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(C*-seminorms
by
BERTRAM YOOD (University Park, Penn.)

Abstract. A necessary and sufficient condition is given for a *-algebra with identity
to have a unique maximal C*-seminorm. This generalizes the result, due to Bonsall, that
a Banach *-algebra with identity has such a C*-seminorm.

1. Introduction. Throughout this paper let A be an algebra over the
complex field with an involution z — 2z*, and with an identity e. By a
C*-seminorm we mean an algebra seminorm |z|| on A where |jz*z|| = [jz|?
for all z € A. By a state on A we mean a positive linear functional f(z) on
A with f(e) = 1.

For the case where A is a Banach *-algebra Bonsall [1, p. 269] has shown
that there is a unique maximal (or sup) C*-seminorm m(z) on A given by
m{z)}* = sup f(z*z), where the sup is taken over all states. For a more
detailed exposition see [2, §39]. By this is meant that m(z) > ||z for all
z € A whenever ||z|| is a C*-seminorm on 4.

In re-exsanining this result we showed that m(zx) was also the unique
minimal seminorm for a set of seminorms on A (see Theorem 2.8). This led
us to study the question of sup C*-seminorms for *-algebras A where no
norm assumptions for A are made.

Tt is shown that A has a sup C*-seminorm if and only if sup [f(z)] < oo
for each = & A, where the sup is taken over the set ©, of all admissible
gtates. Rocall that a positive linear functional f(x) is admissible [8, p. 213]
if for each = € A there is a real number K(z) > 0 such that f(y*z*zy)} <
K(z)f(y"y) for all y € A, If A has a sup C*-seminorm m(z) it is given by
m(2))? = sup f(z*z), where the sup is taken over G, (not over all states, as
this could give an infinite sup), This criterion is readily verified for a Banach
“.algebra where every positive linear functional is adrmissible.

Examples are readily supplied for *_algebras’' A with no sup C*-seminorm.
The Bonsall result in its original form extends.to some.incomplete narmed
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20 B. Yood

*-algebras. If the set of invertible elements of the normed *-algebra A is open
then A has a sup C*-seminorm.

2. On C*-seminorms. For our notation concerning the *-algebra A
see §1. The formula || = sup f(z"z) where the sup is taken over all states
on A first appeared in the work of Gelfand and Naimark [3]; see also [6,
Ch. IV]. There, and for all Banach *-algebras with an identity, the gup in
question is always finite. A careful discussion of this formula for a Banach
algebra A was given by Ptdk in [7, (4.5), pp. 265-266]. For more general
*-algebras with an identity the sup can be infinite. As we shall want the sup
to be finite for all z € A, we do this below by taking the sup over a subset
of the set of all states.

Henceforth we let B denote the set of all positive linear functionals on
A. We let P, denote the set of all f & P which are admissible and &, the
set of states in ..

For each f € Pand y € A we set fy(x) = fy*zy) as in [2, p. 197, Of
course, f, €.

Let § be a subset oi:'_ B. We say that F is balanced if f, & §F whenever
f & ¥ and y € A. (This implies that Af € § when f € § and A is a scalar,
A 2 0.} Let , denote the set of all states in §. Also, we set

D(F) = {z € A: sup{f(2"2) : f € Fa} < o0}

and denote the square root of this sup by |z|. Further, we set NG ={ze
(%) : || =0} .
One checks that 5, is balanced.

LeEMMA 2.1. Let § be a balanced subset of 3. Then D(F) is a *-subalgebra
of A and |z| is ¢ C*-seminorm on D(F), where

|2f* = sup{f(s*z) : f € F,}, =z €A

Also, WE) = N{f~1(0) : f € §} and is o two-sided *-ideal of A. Moreover,
if D(F) = A then every f € T is admissidle.

Proof. Let 5 € D(F) and f € Fy. We claim that f(we™) < |2*. We may
suppose f(zz*) > 0. By the Cauchy-Schwarz inequality [8, p. 218] we have

[flee)]? € F{(22*)) = for (22).
Let w = sc*/{_f('ma:*)]lff"_. Then
[F(22*)? < fulo ) f(za*).

-QSince fuwle)=1wehave f,, € F, sothat f,(a*z) < |z|?. Hence f(zz") <
|z|*. Therefore z* € D(F) and |z*| < |2|. Thus D(F)* = D(F) and || = lz*|

on D(F).
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Next let 2,y € D(F) and f € §,. We have
(2l +19)? 2 Fl@*z) + Fu'y) + 20f (e*z) £ ()2

However, both | f(2*y)[? and | f(y*2)[? are majorized by F(z*z)f(y*y). This
gives us

(2| -+ [y)? 2 f(z*2) + Fy*y) + 1 F(="y)| + | f(y*z)]
> fla+y)la+e).
Therefore |z| + |y] 2 |# + y| and D(F) is a linear subspace of A with |z| as
a normed linear space norm on it. .

Let ,y, f be as above and let 2z = zy. Note that f(z*2) = fy(z*z).
Clearly f(z*z) = 0 if f(y*y) = 0 and therefore if |y| = 0. Suppose that
Fly*y) > 0. For v = y/[f(y*y)]"/* we have f, € F, and

f(&"2) = fulz"3) f(y'y).

Consequently, f{z*z) < |z*ly|>. Therefore z = zy lies in ©(F) and
ley| < |2||y| so that |z| is a normed algebra norm on the *-subalgebra
D(F). :

For z € D(F) and f € §s we have

e*af? 2 f((e"0)) 2 [£(a* o)
so that |#*z] > || Consequently, |z*z| = |z|*. :

Let Z={f"Y0): feF}, véeé Zandy € A Then (e+y*)p(e+y) €Z.
Since also y*vy € Z we see that y*v + vy € Z. Replacing y by iy we dec}uce
that —y*v+vy € Z so that y*v, vy € Z for all y € A. Hence Z is a two-sided
ideal of A. Moreover, Z is a *-ideal as f(z*) = f{z) for all z € A. Also,
Flv*v) = 0 for all f € § so that {v| = 0 and v € N(F). Conversely, if
v € TF) then as |f(v)]2 < fF(v*v)f(e) for all f € F we see that ve z.

Suppose that D(F) = A We show that each f € § is admissible. For
suppose otherwise. Then there is g € 4 with the following property: For
each real £ > 0 we have some y; € A satisfying .

Flyregzoye) > LFWive).
Without loss of generality we may take f(e) = 1. Set v = yfzp2o. '\?*Ve hlafx;g
Falaton) € Flo])f(ulus). Thus Fyive) > 0. Let we = ve/Fluie) /%
Then fu, & Ty However, fu, (2§za) > ¢ 80 that xg & D(F). This completes
the proof of Lemma 2.1. T ' . _ '

Henceforth let H denote the set of all self-adjoint elemegts of A. We say
that & positive linear functional f(z) is continuous qnl@(&) in the seminorm
||| if there is some M > 0 so that | f(z}) < M|z for all 2 & D(F): For
a state f(z) continnous on H N D(F) in il:;H we have |.f(h).l‘.§T<IH-?.L|;1\,h' €
H N D(F). For by induction, | f(h)| < |‘-f(‘h3~-).:i‘-‘2:: “Aor egch pps;tm_e mteger
so that [F(h)] < IF1% 1Al T e e e
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If the state g(z) is continuous on H ND{(F) in the seminorm |[z|| and the

involution is continuous in ||2|| then g{x) is continuous on D(F) since
9(2)|* < 9(z™2) < ||z < k<],

for some k > 0.

z & A,

LeMMA 2.2. In the situation of Lemma 2.1, § i3 the sel of all f €
continuous on D(F) in the C*-seminorm |z|.

Proof Let f € §o. Then [h? > f(h?) > |f(h)|? for cach h € H ND(F)
8o that f is continuous, there in |z|. If g is a state not so continuous, there
is a sequence {h,} in H ND(F) with |k,| — 0 and |g(hs)| — oo. But then
g € Fs. For otherwise
[hal? 2 g(h2) > lg(hn)P%,

which is impossible.

LEMMA 2.3, A state f(z) on A is admissible if and only if there is an

algebra seminorm ||z| on A such that f(z) is continuous on H in that semi-
norm.

Proof. Suppose such a seminorm ||mH exists. For each y € A, h € H,
| £ ()] <A Flalv* | gl 2] so that 7, is also continuous on H.
An inequality due to Kaplansky ([5, p. 57] or [4, p. 55]) asserts that

fylz¥z) < fy" ?J)luz n[fy((m*m)zw)]rn

for all z,y € A and a positive integer n, Therefore

fy(z*e) < F )™ (I fllall (@ ) )"

We let n — oo to obtain

Fy(@*e) < |lz"a || f(y"y)
so that f(r) is admissible.

For the converse suppose that f(z) is admissible, We may supposo that
fle} = 1. Set § = {f, : y € A}. Clearly F is balanced and F;, = = {fy
fly*y) = 1}. As f(z) is admissible there is a number K (z) for each z so
that fy(z*z) < K(z) for all f, € F. Then D(F) = A. Let || be the
C"-seminorm induced by §, via Lemnma 2.1. For each b € H we have

B > F(R®) 2 [F(R))?
so that f(x) is continuous on H in that seminorm.

LEMMA 2.4. A subset T+ (0) of P ds balanced and D(F) = A if and
only if there is an algebra seminorm |'z|| on A such that § is the set of all
positive linear functionals continuous on H in ||zf.
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Proof. Suppose that § is balanced and D(F) =
geminorm exists by Lemma 2.2,

For the converse let § be the set of all elements of B continuous on H in
the seminorm [|z]|. Let f € §. As noted in the proof of Lemma 2.3, each f,
is also continuous on H so that § is balanced. If g € Fy then, by that proof,
we have g(z*z) < ||z*z||. Hence D(F) = A.

Note that in Lemmas 2.3 and 2.4 the algebra seminorm can always be
chosen to be a C"-geminorm.

Recall our notation that B, is the set of all admissible positive linear
functionals and &, the states in P,. We mention the simple fact that if ||z||
is a seminorm and [|z]| = 0 then ||z + z| = ||z||. Indeed, ||z + #|| < ||=|| and
lzll < flz + 2l + 12l = [l + 2].

THEOREM 2.5. Let ||z} be a C*-seminorm and let § be the set of all
elements of P continuous in ||z||. Then D(F) = A and

lz||? = sup{f(z*2) : f € Fe} forallze A

Proof Let ¢ = {z € A |zl = 0}. Then |z + w| = |z for all
w € ¢ and A/¢ is a normed *-algebra whose completion is a C*-algebra.
By the Gelfand-Naimark theorem on C*-algebras there is an isometric *-
isomorphism z + ¢ — Tyyp of A/¢ onto a *-algebra K of bounded linear
operators on a Hilbert space I'. Setting Uy = Ty4¢ we obtain z — Uy as a
norm-preserving *-map of A onto K. For each £ € I" of norm 1 in I" we set
Fé(z) = (Ug(£),£), where (o, 8) is the inner product of I'. Let |Uy| denote
the operator norm of Uy, as a hounded linear operator on I' and |£| the norm
in I

Since |f%(z)| < |Ua| = ||2fi, cach f¢ is a state in §. Also,

sup{f(z"z) : |¢| = 1} = |Uuf* = [l=]|".

Therefore < sup{f(z*z) : f € F.}: However, the computation in

Lemma 2.3 shows that, for each f € ¥, we have f(w m) < |ja* scll = ]|a:|[2
This corpletes the proof.

THEOREM 2.6, Let ||z be a C*-seminorm and let  be the set of all
elements of P continuous in |a||. Then ||z| is a sup C*-seminorm if and

A. Then the required

only if § =00, and then

|z]|? = sup{f(z*z): f € Ba} Jorallze A

Proof. By Theorem 2.5, we see that, given a C*-seminorm [|}z}]], il|z||®
is the sup of f(z*z) taken over a set of admissible positive linear functionals.
Therefore, if F = ,, then ||ar|| > H|wH| for all @ € A4 s0 that L]mH is-the- sup’
O*wsemmorm :

Conversely, let ||z be the sup: C’*—semmorm o A w1th the co:rrespomd-’
ing §. Let f(z) be an admissible- stata, ion-A. We -show that f & ¥. Suppose
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otherwise. Then there exists a sequence {h,} in H where ||An|| ~ 0 and
|f{hn)] — co. Let T be the subset {f, : y € A} of P. This is a balanced
subset of 3. Let |z| be the C*-seminorm induced by X via Lemma 2.1. As
seen in the proof of Lemma 2.3, we have |f(ha)|? £ F(R2) < [K2]| < {ha]%
Therefore |Ay,| — co whereas ||in| — 0. This contradicts th@ fact that ||z||
is the sup C*-semincrm.

COROLLARY 2.7. 4 has o sup C*-seminorm if and only if sup{|f(z)| :
f €8,.} < oo for each z € A.

Proof. For each f € &, we have |f(z)]* < f(z*z). Hence the sup
condition is equivalent to the statement that D(,) = 4. By Theorem 2.6
this is equivalent to sup{ f(z*z)'/? : f € G,} being the sup C*-seminorm
for A.

An easy example of a *-algebra 4 with no sup C*-seminorin is the al-
gebra A of all polynomials on the reals with complex coefficients. For each
polynomial p(t) = Y at® we set p*(t) = ¥, a@xt". Given any polynomial
p(t) which is not a constant we have sup{|f(p)| : f € Ga} = 0o since each
p —+ p(t) is an admissible state.

We turn to the minimizing nature of some C*-geminorms.

THEOREM 2.8. Let § be a balanced subset of . The following statements
are egquivalent:

(a) There is o seminorm ||z|| in which every f € F is continuous.

(b) sup{|f(z)| : f € §s} < o0 for each z  A.

(¢) || = sup{f(z*z)/% : f € &} is the unique minimum of the set of
all seminorms in which the involution is norm-preserving and every f € §
continuous. '

Proof. Assume (a). Asseenin Lemma 2.3, f(z*2) < |la*zi forallz € A
and f € Fs. Thus D(F) = A4 and (b) follows.

Assume (b). By Lemma 2.1, the |z| of {c) is a C*-seminorm. Let |||x||
be any seminorm in which ||| z* |H = |||zf|| for all z € A and every f € F i
continuous. Using Lemma 2.3 we have

flzz) < [lle*ell] < [ll=l?
for each @ € A and f € F,. Therefore |z| < ||z||| for all z € 4,

Trivially (c) implies (a).

It follows from the above that the sup C*-seminorm, when it exists, is
the unique minimum of an appropriate set of seminorms. The latter set,
in: gemeral, tontains more than the sup C*-seminorm as it does in the case
of A, the algebra of all continuous complex-valued functions on [0, 1] with
continuous derivative. There sup{[f(¢)| : ¢ € {0,1]} is the sup C‘*~semmorm
and J|f|l-=sup{| f{E} + |f'(2)| : £ € [0,1]} is in that set.
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3. On normed *-algebras. In §3, A will be a normed *-algebra with
an identity e. We apply the results of §2 to this case.

The normed *-algebra A is a @-algebra if the set of invertible elements of
A is open. This requirement is equivalent to the condition that v(z) < |2/l
for all z € A, where r(x) is the spectral radius of = (see [9, Lemma 2.1]).

TueorEM 3.1. If 4 is o normed Q-algebra then A has a sup C*-

BEMINOTIT.

Proof Let f(z) be an admissible state on A. By [8, Th. 4.5.4] there is
a linear mapping y — 7(y) of A onto a dense subset of a Hilbert space I"
with (w(z),7{y)) = f{y*z), and a *-representation & — T3 of A as a linear
operator on I', where, in I,

(T () () = Fluzy)
and ||TS (m(¥))||* = fly*2*zy). As f is admissible, T{ is a bounded linear
operator on I'. Here f(y*z*zy) < ||T4||* if f(y*y) < 1 and, in particular,
with y = e, f(e"z) < |T][*.

Now let L(I") be the *-algebra of all bounded linear operators on I
and o(T) be the spectral radius of T € L(I") as an element of the Bauach
algebra L(I).

Take h € H. We have T,{ as a self-adjoint operator. Thus

1T 1| = o) < v(h) < A,
where we used the fact that a homomorphism decreases the spectral radius

and A is a Q-algebra. Therefore f(z*z) < ||T).,|| < ||z*z|. Consequently,
sup{f(z*z) : f € G,} < ||z*z|. By Corollary 2.7, A has a sup C*-seminorm.

4. On the socle of 4. We assume here that *z = 0 implies £ = 0 for
z € A and that 4 is a semiprime algebra. As is well known [8, p. 261]; given
a minimal right (left) ideal of 4 there is a unique self-adjoint idempotent p
such that I = pA (resp. I = Ap). We call any such idempotent p a minimal
self-adjoint idempotent. Here pAp is a division algebra over the complexes.

THEOREM 4.1 Suppose A satisfies the listed requirements. Then there
exists ¢ C*-norm on the socle X of A 'if cmd only if pAp = {Ap : A complez}
for each minimal self-adjoint idempotent p. In that case @ C*-norm on X is
given by

2| = sup{f(z*z)"/?: f € B},

where 58 is the set of oll positive linear functionals on A.

Proof. Let ¢ be a self-adjoint idempotent in A and f(z) be a state on
A. Then . '

0< fg*e) = Fla) < Fg*
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Therefore 0 < f(g) < 1. We assume that pAp = {Ap : A complex} for each
minimal idempotent p. To p there corresponds a linear functional ¢(z) on
A with pzp = ¢(z)p for all z € A. It is known that ¢(z) is a state on 4
(see [10, p. 358]). Consider any f € Ps. We have f(pzr*zp) = ¢(z*z)f ().
Inasmuch as 0 < f(p) < 1 we see that

sup{f(pz*zp) : f € Py} < d(2"x).
Therefore zp € D(P) for all ¢ € A and so0, by Lemma 2.1, D(P) D L. Let
|z| be the C*-seminorm induced by P via Lemma 2.1, If || = 0 then, by
the same lemma, ¢(z*z) = 0 as ¢ is a state. Therefore pa™xp = 0 or zp = 0.
This holds for every minimal idempotent p and therefore 2X = (0). As A is
semiprime we see that z = 0 if z € X, Thus ] is a C*-norm on Z.
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Toeplitz flows with pure point spectrum
by

A, IWANIK (Wroctaw)

Abstract. We construct strictly ergodic 0-1 Toeplitz flows with pure point spectrum
and irrational eigenvalues. It is also shown that the property of being regular is not a
measure-theoretic invariant for strictly ergodic Toeplitz flows. :

Introduction. Toeplitz flows introduced in [J-K] have been exploited
to construct dynamical systems with various ergodic properties [W, D-I,
D, B-K, D-K-I, I-L]. On the other hand, some basic questions concerning
possible dynamic properties of Toeplitz flows—such as spectral invariants in
the strictly ergodic case-—remain unresolved. Although the existence of non-
regular Toeplitz sequences with pure point spectrum has long been known
[D-1], the proof, relying on a result of Wiener and Wintner, gave us no insight
into a possible structure of the spectrum. In the present note we propose an
explicit construction of Toeplitz flows that have pure point spectrum with-
out being regular. The new eigenvalues that do not belong to the maxirnal
equicontinuous factor can be made either rational or irrational, which settles
the questions posed in [I-L]. : _ -

In Section 2 we construct a Toeplitz flow which has a pure point spectrum
with an irrational eigenvalue. The construction uses William’s “Toeplitz
sequences constructed from subshifts” with some modifications (cf. [I-L])
allowing us to apply methods of group extensions. In Section 3 we adapt
this construction to obtain a strictly ergodic non-regular Toeplitz flow with
rational pure point spectrum. In particular, we can cohstruct two strictly
ergodic Toeplitz flows which are measure-theoretically isomorphic and one
is regular while the other is not—showing that the property ‘of being regu-
lar is not measure-theoretically invariant. This complernents an observation
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