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Extension of operators from weak*-closed subspaces
of {; into C(K) spaces

by

W. B. JOHNSON"T (College Station, Tex) and M. 21PPINTT (Jerusalem)

Abstract, It is proved that every operator from a weak*-closed subspace of #1 into a
space C'{K) of continuous functions on a compact Hausdorff space K can be extended to
an operator from £; to C(K).

1. Introduction. This work is part of an effort to characterize those
subspaces E of a Banach space X for which the pair (E, X) has the following

EXTENSION PROPERTY (E.P., in short). Every (bounded, linear) opero-
tor T' from E into any C(K) space Y has an extension T: X — V.

There is a quantitative version of the E.P.: for any A\ > 1 we say that
the pair (E,X) has the \-E.P. if for every T ; E — Y there is an extension
T: X — Y with [[T]] < A|T|. It is easy to see that if {F, X) has the E.P.,
then it has the A-E.P. for some A.

It is known [Zip] that for each 1 < p < oo and every subspace E of £y,
(E,£y,) has the 1-E.P., while for F C ¢q, {F, ¢y) has the (14¢)-E.P. for every
g > 0 [LP]. However, there is a subspace F of ¢q for which (F,cg) does not
have the 1-E.P. [JZ2]. If E itself is a C(K) space then, clearly, (E, X) has
the E.P. if and only if E is complemented in X. It follows from [Ami] that
C{K) has a subspace E for which (£, C(K)) does not have the E.P. if K
is any compact metric space whose wth derived set is nonempty (which is
equivalent [BePe] to saying that C(X) is not isomorphic to eg).

Since every separable Banach space is a quotient of £;, the following fact
demonstrates the important réle of the space £; in extension problems.
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PROPOSITION 1.1. Let E be a subspace of a Banach space X and let Q
be an operator from Z onfo X so that | Q| =1 end QBallZ D §BallX. If
(QYE,Z) has the A-E.P. then (K, X) has the \/6-E.P.

Proof. Let T be an operator from E into any C(K') space ¥. Consider
the operator § =TQ : Q~'E — Z. If § : Z — Y extends S then since S
vanishes on ker @, S induces an operator S from X ~ Z/ker @) into ¥ so
that §Q = 8§ and [|5] < [S]//6. w

An immediate consequence of Proposition 1.1 is that £, contains a sub-
space F' for which (F,#;) does not have the E.P. Indeed, if £ denotes an
uncomplemented subspace of C[0, 1] which is isomorphic to C[0, 1] ([Ami])
and if @ : £; — C[0,1] is a quotient map and F = Q"' E, then (F, ) does
not have the E.P. The main purpose of this paper is to prove the following.

THEOREM. Let {X,}32, be finite-dimensional and let E be a weak*-
closed subspace of X = (3 Xn)1, regarded as the dual of Xo = (3. X e,
Then (E,X) has the E.P. Moreover, if E has the approzimation property,
then (E, X)) has the (1 +¢&}-E.P. for every e > 0.

Remark, Under the hypotheses of the Theorem, we do not know whe-
ther {E, X) has the (1+&)-E.P. for every € > 0 when E fails the approxima-
tion property. The proof we give yields only that (F, X) has the (3+£)-E.P.
for all € > 0.

We know very little about the extension problem for general pairs (E, X).
However, the Theorem makes the following small contribution in the general
cage.

COROLLARY 1.1. Let E be a subspace of the separable space X. Assume
that there is o weak®-closed subspace F of £5 such that X/E is isomorphic
to £1/F. Then (E,X) has the E.P.

Proof. Let @:£4; — X and 5 : X — X/F be quotient maps. Theorem 2
of {LR} implies that there is an automorphism of ¢ which maps Q'E =
ker(SQ) onto F'. Since (F,#;) has the E.P. by our Theorem, so does the pair
(Q7'E, £;). It follows from Proposition 1.1 that (£, X) has the E.P. u

We use standard Banach space theory notation and terminology, as may
be found in [LT1], [LT2].

2. Preliminaries. Let E be a subspace of X, A > 1, and 0 < £ < 1.
Given an operator S : E — Y we say that the operator 7' : X — Y is a
(A, €)-approzimate extension of S if [T < )|S| and

I8 =Tl < l|5].-
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Our first observation is that the existence of approximate extensions implies
the existence of extensions.

Lemma 2.1, Let E be o subspace of X and assume thot each operator
S :E — Y has a (A g)-approzimate extension. Then the pair (B,X) has
the pu-E.P. with p < A(1—g)7L.

Proof. Put §1 = § and let T1 be a () e)-approximate extension of
Si. Then [Tyl < AliS1]f = AlS|| and {81 ~ Ty|&f < €l|8|. Construct by
induction sequences of operators {5, }52., from F into Y and {7, }2; from
X into Y such that for each n 2 1, Spy1 = 9n — Tnip and T4y is a (A, &)-
approximate extension of S,41. Then, by definition, ||T,]| < A||5.) and
|Snt1] € €||Sul| for every n > 1. It follows that |5 —~ >0, T3l < &7||5]|
and ||T,|| € Ae"~H|S|| for all n > 1. Hence the operator T = 3 o0, T}
extends § and |7} € A1 —¢&)7 S =

Given a finite-dimensional decomposition (FDD, in short) {Z,}32,; of
a space Z, we will be interested in subspaces of Z with FDID’s which are
particularly well-positioned with respect to {Z,}5%.

DerFINITION. Let F' C Z and let {F,}32, be an FDD for F. We say
that {F,}2; is alternately disjointly supported with respect to {Z,}32,
if there exist integers 1 = k(1) < k(2) < ... such that for each n > 1,
F, C Z]a(-n) + Zk(n)-{«l +...+ Zk(n+2)—1-

An important property of an alternatively disjointly supported FDD
is that if {n(j)}52, is any increasing sequence of integers and if we drop
{Fn(s) } %1, then the remaining F,,’s can be grouped into blocks

_ n4n-1
F; = Z F;
t=n(§)+1
which form an FDD that is digjointly supported on the {Z,}52,; more
precisely, with the above notation,
k(n(i+1)41)~1
Fj c Z L
masfi(n(f)+1)
We will show that for certain subspaces of a dual space with an FDD, a
given FDD can be replaced by one which is alternately disjointly supported.

We first need the following main tool:

PROPOSITION 2.1. Let {Xn}o2, be o shrinking FDD for X, let Q be a
quotient mapping of X onto Y and suppose that {En}, is an FDD for
Y. Then there are a blocking {EL YL, of {En}SLy, an FDD {W,}3L, of X
whick is equivalent to {Xn ¥, and 1 = k(1) < k(2) < ... so that for each

for all j > 1.
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n and each k(n) < j < k(n+1), QW; C E,+ E} ;. Moreover, given e > 0,
{EI}e2 and {W,}52,; can be chosen so that there is an autornorphism T
on X with |[[-T| <c and TX, =W, foralln.

Proof. In order to avoid complicated notation we shall prove the state-
ment for the case where, for every n > 1, X,, (and hence also W,,) is one-
dimensional. The same arguments, with only obvious modifications, yield
the FDD case. {Actually, in the proof of the Theorem, only the basis case of
Proposition 2.1 is needed. Indeed, in Step 3 of the proof of the Theorem, one
canreplace F by By = E@; (3. Gy)1 and X by Xy = X @1 (3 Gp)1, where
{G,}52, is a sequence which is dense in the sense of the Banach-Mazur
distance in the set of all finite-dimensional spaces, and use the fact [JRZ],
[Pel] that F) has a basis. In fact, this trick is used in a different way for the
proof of the “moreover” statement in the Theorem.)

So assume that X has a normalized shrinking basis {z, }52; with biortho-
gonal functionals {f,}2 ;; we are looking for an equivalent basis {w,}52,
of X for which the statement holds. First we perturb the basis for X to get
another basis whose images under ¢) are supported on finitely many of the
E,.’s. This step does not require the hypothesis that {z,}32,; be shrinking.
_ For each m > 1 let @n be the FDD’s natural projection from Y onto
Ei4 ...+ E,. Let 1 > & > 0 and set C = sup,, ||f»|. Choose py < pa < ...
so that for each n, [|Qz, — @anmnH < gC~*27™. Since Q is a quotient
mapping, there is for each n a vector 2z, in X with |z,] < 012" and
Qzn = Qrn — Qanwn Let 4, = Ty — 2n, 80 that Qy, is in By +. +Epn It
is standard to check that {y,}52, is equivalent to {z,}52,. Incleed define
an operator § on X by Sz = En_l fn(z)z,. Then ||5] < & and Smn = zp,
so I — 5 is an isomorphism from X onto X which maps Ty 10 Yn.

Define a blocking {E,}52, of {E,}2, by B, = Ep_y4i+ .. + By,
(where po = 0). Then for each n, Qy,, is in By + ...+ E,.

Let @), be the basis projection from Y onto E1 “+ ...+ Fy, P, the basis
projection from X onto span{yi,...,yn}, and set Cy == sup, || Pn|. Since
{yn}32, is shrinking, limy oo |@n@Q(L — Pp)|| = 0 for each n. Since @ is a
quotient mapping, for each n there exists a mapping T, from Fy +...+ E,
into X so that QT, is the identity on Fy +... + E,,. Set M, = | T,||, let
1 > & > 0, and recursively choose 0 = k(0) < 1 = k(1) < k(2) <
so that for each n, ||Qkn) QI — Pr(nyi)-1)]| < (2C1Mjyq)) ™27 e, Setting
W; = Y5 — Thin) Qi) Quy for k(n+1) < j < k(n+2), we see that Qu; is in
Ek(n)+1 + ...+ Ek(n+2) when k’(’l’l, + 1) <ji< k;(n + 2)

The desired blocking of { £}, is defined by E/, =Ep(n-1y+1+ Ben-1)+2
+ ...+ Ey(n), but it remains to be seen that {w,}32., is a suitably small per-
turbation of {y:}52:. The inequality [Qrmy@(I — Pymy1-1) <
(2C’1Mk(n)) 19—"¢ implies, by composing on the right with Pn+2)-1, that
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| Qx() @(Pregnr2y-1 — Prnt1y—1) || < (2M(ny) 7127 " Thus if we define an
operator V on X by Ve =3 7 T () Qi (r) Q(Pr(ns2) -1 = Ping1)—1)T, We
see that |V|| < ¢ and hence T=T-V is 1nvert1ble But for k(n+1) < j <
kin+2), Vy; = Thin) @r(n)Qz;; that is, Ty; = w,. w

Using a duality argument we get from Proposition 2.1 the following.

COROLLARY 2.1. Let {Z,}32, be an £1-FDD for a space Z. Regard Z as
the dual of the space Z, = (3, Z2%)., and let F be a weak*-closed subspace
of Z with an FDD. Then Z and F hove £1-FDD’s {V,}°%, and {Un}2%,,
respectively, so that {7,152, is alternately disjointly supported with respect
to {Vo}o,. Moreover, given & > 0, {V,}32, can be chosen so that for
some blocking {21 }2%., of {Z,}2%.,, there is an automorphism T of Z,, with
[ I-T| <eand TZ, =V, for alln > 1.

Proof. Being weak”-closed, F' has a predual F, = Z,/F, which is a
quotient space of Z,.. By [JRZ], Fy has a shrinking FDD and consequently, by
Theorem 1 of [JZ1], F. has a shrinking ¢-FDD {E,}%,. Let Q : Z, — F,
be the quotient mapping. By Proposition 2.1 there are a blocking {E/,}22, of
{E,}32.,, an FDD {W, )22, of Z, which is equivalent to {22} ,, even the
image of {Z}}52 , under some automorphism on Z, which is arbxtrarlly close
tolz,,and 1 = k(1) < k(2) <... so that for each n and k(n) < j < k{n+1),
QW; C Ej + E/.,. The equivalence implies that {W,}32, is a ¢;-FDD
and, being a blocking of a co-FDD, {E} 122, is a ¢g-FDD. Let {V,}52,
(resp. {Un}22,) be the dual FDD of {W,}5°, (resp. {E}}32,) for Z (resp.
F). Then {V,,}2, is an £1-FDD for Z and {U,}%2, is an £,-FDD for F.
Moreover, suppose that w is in U, and w; is in W}, where either j < k(n)
or j > k(n + 2). Let m be the integer for which k(m) < 7 < k(m + 1).
Then either m < n or m > n+ 1 hence n 5= m and n ¥ m + 1. Then
Qu; € E/, + E, +1= hence u(w;) = (u,Quw;) = 0. This proves that Uy, is

:n+2) 1y,
i

supported on Z
3. Proof of the Theorem. The proof consists of four parts, the first
three of which are essentially simple special cases of the Theorem.

STEP 1. E has an FDD {E,}32, with By, C Xy for all n.

Proof Let Y = C(K) and let S : E — ¥ be any operator. Using the
Loo,1+e-property of ¥ (or see Theorem 6.1 of [Lin]), one sees that the finite
rank operator S)g, has an extension S, : X, — ¥ with ||, < (1+¢€)||8a]|.
Define the extension S of § by S(¥ oo Tn) = Y opey Snn. Since {Xn}52,
is an exact £;-decomposition, it follows that ||S]| < (1 +¢)||5]|.

STEP 2. E has an £1-FDD {E,}%
ported with respect to {X,}52,.

° . which is alternately disjointly sup-
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Proof. Given§ > 0,let 1 < (1+¢e)(1 —¢&)"! < 1+ & and choose an
integer N > (2+£)Me~! where M is the constant of the £,-FDD {E,}22,,
that is, the constant of eguivalence of {£,,}32,; to the natural £,-FDD for
(3"E,);. Let Y = C(K) and let §: E ~ ¥ be an operator with ||S] = 1.
Foreach 1 <j < N let

Z;=span{F; i kN +j, k=0,1,2,..}.
Each subspace Z; has a natural £;-FDD which is disjointly supported with
respect to {X,}%, because {E,}2; is alternately disjointly supported
with respect to {Xn}52;. By Step 1, 8|z, has an extension T : X - ¥
with
10 < @+ elSll < A +a)8] =1+e

Define T: Z =Y by T =N"1 E;‘:\‘;l T;. Then |IT|| < (1+&)|S]| =1+«
Moreover, if e € E; and ¢ = kN + h for some 1 < h < N, then Tje =
S;e = Se for all j # h, hence T is “almost” an extension of S. Indeed,
|Te~ Se| = N~YThe - Se|| < (2 +&)N"1|e|| whenever e € E; for some i.
Recalling that the £1-FDD {E,}%° , has constant M, we have

IT|s — S| < Msup||T|g, — Sl < M2+e)N ™ <&

This proves that T is a (1 + &, £)-approximate extension of S and therefore,
by Lemma 2.1, (E, Z) has the (1 +£)(1 — )7 *-E.P.

STEP 3. F has an FDD.

Proof. By Corollary 2.1 we see that X and E have £;-FDD’s {Z,}22,
and {E,}52,, respectively, where {F,}52, is alternately disjointly sup-
ported with respect to {Z,}52,, and, by Remark 2.1, {Z,}22_, has constant
of equivalence to (3 Z,)1 arbitrarily close to one. Hence, by Step 2, (E, X)
has the (1 + §)-E.P. for every § > 0.

This gives the “moreover” statement when EF has an FDD. When E
just has the approximation property, we enlarge X to Xy = X @, €, where
C1 = (3, Gr}y and {G,}32, is a sequence of finite-dimensional spaces which
is dense {in the sense of the Banach-Mazur distance) in the set of all finite-
dimensional spaces; and we enlarge E to By = E®, (). Again, X is an exact
£1-sum of finite-dimensional spaces and Ey is weak*-closed in X' . Moreover,
since E is a separable dual space which has the approximation property, E
has the metric approximation property [LT1], and hence by [Jobh], £ is a
m-space, whence, since i is a dual space, E; has an FDD by [JRZ]. Thus
by Step 3, (B, X1) has the (1 4+ §)-E.P. for each § > 0, and, therefore, so
does (F, X).

3TEeP 4. The general case.

We start with a lemma.
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LeMMA 3.1. Let Z be a Banach space and let E be a subspace of Z.
Suppose that B has a subspace F' such that (F,Z) has the M\-E.P. and
(E/F,Z/F) has the u-E.P. Then (E,Z) has the (A + p(1 + X\))-E.P.

Proof LetY = C(K) andlet §: F — Y be any operator. Let $1: Z —
Y be an extension of S|p with {|8;|| < A||5||. The operator W = S — Si|g
from E into ¥ vanishes on F and so induces an operator W : E/F -Y
in the usual way, and [|[¥7]] = (W] < [IS] + IS < (1 + A)[S]|. By our
assumptions, W extends to an operator Wy : Z/F — Y with ||Wy] <
p|Wl < u(1+ N||S]. Let Q : Z — Z/F denote the quotient map. Then
T = 51 + WhiQ is the desired extension of S. Indeed, for every e € E,

Te=Se+WiQe=5e+We=_58e+ (S~ 5 )e=Se
and [|T] < [Sc] + [[Wall € A+ p(1+ D8] =

Let us now return to the proof of the general case. Being a weak*-closed
subspace of £, E is the dual of the quotient space Ey = (3" X}, /EL. Our
main tool in this part of the proof is Theorem IV.4 of [JR] and its proof. This
theorem states that E, has a subspace V so that both V and E./V have
shrinking FDI)’s. Under these circumstances, Theorem 1 of [JZ1] implies
that both V' and E./V have cp-FDD’s. In order to prove our Theorem
it suffices, in view of Lemma 3.1, to show that both pairs (V+,X) and
(E/V+,X/V*) have the EP. Now, (V+,X) has the (1 + §)-E.P. for all
§ > 0 by Step 3, so it remains to discuss the pair (E/V1, X/V1). This
discussion requires some preparation and some minor modification in the
proof of Theorem IV 4 of [JR]. We first need a known perturbation lemma:

LeMMa 3.2. Suppose E, F are subspaces of X* with F' norm dense in
X™ and X* is separable. Then for each £ > 0 there is an automorphism T
on X sothat |I - T|| <& and T*ENF 4s norm dense in T*F.

Proof. Let (zy, z)) be a biorthogonal sequence in X x E with 5pan =}, =
E (sce, e.g., [Mac]) and take y} € F so that > ||z} — y}{| [|zw|| < . Define
T:X — X by '
o0
Ty =u— Z(m‘; — Yy, )Ty W
=l
Returning to the proofl of the Theorem, we may assume, in view of
Lemma 3.2, that E N span|J;o, X, is norm dense in E. The standard
back-and-forth technique [Mac] for producing bierthogonal sequences yields
a biorthogonal sequence {(n,2%)}3%,; C X x E with span{Qz,}32., =
span | oo, QX7 span{z:}3, = F Nspan{ ;.. X,, and where @ is the
quotient mapping from the predual X, = (3 X),, of X onto the predual
E, of E. This means that for any N, ;7 is in span oo Xn if 7 is sufficiently
large.
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We now refer to the construction in Theorem IV .4 of [JR] and the finite
sets Ay C Ax C ... of natural numnbers defined there. From that con-
struction, it is clear that, having defined A,, the smallest element, k(n),

in Ay \ Ay can be as large as we desire. In particular, if {z} ma;‘ 4n g

a subset of spanU Xi, then we choose k(n) large enough so that for
§ 2 k(n), z} isin span Umm (n)+1 Xi- Thus setting

(where Ag = 0), we infer that {Z,}22.; is disjointly supported relative to
{X.}25,. In the notation above and setting m{0) = 0, we have, for each n,

(*) Zo C span{ X170

Z, = span{zj}

1+1

The subspace V of E, is defined to be the annihilator of {a: 1€
Unzy Ax} and, as mentioned eaxlier, it follows from [JR] and [J Zl] that V
has a cg-FDD and thus V* = £/ VL has an £,-FDD. It is also proved in
[JR], but is obvious from the “extra” we have added here, that §pan{Z;}52 o
is weak*-closed and hence equals V= It is also obvious from (#) that X/ VJ-
has an £)-FDD. Therefore, by Step 3, (E,/VL, X/V<) has the E.P. »

The Extension Property is concerned with extension of operators into
C(K) spaces. However, in the proof of the Theorem, the only place where
the fact was used that the range of the mapping is a C(K) space was in
Step 1, where we needed to extend an operator from a finite-dimensional
subspace. This uses only the £ .-property of C(K) spaces, so we can state
a formally stronger version of the Theorem: '

CoroLLARY 3.1. Let {X,}52, be finite-dimensional and let E be a
weak™-closed subspace of X = (3. Xn)1, regarded as the dual of X, =
(32 X%)eo- Let T be an operator from E into an Lo 5 space Y. Then there
ts on extension of T to an operator T from X into Y. Moreover, if E has

the approzimation property, then for any & > 0, T can be chosen so that
ITH < (A + &)l

4. Concluding remarks and problems. Very little is known about
the Extension Property, so there is no shortage of problems.

PrROBLEM 4.1. If E is a subspace of X and X is reflexive, does (E, X)
have the E.P.? What if X is superreflezive? What if X is Ly, 1< p#2
< oof

ProBLEM 4.2. If E is a reflexive subspace of the separable space X, does
(B,X) have the E.P.? What if E is just isomorphic to a congugate space?
In the latter case, what if, in addition, X is £17
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In Problem 4.2 it is necessary to restrict attention to separable X to avoid
Jnown. counterexamples. (If £ is an infinite-dimensional reflexive subspace
of £s, then no isomorphism from E into C[0, 1] can extend to an operator
from £o into C[0, 1].)

If E is a subspace of ¢g, then (E, ¢p) has the (14 g)-E.P. for every £ > 0
[LP] but need not have the 1-E.P. [JZ2]. We do not know if this phenomenon
can occur in the setting of “nice” spaces:

PrOBLEM 4.3. If X is a reflexive smooth space and (E, X) has the (1+€)-
E.P. for every € > 0, does (E, X) have the 1-E.P.?

The following observation glves an afﬁrmatwe answer to Problem 4.3 in
a gpecial case.

ProrosiTioN 4.1. If X is uniformly smooth and (E,X) has the (1+¢)-
E.P. for every & > 0, then {E,X) has the 1-E.P.

Proof. In preparation for the proof we recall Proposition 2 of [Zip],
which says:

(E,X) has the A-E.P. if and only if there exists a weak*-continuous
extension mapping from Ball E* to ABall X, that is, o continuous mapping
@ : (Ball B*, weak™) — (A Ball X*, weak™) for which (¢e*)|g = e* for every
e* in Ball B,

Since X is uniformly smooth, given ¢ > 0 there exists § > 0 so that
if 2%, y* in X* and z in X satisfy |2*| = |lz]| = 1 = {z*,2) = (¥, )
with ||*|| < 1+ &, then |z* — y*|| < . Letting ¢, : BallB* — (1 +

“1)BallX* be a weakly continuous extension mapping and letting f :
Sphere E* — Sphere X* be the (uniquely defined, by smoothness) Hahn—
Banach extension mapping, we conclude that

Jim sup{||¢n(z*) — f(z")|| : «* € Sphere E*} = 0.

That is, {¢5n|sphm g+ 152 is uniformly convergent to f|sphere £+, Since each
én is weakly continuous, so is f|gphere &+

If E is finite-dimensional, then clearly the positively homogeneous ex-
tension of f to a mapping froon Ball E* into Ball X™* is a weakly continu-
ous extension mapping. So assume that E has infinite dimension. But then
Sphere B* is weakly dense in Ball E*, so by the weak continuity of the ¢,’s
and the weak lower semicontinuity of the norm, we have

SuP{qu%(m*) - Om(2™)|| : 2" € BallE*}
= sup{|/@n(z”) — dm(z")| : 2" € Sphere E*},
which we saw tends to zero as n, m tend to infinity. That is, {¢n}33., Is

a uniformly Cauchy sequence of weakly continuous functions and hence its
limit is also weakly continuous. m
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It is apparent from the proof of Proposition 4.1 that the 1-E.P. is fairly
easy to study in a smooth reflexive space X because every extension mapping
from Ball &* to Ball X* is, on the unit sphere of E*, the unique Hahn-
Banach extension mapping. Let us examine this situation a bit more in the
general case. Suppose F is a subspace of X and let A(F)} be the collection
of all norm one functionals in E* which attain their norm at a point of
Ball E. The Bishop-Phelps theorem [BP], [Die] says that A(E) is norm
dense in Sphere E*, hence, if F has infinite dimension, A(E) is weak*-dense
in Ball E*. Therefore (E,X) has the 1-E.P. if and only if there is a weak*-
continuous Hahn-Banach selection mapping ¢ : A(E) — Ball X* which has

a weak™-continuous extension to a mapping ¢ from A(E)w = BallE* to
Ball X*, since clearly ¢ will then be an extension mapping. The existence of
¢ is equivalent to saying that whenever {z*} is a net in A(E) which weak*
converges in E*, then {¢a}%} weak* converges in X* (see, for example, [Bou,
1.8.5]). Now, when X is smooth, there is only one mapping ¢ to consider, and
'in this case the above discussion yields the next proposition*when dimE =

to Ball E* by

oo (when dim £ < oo one extends from Sphere B* = A(E)w
homogeneity).

PROPOSITION 4.2. Let E be a subspace of the smooth space X. The pair
(E,X) fails the 1-E.P. if and only if there are nets {z2}, {y} of functionals
in Sphere X* which attain their norm at points of Sphere ' and which weak*
converge to distinct points x* and y*, respectively, which satisfy 2*|g = v*|&.

An immediate, but surprising to us, corcllary to Proposition 4.2 is:

COROLLARY 4.1. Let E be a subspace of the smooth space X. If the pair
(E, X} fails the 1-E.P., then there is a subspace F of X of codimension one
which contains F so that (F, X) fails the 1-E.P.

Proof. Get 2%, y* from Proposition 4.2 and set F = span E U (kerz* N
kery*). m

PrOBLEM 4.4. Is Corollary 4.1 true for a general space X?

COROLLARY 4.2. For 1 < p # 2 < o0, L, has a subspace E for which
(E,Ly) fails the 1-E.P,

Proof. We regard L, as Ly(0,2) and make the identifications L? =
Lg = L4(0,2), where g = p/(p — 1) is the conjugate index to p. Let

=012 —1amy, 9=-2-Lusmy ~1lua,
regarded as elements of L;, and define

Em(f—g)l:{xeLp(o,Q):fzm:o}.
0
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Notice that |f|?"!sign f is in B, which implies that 1 = £y = [iflizg =
\flellg=. So f and g induce the same linear functional on E (we write
flz = glg), and f is the unique Hahn~Banach extension of this functional
to a functional in Ly = L.

Cram. There exists h in Ly supported on [0,1/2] so that f02 h=0=
fZ1g + hle~Lsign(g + h).

Assume the claim. Set A = ||g - h{|, and let {h,}5%, be a sequence of
functions which have the same distribution as h, are supported on [0,1/2],
and are probabilistically independent as random variables on [0,1/2] with
normalized Lebesgue measure. Then g, = A~*(g + h,,) defines a sequence
on the unit sphere of L,(0,2) which converges weakly to A~ 'g. Moreover,
|gn|7~ " sign gy, is in F, which means that as a linear functional on Ly, gn
attains its norm at a point on the unit sphere of E. In view of Proposition 4.2,
to complete the proof it suffices to find a sequence {f,,}32; on the unit sphere
of L, which converges weakly in L, to A1 f so that [ful?lsign £, is in E.
This is easy: take w supported on [1,2] so that

2 2 2
f w:o:—.f |w]? sign w (= f |f+w|q'1sign(f+w))
0 0 0

and [If +wf = 1 =1+ |lw|i = A? (so w can be a multiple of 1(;3/2) —
lez/a.2)) Let {w,}52%, be a sequence of functions which have the same dis-
tribution as w, are supported on [1, 2], and are probabilistically independent
as random variables on [1,2]. Now set fr = A71(F + wn)-

We turn to the proof of the claim. Fix any 0 < & < 1/4. For appropriate
d, the choice

h = d(del(0,1/4) = Li1j2-e,1/2)

works. Indeed, fog h = 0 no matter what d is, and gh = 0, so we need choose
d to satisfly

2 2
(+) — [ lgl* " signg = [ [n]7" sign h.
0 0
The left side of (%) is 29" 1 > 0, while the right side is |d|?~! sign d=?~* x
[(1/4)%~7 — £2-9], so such a choice of d is possible for p # 2. m

ProsLeEM 4.5. If E is a weak*-closed subspace of £, does (E,£,) have
the (1 +&)-E.P. for every e > 07

A negative answer to Problem 4.5 would be particularly interesting, be-
cause it would justify the weird approach we used to prove the Theorem.
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Samet [Sam1l], [Sam2] proved that if F is a finite-dimensional subspace
of £1 then (K,#1) has the 1-E.P. Our final proposition shows that for most
weak™-closed hyperplanes F in £y, (F,£1) does not have the 1-E.P.

ProrosITION 4.3. Let & = {an}S%; be a norm one vector in cy with
an # 0 for infinitely many n, and let E = ot in &y = . Then (E,£) does
not have the 1-E.P.

Proof. By using an onto isometry of cp, we can assume, without loss
of generality, that a; = 1 and ag,-1 is positive for each n. Assuming for
contradiction that (E, £1) has the 1-E.P., we get from Proposition 2 of [Zip]
a weak”-continuous extension mapping ¢ from Ball E* to Ball £, = Ball ¢},
Forn=1,2,..., define a vector z(n) in ¢y by having the first 2n coordinates
agree with those of z, the (2n + 1)th coordinate be minus one, and other
coordinates be zero. Regarding the z(n)’s as linear functionals on £, we have
z(n)| g is in Ball E* and z(n)|g — 0 weak™ in E*. We can write ¢(z(n)|g) =
z(n) + bnx and ¢(—2z(n)|g) = —x(n) + cnz; by weak* continuity of ¢, these
two sequences must converge weak® in £} to the same functional, namely, to
#(0). Since ¢ maps into the unit ball, |1+ b,|, |1+ brasnt1], |1 +cn|, and
|1 + enaony1| are all at most one. Hence since agnpq > 0, by = ¢, = 0. So
d(z{n)|g) = 2(n) — ¢ and ¢(—z(n)|g) = —»(n} — —z weak* in s, which
is a contradiction. m
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