the function

o(t) = (—log WA (£))*/*
maps the half-line [0, 00) into itself and, by (2.8) and (2.9),

(UH)(t) = 7Ha(p(t))
forn=1,2,... and M-almost every ¢ € [0, o). This completes the proof.

LEMMA 2.4. Let f be @ Bernstein function with the representing measure

M and p,v e P(f). If p 7Y then (t) = U(t) for t € supp M.

Proof. By Proposition 1.12 the relation u 7 v yields the formula

o N [~ =T 43
(2.10) § [T — 2% (a)) M(da) = § TT(1 - ™ (2)) M(ds) < o0
0 =1 0 j=1
for n > 7(f) and every n-tuple ki, ..., k, of positive integers. If at least one

of the measures j, v is concentrated at the origin, say u = 6o, then fi{z) = 1
for all ¢ € [0, 00) and, by (2.10), P(z) = 1 M-almost everywhere. Taking
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into account the continuity of the Laplace transform v
: \ we get {z) = 1 f
z € supp M, which yields our asserticn. ) >

Suppose now that neither 4 nor » is concentrated at the origin. Without
loss of generality we may assume that
(2.11) fi{o0) < Ploo) < 1.

Setting k = r(f) + 1 and G = [ or ¥ we conclude, by (2.10), that (1 — G)*
helongs to C(M ).. Since both I and ¥ are decreasing, we infer that G and k
satisfy the conditions of Lemma 2.1, which together with Lemma 2.2 shows

that Ax(() is a dense subset of C(M) in the || ||ss-topology. Tntroduce the
notation

k
H(na,.oomis A) = (1 - 3m)
J=1
for A € P. It is clear that
Ap(d) =lin{H(ny,...,n;A) tny =1,2,..5 j= 1,...,k}.
Moreover, by (2.10),
(2.12)  (H(ng, ... nes ), Hryy oo, mas 6))2,m
= (H(nlﬁ R (73 V)m H('rla ooy Thy V))Z,Ma

which yields the following implication: if a linear combination

Zc(nla‘ ' '!nk)H(nl: tee ank:slu‘)
vanishes M-almost everywhere, then so does

ZC(TL]_, : "5nk)H(nla“'1nk§y)'
Using this property we can extend the mapping defined by the formula
(2.13) UoH (ny, ..

for every k-tuple ny, ..., ny of positive integers to a linear mapping Up from
A (E) into TAk(D), By (2.3) the mapping Uy is multiplicative. Moreover
by (2.12) it is & || ||z, sr-isometry. Now applying Lemma 2.3 we conclude thaf:
Up has an extension to a linear || [|2,p-isometry U from C(M) into L2(M)

of the form
(2.14) (UF){t) = rF(p(t))

ft?r every F' € C(M) and M-almost every t € [0, c0), where ¢ is a nonnega-
:cwe Borel function defined on [0, o). In particular, setting ny = ... =n4 = 1
in (2.18) and F = H(L,...,1; ) in (2.14) we get the formula (1 — f(¢))* =
(1~ B(e(t)* for M-almost all t € [0, 00), which yields the equality

(2.15) () = ()

':nk;u') zTﬂ(nlv--ynk;V)
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M-almost everywhere. Observe that the inverse function Bt is decreasing
and maps (fi(00), 1] onto [0, co). Consequently, by (2.11), .the superposition
wol(t) = G~ 2(D(t)) is well defined for ¢ € [0,00), increasing and infinitely
differentiable on (0, co). Moreover, by (2.15), ¢(t) = @o(t) M-almost every-
where, which, by the continuity of fi, ¥, yields

(2.16) B(t) = [i(po(t)} for ¢ & supp M.
Further, by (2.14),
(2.17) (UF)(t) = TF(po(t))

for every F € C(M) and M-almost every t € [0, c0).

Given u > 0 and n > w~! we put Fu(u,t) = 0 if ¢t € [0,u — n™1],
Folu,t) = n(t—uw) +1ift € (u—n~"u) and Fo(u,t) = 1 if ¢ € [u,c0).
Tt is clear that F,(u,-) € C(M), Fu(u,@o(")) € C(M) and, consequently,
by (2.17), |

1) 2,0 = 11 (s 00 () 2,00
Moreover, setting F(u,t) = 0if £ € [0,4) and F(u,t) = 1 otherwise, we have

lim F,(u,t) = F(u,?)
1I—r 00
for every t € [0, co), which, by the bounded convergence theorem, yields

(2.18) |7 (, Hl2,a0 = I1F (1, 00(-))
Denote by ¢ the inverse function of ¢g. The function % is increasing, con-
tinuous and maps [0, po{oc)) onto [0,00). Observe that F(u,@o(t)) = 0 if
u > po(oo), t > 0, and Fu,@o(t)) = F(p(u),t) if u € (0,p0(c0)), t = 0.
Inserting the above expressions into (2.18) we get

|2,

(2.19) M(u,00)) =0 if u > py(oo)
and
(2.20) M ([u, 00)) = M{[$(u),00)) if u € (0,p0(c0)).

Given u € (0, po(cc)) we introduce the notation

afu) = min(u,9(v)),  B(u) = max(u, H(u))-

Both o: and G are increasing and continuous. Moreover,

(2.21) u € {afu), B(u)}
and, by (2.20),
(2.22) M ([e(u), B(w))) = 0.

Suppose that ¢ € (0,po(c0)) and (t) < B(t). Taking into account the
continuity of & and § we can find a pair uj,uq satisfying the conditions
0 <y <t<ug < po(00), at) < Bur) and afuz) < B(t). Since ¢ and
B are increasing, we also have afu;) < a(t) and 8(t) < B(uz). Hence and
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from (2.21) and (2.22) it follows that the set (o(uy), B(ur)) U (e(uz), Bus))
is a neighbourhood of t of M-measure zero. Thus ¢ ¢ supp M. It follows
that for every t € (0, po(00)) Nsupp M we have a(t) = 3(t) or, equivalently,
@o(t) = t. By the continuity of g, the formula M{({0}) = 0 and (2.19), the
above equality holds for all ¢ € supp M. Comparing this with (2.16) we get
the assertion of lemma.

Now we are in a position to prove the main result of this section.

THEOREM 2.1. Let f be a Bernstein function with representing measure
M and p,v € P(f). Then u i if and only if [i(t) = P(t) for t € supp M

and me(p) = mp(v) fork=1,...,7(f).

Proof. Sufficiency. Suppose that u,v € P(f), G(t) = v(t) for t €
supp M and mg(p) = mg(v) for k= 1,...,7(f). It is clear that (u*™)"(t) =
{(r*")7(t) for t € suppM and, by (L.2), mi(u*™) = myp(v*") for k =
1,...,7(f) and n = 1,2,... Applying Proposition 1.11 we conclude that
§o f(2) prr(dz) = {5 f(z)v*™(dx) for n = 1,2,..., which completes the
proof of the sufficiency of our conditions.

Necessity. Suppose that p,v € P(f) and p v By Proposition 1.9 the

function f has a representation

(2.23) f=(M)+g
with M € M and g € A. Moreover, by (1.10),
(2:24) byv € P(M)) 1 P(g).

Further, by Lemma 2.4, ji(t) = ¥(t) for ¢ € supp M, which, by (2.24) and
Proposition 1.7, yields mu(u) = my(v) for k = 1,..., g(M). Consequently,
(L") (t) = (v*™)7(¢) for t € supp M and, by (1.2), mg(u*™) = my (™) for
k=1,...,9(M)and n=1,2,... Now applying Proposition 1.11 we have
oo o0
[ (M)(0) w*™(de) = [ (M) (z) v""(do)
0 0

or, equivalently, u (;}) v. Comparing this with (2.23) we get p it which,
by (2.24) and Proposition 2.1, yields my(p) = mg(v) for k = 1,...,d(g).

Observe that r(f) = max(g(M),d(g)), which completes the proof of the
necessity of our conditions.

(n=1,2,...)

3. An identification problem. A Bernstein function f is said to have
the identification property if for u, v € P(f) the f-equivalence relation x 7 v

vields 4 = v. The aim of this section is to characterize the Bernstein func-
tions with the identification property in terms of their representing measures.
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We denote by D the set of all functions F analytic in the right half-
plane Re z > 0, real-valued on the half-line (0, c0) and for every nonnegative
integer n satisfying the condition

[F(2)| < a,max(|2*, |2] ")
for Rez > 0, some positive number a, and some nonnegative integer k.
It is clear that D is closed under differentiation, multiplication and linear

combinations with real coefficients. Setting (JF)(z) = F(z™') for Rez > 0,
we have

n —2n n = n—1y (n -2n e
(TP (z) = 772 (JFY >)(z)+§l( . )(k)k!z’“ IFR) ()

for n =1,2,..., which shows that D is invariant under J.

Let K denote the set of all functions F analytic in the right half-plane
Re z > 0, real-valued on (0, co) and for every pair k, n of nonnegative integers
satisfying the condition

IF(“)(z)i < bk min(iz|k, |z|'k)

for Re z > 0 and some positive number by . It is clear that K is closed under
differentiation, linear combinations with real coefficients and multiplication
by functions from D. Notice that K < D and K is nontrivial, i.e. contains
a function not vanishing identically. To prove this, set

he(z) = (—1)*(sin2n log z) exp(—log® z + klogz) (k=0,1,...)
for z > 0 and hy(0) = 0. It is easy to verify that hy is infinitely differentiable
on [0,00) with integrable derivatives hg) and hﬁj)(()) =0(r =01...).
Setting Hy »(z) = ?Lgc'")(z) (k,» =0,1,...) we have the formulae

2Hyo(2) = Hipa(2),  HO(2) = Hignp(2) and  HI(0) =0,

It follows that for every pair k,n of nonnegative integers the functions
z*H, o(z) and 27*H, o(z) are bounded in the half-plane Rez > 0. Thus
setting G(z) = Hgp(z) we have G(")(z) = H,o(z), which yields the in-
equality
6™ (2)] < ek,nmin(lzl®, 2] 7*)
for Rez > 0 and some positive number ¢k . It is clear that ¢ is analytic in
the half-plane Re z > 0, real-valued on {0, oo) and does not vanish identically.
This shows that G € K.
In what follows g will denote the Laplace transform of g.

ProrosiTioN 3.1. Every function from X is of the for'm g, where g is a
real-valued function on [0,c0) satisfying the conditions {; z"|g(x)|dz < oo
and- {3 z"g(z)dz =0 (n=10,1,...).
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Proof Put V(z) = min(z},|z|7!). By standard calculations we con-
clude that the function {™ _V(z + 4y)%dy is bounded for 2 € (0,00). Let

F e K. Then for every nonnegative integer n the function F(™) is analytic in
the right half-plane Rez > 0 and |F ("}(2)| < ¢,V (2) for Rez > 0 and some
positive number ¢,. Hence [~ |F(") (2 —My)|2 dy is bounded for = € (0, 00).
In other words, F™ belongs to the Hardy space H? on the right half-plane
Rez > 0. By the classical theorem of Paley and Wiener ([4], Chapter 8)
there then exists a function g, on (0, co) satisfying the condition

o0
(3.1) S |gn () [* dz < 0o
0
such that
(3.2) F =5, for Rez > 0.

Since F{™) is real-valued on (0, cc), we conclude that gy, is real-valued almost
everywhere on (0,00). Of course without loss of generality we may assume
that g, is real-valued. Moreover,

(3.3) gn(z) = (—1)"z"go(z) (r=0,1,...)
almost everywhere on (0, co), Whlch, by (3.1), yields

00
S 2 go(2)? da < oo.
h

Hence, by the Schwarz inequality

(ng”!'go(m)l d:c)2 = (Tm“lmﬂﬂlgo(m)’dm)z < Di):cz("“)go(m)gdm
1 1

we get

o0
(3.4) | 2™go(m)|dz <00 (n=0,1,...).
1
Since limyo F("(z) = 0 for F € K and n = 0,1,..., we conclude, by
(3.2)-(3.4), that
o0
S 2" go(x) de = 0
b

Thus the representation F' = gp has the required properties, which completes
the proof.

(m=0,1,...).

We define the function A on subsets of [0,00) by setting A(@) = 0 and

A(A) = sup Z min(b, b~ 1)
beRB
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for nonempty subsets A, where the supremurm runs over all nonempty finite
subsets B of A. o

The following results concerning the determination of the Laplace trans-
form by its values on a subset of [0, 00} will play a crucial role in our consid-
erations. They can be regarded as an extension of Feller’s version of Miintz’
Theorem given in [3].

PROPOSITION 3.2. For every subset A of [0,00) with A(A) < oo there
exists o pair of distinct measures p,v € [Nguy Pi such that my(p) = mu(v)
fork=1,2,... and i(t) = #(t) for t € A.

Proof From the assumption A(A) < oo it follows that there exists

a sequence 1 < gy < ay < ... of real numbers tending to oo such that
S L8yt < ocand
(3.5) Ac{fU{e,:n=12,..}U{a;" in=12._.}

W. Feller proved in [2], Lemma 1, that there exists a real-valued function g
on [0, 00) such that

oo

(3.6) 0< S e®|g(z)| dx < o0
0
and
(3.7) Fan)=0 (n=1,2,.).

It is clear that 7 is analytic in the half-plane Re z > 0, real-valued on (0, 00)
and, by (3.6), all its derivatives ™ are bounded in the half-plane Rez > 0.
Consequently, § and Jg belong to D. Moreover, by (3.7),

(3.8) (I =0 (n=12,..).

Taking a function H from K not vanishing identically we put F = HG(Jg)
Obviously F does not vanish identically, belongs to X and, by (3.7)
and (3.8),

(3.9) Flap) = Fla;l) =0 (n=1,2,...)
Proposition 3.1 shows that F is of the form F = ﬁ, where h is a real-valued
function on [0, 0o} satisfying
(3.10) 0< | a"|h(z)|dz <00 (n=0,1,...)
0
and

(3.11) c>Sﬁ.ﬂs"‘i‘z(m) de=0 (n=0,1,...).
0
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Set Hi(z) = max(h{z),0) and H.(z) = max(—~h(z),0). By (3.10) and
(3.11) for n = 0 we have

c= Th.;.(a:)dm = S h_(z)dz > 0.
0 0

We define two probability measures on [0,00) by u(dz) = ¢~ 1hy (z) dz and
v{dz) = ¢~h_(z)dz. Of course u # v. Moreover, by (3.10) and (3.11),
pov € Npey P and my(p) = me(v) (k = 1,2,...). Since G(t) — ¥(t) =
c~1F(t), we have, by (3.9), fi(an) = P(as) and fi(a7!) (n = 1,2,...), Taking
into account (3.5) and the obvious formula Z{0) = 7(0) = 1 we get the
equality 7i(t) = P(t) for t € A, which completes the proof.

Taking into account the formulation of Miintz' Problem in terms of
Laplace transforms in [3] and the inequality

Ald)<2>°

agA

we get, by Szédsz’ version of Miintz’ Theorem ([9], Theorem XV), the follow-
ing statement.

ProrOSITION 3.3. Let A be a subset of {0,00) with A(A) = oc, and
v € P. Then the equality G(t) = U(¢) for t € A yields = v.

As an imrmediate consequence of Theorem 2.1 and Prepositions 3.2 and
3.3 we get the following description of Bernstein functions with the identi-
fication property.

a
14 a2

ProPOSITION 3.4. A Bernsiein function with representing measure M
has the identification property if and only if A(supp M) = 0o.

Applying the above proposition to functions appearing in Example 1.5 we
conclude that the functions (—1)"z"logz (n = 1,2,...), (=1)kzP,
(~1Y*e*T(p+1,2) (k<p<k+1l,k=0,1,...),—log'(z+1) and —((z+a)
(@ > 1) have the identification property.
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